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BALL HULLS, BALL INTERSECTIONS, AND 2-CENTER

PROBLEMS FOR GAUGES

PEDRO MARTÍN, HORST MARTINI, AND MARGARITA SPIROVA

Abstract. The notions of ball hull and ball intersection of finite sets,
important in Banach space theory, are extended from normed planes
to generalized normed planes, i.e., to (possibly asymmetric) convex dis-
tance functions which are also called gauges. Related to this, we extend
the known 2-center problem and a modified version of it from the Eu-
clidean situation to norms and gauges. We also derive algorithmical
results on the construction of ball hulls and ball intersections, yielding
computational approaches to 2-center problems.

1. Introduction and preliminaries

We denote by Md = (Rd, ‖ · ‖) a (generalized ) normed space, namely,
the d-dimensional Euclidean space endowed either with a norm or with a
generalized convex distance function (which can be asymmetric), also called
a gauge. We write B for the unit ball of Md, which is a compact, convex set
with the origin o as interior point. The set x+ rB = B(x, r) is the ball with
center x and radius r, and the spheres S and S(x, r) are the boundaries of

B and B(x, r), respectively. The set B̂ = (−B) is in general, the unit ball of

another gauge; Ŝ is the boundary of B̂, B̂(x, r) the set x+ rB̂, and Ŝ(x, r)
its boundary. We use the usual abbreviations conv(K) and diam(K) for the
convex hull and the diameter of a set K, pq for the line segment connecting
p and q, and 〈p, q〉 for its affine hull. A generalized normed space is strictly
convex if its unit sphere contains no nondegenerate segment.

Given a set of points K in Rd and r > 0, the rB-ball hull bhB(K, r) and
the rB-ball intersection biB(K, r) of K are the sets

bhB(K, r) =
⋂

K⊂B(x,r)

B(x, r) , biB(K, r) =
⋂
x∈K

B(x, r).
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Clearly, the boundary of biB(K, r) in a (generalized) normed plane con-
sists of circular arcs. Theorem 2.3 below describes the boundary structure
of bhB(K, r) and Theorem 2.4 describes the relationship between bhB(K, r)
and biB̂(K, r).

We have bhB(K, r) 6= ∅ if and only if r ≥ rK , where rK is the B-
circumradius of K, i.e., the smallest number such that K is contained in a
translate of rKB. It is easy to see that even for gauges, biB̂(K, rK) is the
set of centers of B-minimal enclosing discs of K. Therefore biB(K, r) 6= ∅
if and only if r is greater than or equal to the B̂-circumradius of K. For
rB-ball hulls (respectively, the rB-ball intersections) of K, we always mean

that r ≥ rK (respectively, r equals at least the B̂-circumradius of K).
If K1 and K2 are bounded sets of points in Md, then

(P1) K1 ⊆ K2 ⇒ biB(K1, r) ⊇ biB(K2, r) and bhB(K1, r) ⊆ bhB(K2, r) ,

(P2) r1 ≤ r2 ⇒ biB(K, r1) ⊆ biB(K, r2) and bhB(K, r1) ⊇ bhB(K, r2) .

The proof of the second inclusion of (P2) presented in [20] for norms is
extended to gauges. The definitions imply the rest of the properties.

The notions of ball hull and ball intersection are important in Banach
space theory; they are basic for investigations on circumballs and Chebyshev
sets (see [4] and [20]), complete sets and bodies of constant width (cf. [21]
and [22]), and ball polytopes ([9], [6], [7, Chapter 6], [18], and [8, Chapter
5]). For finite sets K, both the ball hulls and the ball intersections can be
obtained in O(n log n) time in the Euclidean subcase ([15]) and for a general
norm ([19]), and we prove in Section 3 that this holds also for a gauge
(Algorithms I and II in Theorem 3.1). In a more applied sense, ball hulls and
ball intersections also played an important role for solving certain clustering
problems. One example, well known also in computational geometry, is the
so-called planar 2-center problem, which asks how to cover a given set K in
the plane with two congruent balls of minimal radii. Sharir ([25]) achieves
the crucial first subquadratic solution (taking (O(n log9 n) time; see also
[10], [11]). Approaching the 2-center problem requires a procedure referring
to the fixed radius problem, asking whether a set K of n points in the plane
can be covered by two discs of two fixed radii. On the other hand, the fixed
radius problem with constrained circles requires the centers of the circles to
be from K ([15], [3]). As far as we know, there are not many results on non-
Euclidean norms, not even for Lp spaces apart from p = {1, 2,∞} ([5], [15],
[17], and [16]). We justify in Section 3 why Sharir’s operational framework
for the fixed radius problem does not work for every gauge. We adapt the
Euclidean quadratic approach of Hershberger ([14]), which is the inspiration
of the procedure presented in [1], in order to obtain an almost quadratic
solution (Theorem 3.5) when B defines a general gauge. We also show that
the fixed radius problem with constrained circles can be computed for every
gauge in O(n2) time (see Algorithm III in Theorem 3.1).
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2. The ball hull structure and planar gauges

Our objective in this section is to describe the geometric structures of,
and the relationship between the rB-ball hull and the rB̂-ball intersection
of a finite set K (see Theorem 2.3 and Theorem 2.4) for gauges.

For the following lemma we refer to [23, § 3.3] and [4].

Lemma 2.1. Let R2 be the Euclidean plane and B ⊂ R2 be a convex body.
If u, v ∈ R2 and r > 0, then S(u, r) ∩ S(v, r) is the union of two nonempty
connected components, A1 and A2, which may degenerate to the same set or
to the empty set.

Suppose that S(u, r)∩S(v, r) consists of two different nonempty connected
components. Then the two lines parallel to the line of translation and sup-
porting B(u, r) ∩B(v, r) intersect B(u, r) ∩B(v, r) exactly in A1 and A2.

Let us choose pi ∈ Ai, i = 1, 2. Let ui = pi− (v−u) and vi = pi + (v−u)
for i = 1, 2. Let S1(u, r) be the part of S(u, r) on the same side of the line
〈p1, p2〉 as u1 and u2; let S2(u, r) be the part of S(u, r) on the side of 〈p1, p2〉
opposite to u1 and u2. Let S1(v, r) be the part of S(v, r) on the same side
of the line 〈p1, p2〉 as v1 and v2; let S2(v, r) be the part of S(v, r) on the
side of 〈p1, p2〉 opposite to v1 and v2. Then S2(u, r) ⊆ conv(S1(v, r)) and
S2(v, r) ⊆ conv(S1(u, r)).

Having in mind Lemma 2.1 if B̂(p1, r) ∩ B̂(p2, r) has two different con-
nected components (two segments), A1 and A2, we let u ∈ A1 and v ∈ A2 be

extreme points of A1 and A2, respectively. If B̂(p1, r)∩B̂(p2, r) has only one
connected component (one segment), we let u and v be extreme points of
this segment. In both cases, S(u, r) and S(v, r) determine two arcs S2(u, r)
and S2(v, r) meeting p1 and p2 (eventually only one if they degenerate to
the same set). We call each of these arcs rB-minimal (with center u or v)
meeting p1 and p2.

Lemma 2.2. Let w ∈ M2, r > 0, and p1, p2 be two points from B(w, r).
Then

(1) there exist only two rB-minimal arcs meeting p1 and p2 (which may
degenerate to the segment p1p2 if B is not strictly convex), both
contained in B(w, r), and 〈p1, p2〉 separates them if they are different,

(2) for every r′ ≥ r, any r′B-minimal arc of p1, p2 is contained in
B(w, r),

(3) if for x ∈ R2 there is an arc on S(x, r) meeting p1 and p2, contained
in B(w, r), and containing interior points of B(w, r), then it is rB-
minimal.

(4) Let p1, p2 ∈ S(u, r)∩S(v, r) for some u 6= v, and p 6= {p1, p2} be from
the rB-minimal arc with center u. Then v and the support line L of
B(u, r)∩B(v, r) at p are separated from u by the line (1/2)(u+v)+L.

Proof. (1) It is easy to check (see Figure 1) that

{w ∈ R2/{p1, p2} ∈ B(w, r)} = B̂(p1, r) ∩ B̂(p2, r),
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Figure 1. B(w, r) contains the minimal arcs meeting p1 and p2.

and the boundary of this set is the union of the rB̂-minimal arcs with centers
in p1 and p2. By Lemma 2.1, Ŝ(p1, r) ∩ Ŝ(p2, r) = {A1, A2}, where A1 and

A2 can be segments or points. Let us consider w ∈ B̂(p1, r) ∩ B̂(p2, r).
Suppose that A1 = u, A2 = v for different u, v ∈ R2, and assume u = o.

We prove that S2(u, r) ⊂ B(w, r); S2(v, r) ⊂ B(w, r) is verified analogously.
Choose two lines l1 and l2 such that pi + li supports B(u, r) at pi. Due

to symmetry, u+ li (i = 1, 2) supports B̂(p1, r) ∩ B̂(p2, r) at u = o. Choose
wi ∈ R2 parallel to li such that 〈p1, p2〉 leaves pi + wi and S2(u, r) in the
same hyperplane.

For every w ∈ B̂(p1, r)∩B̂(p2, r), also w = αw1+βw2 holds with α, β ≥ 0.
For positive values α and β we have

S2(u, r) ⊂ conv(p1, p2, w + S2(u, r)) ⊂ B(w, r).

Let A1 and A2 be different segments. We choose u1 and v1 such that
A1 = u1v1 with ~u1v1 = α ~p1p2 for some α ≥ 0. Consider S(u1, r) ∩ S(v1, r)
like in Lemma 2.1. The segment p1 +A1 belongs to S(u1, r) and is parallel
to p1p2. Therefore, p1p2 itself belongs to S(u1, r), and S2(u1, r) = p1p2 ⊂
B(w, r). Similarly, we prove that S2(v1, r) = p1p2 ⊂ B(w, r). If A2 = u2v2,
analogously p1p2 is the rB-minimal arc with center at u2 or v2 meeting p1

and p2.
In order to prove the case when A1 is a segment and A2 is only a point,

we can combine the arguments managed in both cases above.
Assume that A1 = A2 = uv for some u, v ∈ R2. If u = v, there is nothing

to prove. For u 6= v, uv is parallel to the support line of B(u, r) ∩ B(v, r)
(Lemma 2.1). Hence for every w = u + α(v − u) with 0 ≤ α ≤ 1 we have
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that

S2(u, r) ⊂ conv(p1p2, α(v − u) + S2(u, r) ⊂ S(w, r).

Similarly, S2(v, r) ⊂ S(w, r).
(2) By (1), bhB({p, q}, r) is bounded by the two rB-minimal arcs meeting

p and q. If r′ ≥ r, bhB({p, q}, r′) ⊆ bhB({p, q}, r) by (P2), and (2) holds.
(3) We have x 6= w because the arc on S(x, r) contains interior points of

B(w, r). There are two arcs on S(x, r) meeting p and q. By Lemma 2.1 and
(1), one of them is rB-minimal and contained in B(w, r), and the other one
is not from B(w, r). Thus, the conditions force the arc in (3) to be the first
one.

(4) By Lemma 2.1 and the convexity of B(u, r) ∩B(v, r), 1/2(u+ v) + L
separates u and L. And, obviously, u and v are separated by 1/2(u+v)+L.

�

Theorem 2.3. Let K = {p1, p2, . . . , pn} be a finite set, and let r ≥ rK .
Then

bhB(K, r) =
⋂

K⊂B(xs,r)

B(xs, r) = conv

 n⋃
i,j=1

p̂ipj

 ,

where xs are extreme points of the components Ŝ(pi, r) ∩ Ŝ(pj , r), and p̂ipj
are rB-minimal arcs with centers xs that meet pi and pj.

Proof. We denote by p̂ipj the rB-minimal arc meeting (clockwise) pi and pj .
Since r ≥ rK , there exists B(x1, r) such that K ⊂ B(x1, r). After translating
suitably, we may assume that S(x1, r) contains two points p1, p2 ∈ K, and
that p̂1p2 is the largest rB-minimal arc on S(x1, r) meeting points of K.

If the arc on S(x1, r) from p2 to p1 (clockwise) is also minimal, then
bhB(K, r) = B(x1, r) (Lemma 2.2). Otherwise, we move a point z clockwise

along Ŝ(p2, r), and we observe the arcs on S(z, r) starting (clockwise) in p2.
Let x2 denote the first position of z such that a point of K is reached by
one of these arcs (more than one point can be reached at the same time).
Statement (3) in Lemma 2.2 guarantees that the arc on S(x2, r) starting
in p2 and ending (clockwise) in a new point from K is rB-minimal. We

consider A = B(x1, r) ∩B(x2, r). Since z moves continuously in Ŝ(p2, r), A
contains K. If p1 ∈ S(x2, r), then the arc meeting (clockwise) p2 and p1 on
S(x2, r) is minimal and A =

⋂
K⊂B(x,r)B(x, r). If p1 /∈ S(x2, r), let p3 be

the new point on K∩S(x2, r) such that no other rB-minimal arc on S(x2, r)
meets K and is larger than p̂2p3. We repeat the operation and now move a
point z clockwise along Ŝ(p3, r) starting in z = x2. As above, x3 be the first
value of z such that one of the following is verified: either p1 ∈ S(x3, r) or
there is a new p4 ∈ K such that p̂3p4 (clockwise) is the largest rB-minimal
arc on S(x3, r) starting in p3 and ending in a point of K. In both cases,
A = B(x1, r) ∩ B(x2, r) ∩ B(x3, r) contains K since z moves continuously

in Ŝ(p3, r). Besides this, we have
⋂
K⊂B(x,r)B(x, r) ⊂ A. If p1 ∈ S(x3, r),

the boundary of A is generated by rB-minimal arcs meeting points of K,
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and by Lemma 2.2 we have A =
⋂
K⊂B(x,r)B(x, r) . If p1 /∈ S(x3, r), the

process continues similarly, and it is clearly finite. Starting with p1 and p2,
we cannot get a previous point pi ∈ {p2, ..., pi−1} in a new step, because any
new point (except when the process ends in p1) cannot be from the convex
hull of the union of the previous minimal arcs.

At the end we obtain the set A =
⋂k
s=1B(xs, r), where xs are extreme

points of the components Ŝ(pi, r) ∩ Ŝ(pi+1, r). Clearly, A contains the ball
hull, and the boundary of A is generated by rB-minimal arcs meeting points
of K. Thus, by Lemma 2.2, both sets are equal to conv(

⋃n
i,j=1 p̂ipj). �

Theorem 2.3 shows that the boundary of a planar ball hull consists of
minimal arcs meeting points fromK. Their endpoints are extreme and called
vertices of ball hulls. The boundary of a planar ball intersection consists of
circular arcs, whose endpoints are called vertices of ball intersections.

Theorem 2.4. Let K = {p1, p2, . . . , pn} be a finite set in a generalized
normed plane M2 and r ≥ rK . Then every arc of the boundary of biB̂(K, r)
has a vertex of bhB(K, r) as center. Moreover, every vertex of biB̂(K, r) is
the center of an arc belonging to the boundary of bhB(K, r).

Proof. Let us consider the constructive process described in Theorem 2.3.
The points x1, x2, ..., xk are the centers of the rB-minimal arcs p̂1p2, p̂2p3,
..., p̂kp1 whose union is the boundary of bhB(K, r). Define xk+1 := x1

and consider the arcs x̂ixi+1 on Ŝ(pi, r) meeting (clockwise) at xi and xi+1.
The process assures that every rB-disc whose center belongs to x̂ixi+1 con-
tains K, and therefore x̂ixi+1 ⊂ biB̂(K, r). Besides this, the union of the

arcs x̂ixi+1 is the boundary of the intersection of some rB̂-balls whose cen-
ters are points of K. Consequently, this is the boundary of biB̂(K, r), and

x1, x2, ..., xk are its vertices. Moreover, the centers pi of the arcs x̂ixi+1 are
the vertices of bhB(K, r). �

3. Some applications

Now we present applications to computational geometry in generalized
normed planes, all of them based on the results of Section 2. Restrictions
(like strict convexity) are explicitly mentioned. The running time refers to
the cost of elementary operations, like computing the intersection of two
convex curves. Since the unit balls B are general convex bodies, in our
computation model B is given via an “oracle” as it is described in Section
3.3 of [13] or on page 316 in [24].

The fixed 2-center problem with constrained circles and the computation
of ball hulls and ball intersection of K will be solved now in generalized
normed planes, extending the results for the Euclidean case ([15]) and for
normed planes ([19]).

Theorem 3.1. Let M2 be a generalized normed plane. Let K be a set of n
points and r > 0. Then the following algorithms can be designed:
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• Algorithm I, that constructs biB(K, r) in O(n log n) time.
• Algorithm II, that constructs bhB(K, r) in O(n log n) time. biB(K, r)

can be constructed in O(n log n) time.
• Algorithm III, that solves the fixed 2-center problem with constrained

circles in O(n2) time for two radii r ≥ r1.

Proof. We fix a Euclidean orthonormal background system with basis {v1, v2}.
The points of K can be ordered by the lexicographical ordering. Likewise,
we say that an arc a1 of biB(K, r) is on the left with respect to an arc a2 if
the leftmost point of a1 has an x-coordinate smaller than the x-coordinate
of the leftmost point of a2, breaking the ties.

We consider the two lines parallel to v2 that support biB(K, r), and the
two corresponding supporting sets, namely, the intersections of these lines
and biB(K, r). We choose two points, one from each supporting set. The
line through these points separates the boundary of biB(K, r) into an upper
and a lower chain.

Item (4) in Lemma 2.2 proves that if K is a set of two points, the left-to-
right order of the arcs along the upper (lower) chain of biB(K, r) is just the
reverse of the left-to-right order of the centers of these arcs. If a connected
piece of S(xi, r) ∩ S(xi+1, r) belongs to the upper chain of the boundary of
biB(K,λ), then it also belongs to the upper chain of biB({xi, xi+1}, r), and
their common arcs are located in the same arc order. Applying this repeat-
edly for every pair (xi, xi+1) from K, we prove that the centers x1, x2, . . . , xm

of the arcs of the boundary of biB(K, r) are ordered conversely to the se-
quence of these arcs.

Algorithm I. 1) Sort the points of K from left to right in O(n log n) time;
2) Start with the leftmost arc and its center, consider the centers at the left
side to find the arc following the right one. Thus, the upper (lower) chain
of biB(K,λ) can be constructed in O(n) time.

Algorithm II. 1) Build biB̂(K, r) in O(n log n) time (Algorithm I); 2) Con-
sider the set K ′ of sorted vertices {x1, ..., xk} of biB̂(K, r) from 1) and build
bhB(K,λ) = biB(K ′, r) (Theorem 2.4 and Algorithm I) in O(n) time.

Algorithm III. 1) Sort the points of K from left to right in O(n log n) time
(x-coordinate). 2) For each p ∈ K define U := {x ∈ K : x /∈ B(p, r)}; obtain
biB̂(U, r1) in O(n) time. 3) Test if biB̂(U, r1) ∩K 6= ∅ in O(n) time, march
through K from left to right, maintaining the two arcs of the boundary of
biB̂(U, r1) that overlap the x-coordinate of the current point. �

Now we deal with the fixed 2-center problem. Given r ≥ r1 > 0, we ask
whether a set K of n points in the plane can be covered by two discs of
radius r and r1, respectively. Without loss of generality, we can assume
that r1 = 1, and of course diam(K) > r.

Sharir [25] solved the Euclidean fixed-radius problem in O(n log3 n) time.
For this he assumed that two covering r-discs exist, and their possible centers
c1 and c2 are searched in two cases: when they are well separated (‖c1−c2‖ >



BALL OPERATORS AND 2-CENTER PROBLEMS FOR GAUGES 153

Figure 2

r), and when they are close to each other (‖c1 − c2‖ ≤ r). We can find
in constant time an orthogonal basis such that the orientation of c1 − c2 is
almost parallel to the x-axis for some of them. If ‖c1−c2‖ > r, the orthogonal
projections of the centers on the x-axis (denoted by ‖x(ci)‖) are at a distance
close to r (namely, ‖x(c1) − x(c2)‖ > 0.99r) in such an orientation. As a
consequence, if r < ‖c1 − c2‖ < 3r and v1 is the left most point from
S(c1, r) ∩ S(c2, r), the projection of v1 on the x-axis (denoted by x(v1)) is
far away from the projection of c1 (namely, ‖x(v1) − x(c1)‖ > 0.4r). This
allows to draw a constant number of vertical lines (separated by a constant
distance smaller than 0.4r), such that at least one of them separates c1 and
v1. All these arguments above are used in Sharir’s algorithm for searching
the centers when r < ‖c1 − c2‖ ≤ 3r.

Figure 2 shows a basis {x0, y0} and two r-discs of a hexagonal normed
plane. The centers of the discs are c1 and c2, respectively. Without loss of
generality, we can assume that c1 is the origin. Since ‖x0‖ ≤ ‖x0 + ry0‖ for
every r ∈ R, x0 is Birkhoff orthogonal to y0. (Birkhoff orthogonality, defined
precisely by this condition, is a generalization of Euclidean orthogonality for
normed planes, see [23]). The vector c1−c2 is parallel to x0, and ‖c1−c2‖ =
1.2r. If we write x(v1) for the y0-projection of v1 on the x0-axis, then
‖x(v1) − c1‖ = 0.25r < 0.4r. If we translate c2 closer to S(c1, r) along the
line rx0 (but maintaining ‖c1 − c2‖ > r), we achieve a y0-projection closer
to c1. Besides this, if c2 remains fixed but v1 is translated by −εx0 (ε > 0),
it is easy to design new discs of other normed planes centered at c1 and c2,
whose r-circles pass across v1 and satisfy that x(v1) is closer to c1. Rounding
slightly the boundaries of the discs, we obtain strictly convex discs with the
same properties. Since we do not know the distance ‖c1−c2‖ in advance, and
since we cannot assure a minimum value for ‖x(v1)− c1‖, it is not possible
to apply a procedure similar to Sharir’s one that works correctly for every
strictly convex gauge, and not even for norms.
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But we can apply the results presented in Section 2 and show that Her-
shberger’s O(n2) Euclidean algorithm works also for every strictly convex
gauge. There, the full arrangement of discs of radius r (shortly called r-
discs) centered at points of K is built. For each r-circle of the arrangement
it is explored whether the points not covered by the r-disc can be covered
by a separated unit disc.

Now, for gauges and every Ŝ(pj , r) with pj ∈ K, let us choose a parametriza-

tion p(θ) (θ ∈ [0, 2π)) and points q1, q2, q3, q4 (clockwise ordered) on Ŝ(pj , r)

such that the support line of Ŝ(pj , r) through q1 and q3 is the same, and
that one through q2 and q4 is parallel to 〈q1, q3〉. If q5 := q1, the arcs (clock-

wise) meeting qi and qi+1 are rB̂-minimal. Let us consider the four disjoints
sweeps in the discs determined by these arcs. Steps 1 and 2 below describe
the global structure of the algorithm:

Step 1. Build the arrangement of rB̂-discs centered at the points of K.

Step 2. For each circle Ŝ(pj , r), move p(θ) along each of the four arcs of

the sweep that cover Ŝ(pj , r). For every arc, define Fθ := S(p(θ), r) ∩
K. Consider the set Dθ of points of Fθ that do not belong to the rB-
discs centered at any other previous (meant in the oriented sense of the
parametrization of the circle) points of the arc; and consider Aθ := Fθ \Dθ.

Step 2(a). Find the order of insertions and deletions to Aθ and Dθ in O(n)

time by walking along the boundary of Ŝ(pj , r).

Step 2(b). Process the insertions to Aθ in sequence, maintaining biB̂(Aθ, 1).
Record the changes to biB̂(Aθ, 1) in a transcript.

Step 2(c). Partition the initial set Dθ into a static set Z of points that will
not be deleted during the sweep, and a dynamic set Yθ that will be deleted.
Compute a change-transcript for biB̂(Yθ, 1), working in time-reversed order;
combine this with Z to get a change-transcript for biB̂(Dθ, 1).

Step 2(d). Play the transcripts for Aθ and Dθ simultaneously, both in for-
ward time order (the reverse of the construction order for Dθ). Test whether
biB̂(Aθ, 1) ∩ biB̂(Dθ, 1) 6= ∅ during the playback.

The point p(θ) and every point of this (eventually) non-empty intersection
become the centers of a solution for the 2-center problem.

Lemma 3.2. During any sweep from qi to qi+1, there are no deletions from
Aθ.

Proof. Let θ1 ≤ θ ≤ θ2 be such that {p(θ1), p(θ), p(θ2)} belong to the sweep

from qi to qi+1. The piece of the sweep on Ŝ(pj , r) from p(θ1) to p(θ2) is

an rB̂-minimal arc (see (3) in Lemma 2.2). If x ∈ B(p(θ1), r) ∩B(p(θ2), r),

then {p(θ1), p(θ2)} ∈ B̂(x, r), and the rB̂-minimal arc on Ŝ(pj , r) going from
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p(θ1) to p(θ2) is contained in B̂(x, r) (see (2) in Lemma 2.2). Therefore we
have x ∈ B(p(θ), r), and this means that Aθ does not admit any deletion. �

Lemma 3.3. If K is a set of n points in a strictly convex generalized normed
plane M2 then, building the arrangement of rB̂-circles with r > 0 and cen-
tered at the points of K, takes O(nλ4(n)) time and O(n2) space.

Proof. Each pair of curves can have at most two intersection points, therefore
the total construction time of the arrangement is O(nλ4(n)) ([12]), where
λσ(k) denotes the maximal length of a Davenport–Schinzel sequence1, while
the complexity of the arrangement is of course O(n2). �

Lemma 3.4. Let B(x1, 1) and B(x2, 1) be two strictly convex different discs
whose intersection has nonempty interior, and let t3 ∈ S(x1, 1)∩S(x2, 1). If
S is a third circle of radius 1 with t3 ∈ S, then S cannot pass simultaneously
through points of both arcs that form the boundary of B(x1, 1) ∩B(x2, 1).

Proof. Suppose that t1 ∈ S(x1, 1) and t2 ∈ S(x2, 1) are boundary points of
B(x1, 1)∩B(x2, 1), and that there is a circle S that simultaneously contains
t1, t2, and t3 ∈ S(x1, 1) ∩ S(x2, 1). Consider the clockwise order over S,
S(x1, 1), and S(x2, 1), and assume that t1, t2, t3 are clockwise on S. Either
the arc meeting t3 and t1 on S is B-minimal, or the arc meeting t1 and t3
on S is B-minimal. In the first case, this B-minimal arc must be equal to
the B-minimal arc meeting t3 and t1 on S(x1, 1) (see (1) in Lemma 2.2).
Similarly, in the second case the B-minimal arc meeting t2 and t3 on S must
be equal to the B-minimal arc meeting t2 and t3 on S(x2, 1). Thus, either
S = S(x1, 1) or S = S(x2, 1). �

Theorem 3.5. For any strictly convex generalized normed plane, the fixed-
radius 2-center problem can be solved in O(nλ4(n)) time and O(n2) space.

Proof. Having proved Lemma 3.2, we can rewrite the proof of this statement
and the strategy for R2 (presented in [14]) also for strictly convex gauges:
properties (P1) and (P2) (of ball hulls and ball intersections), Theorem 2.4,
and Lemma 3.4 are useful in order to prove that biB̂(Aθ, 1) (in Step 2.b)
and biB̂(Yθ, 1) (in Step 2.c) can be maintained in O(n) time; Theorem 2.3,
Theorem 2.4, and the time cost of biB̂(Aθ, 1) and biB̂(Yθ, 1) allow to compute
a change-transcript for biB̂(Dθ, 1) (Step 2.c) in O(n) time; properties (P1)
and (P2) together with the fact that the structure of the boundary of the
ball intersection of a finite set K in the strictly convex case is similar to the
Euclidean case (it consists of circular arcs of balls with radius r and centers
belonging to the set) are used to test Step 2.d in O(n) time. The total cost
is bounded by Lemma 3.3. �

1λ4(n) = Θ(n 2α(n)), where α(n) is the inverse of the Ackermann function, grows
very slowly and is less than 5 for any practical input size n, e.g., α(9876!) = 5 (see http:

//www.gabrielnivasch.org/fun/inverse-ackermann). Thus, λ4(n) is almost linear ([2]).
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