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α-RESOLVABLE λ-FOLD G-DESIGNS

MARIO GIONFRIDDO, GIOVANNI LO FARO, SALVATORE MILICI,
AND ANTOINETTE TRIPODI

Abstract. A λ-fold G-design is said to be α-resolvable if its blocks can
be partitioned into classes such that every class contains each vertex
exactly α times. In this paper we study the existence problem of an α-
resolvable λ-fold G-design of order v in the case when G is any connected
subgraph of K4 and prove that the necessary conditions for its existence
are also sufficient.

1. Introduction

For any graph Γ, let V (Γ) and E(Γ) be the vertex set and the edge set
of Γ, respectively, and λΓ be the graph Γ with each of its edges replicated
λ times. Throughout the paper Kv will denote the complete graph on v
vertices, while Kv \Kh will denote the graph with V (Kv) as the vertex set
and E(Kv) \E(Kh) as the edge set (this graph is sometimes referred to as a
complete graph of order v with a hole of size h), and Kn1,n2,...,nt will denote
the complete multipartite graph with t parts of sizes n1, n2, . . . , nt.

Let G and H be simple finite graphs. A λ-fold G-design of H (or (λH,G)-
design for short) is a pair (X,B) where X is the vertex set of H and B is a
collection of isomorphic copies (called blocks) of the graph G, whose edges
partition E(λH). If λ = 1, we drop the term “1-fold”. If H = Kv, we refer
to such a λ-fold G-design as one of order v. A (λH,G)-design is balanced if,
for every vertex x of H, the number of blocks containing x is a constant r.

A (λH,G)-design is said to be α-resolvable if it is possible to partition the
blocks into classes (often referred to as α-parallel classes) such that every
vertex of H appears in exactly α blocks of each class. When α = 1, we simply
speak of resolvable designs and parallel classes. The existence problem of
resolvable G-decompositions has been the subject of extensive research (see
[1, 2, 3, 4, 6, 7, 8, 10, 11, 12, 15, 16, 17, 20, 19]). The α-resolvability, with
α > 1, has been studied for G = K3 by D. Jungnickel, R. C. Mullin, S. A.
Vanstone [9]; Y. Zhang and B. Du [22]; G = K4 by M. J. Vasiga, S. Furino
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and A. C. H. Ling [18]; G = C4 by M. X. Wen and T. Z. Hong [21]; and
G = K4 − e by M. Gionfriddo, G. Lo Faro, S. Milici, and A. Tripodi [5].

In this paper we shall focus on the existence of an α-resolvable λ-fold G-
design when G = P3, P4,K1,3,K3 + e (where K3 + e is a kite, i.e., a triangle
with a tail consisting of a single edge) completely solving the spectrum
problem for any connected subgraph of K4.

In what follows, we will denote by:

• Pk = [a1, a2, . . . , ak], k ≥ 3, the simple graph on the k vertices
a1, a2, . . . , ak with {{a1, a2}, {a2, a3}, . . . , {ak−1, ak}} as the edge set;
• K1,3 = (a1; a2, a3, a4) the 3-star on the vertex set {a1, a2, a3, a4} with
{{a1, a2}, {a1, a3}, {a1, a4}} as the edge set;
• K3 + e = (a1, a2, a3) − a4 the kite on the vertex set {a1, a2, a3, a4}

with {{a1, a2}, {a1, a3}, {a2, a3}, {a3, a4}} as the edge set.

By the definition of α-resolvability, we can derive the following necessary
conditions:

(1.1) λv(v − 1) ≡ 0 (mod 2|E(G)|) ;

(1.2) αv ≡ 0 (mod |V (G)|) ;

(1.3) λ|V (G)|(v − 1) ≡ 0 (mod 2α|E(G)|) .
Note that any α-resolvable λ-fold G-design is balanced because every

vertex of V (G) appears exactly α times in each α-parallel class. Let D(G)
be the set of all degrees of the vertices of G. For every vertex x of an α-
resolvable λ-fold G-design D of order v and for every d ∈ D(G), let rd(x)
denote the number of blocks of D containing x as a vertex of degree d. It is
easy to see that the following relations hold:

(1.4)
∑

d∈D(G)

rd(x)d = λ(v − 1);

(1.5)
∑

d∈D(G)

rd(x) = λ|V (G)| v − 1

2|E(G)|
.

From Conditions (1.1) − (1.5) we can deduce minimum values for α and
λ, say α0 and λ0, respectively.

For any graph G ∈ {P3, P4,K1,3,K3 + e}, similarly to Lemmas 2.1, 2.2 in
[18], we have the following lemmas.

Lemma 1.1. If an α-resolvable λ-fold G-design of order v exists, then α0|α
and λ0|λ.

Lemma 1.2. If an α-resolvable λ-fold G-design of order v exists, then a
tα-resolvable nλ-fold G-design of order v exists for any positive integers n
and t where t divides λ|V (G)|(v − 1)/(2α|E(G)|).
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The above two lemmas imply the following theorem (for the proof, see
Theorem 2.3 in [18]).

Theorem 1.3. If an α0-resolvable λ0-fold G-design of order v exists and α
and λ satisfy Conditions (1.1)− (1.5), then an α-resolvable λ-fold G-design
of order v exists.

Therefore, in order to show that the necessary conditions for α-resolvable
designs are also sufficient, we simply need to prove the existence of an α0-
resolvable λ0-fold G-design of order v, for any given v.

2. Auxiliary definitions

A (λKn1,n2,...,nt , G)-design is known as a λ-fold group divisible design (or
G-GDD for short), of type {n1, n2, . . . , nt} (the parts are called the groups of
the design). We usually use “exponential” notation to describe group-types:
the group-type 1i2j3k... denotes i occurrences of 1, j occurrences of 2, etc.
When G = Kn we will call it an n-GDD.

If the blocks of a λ-fold G-GDD can be partitioned into partial α-parallel
classes, each of which contains all vertices except those of one group, we refer
to the decomposition as a λ-fold (α,G)-frame; when α = 1, we simply speak
of λ-fold G-frames (n-frames if additionally G = Kn). In a λ-fold (α,G)-
frame the number of partial α-parallel classes missing a specified group of
size g is λg|V (G)|/(2α|E(G)|).

An incomplete α-resolvable λ-fold G-design of order v + h, h ≥ 1, with a
hole of size h is a (λ(Kv+h \Kh), G)-design in which there are two types of
classes, λ(h− 1)|V (G)|/(2α|E(G)|) partial classes which cover every vertex
α times except those in the hole and λv|V (G)|/(2α|E(G)|) full classes which
cover every vertex of Kv+h α times.

3. The case G = P3

In this section the existence of an α0-resolvable λ0-fold P3-design of any
order v is proved by distinguishing the following cases.
Case 1 : v ≡ 0 (mod 6): λ0 = 4 and α0 = 1.

For a solution, see [4].
Case 2 : v ≡ 1, 5 (mod 12): λ0 = 1 and α0 = 3.

In Zv develop the base blocks: [i, 0, (v + 1)/2− i], i = 1, 2, . . . , (v −
1)/4.

Case 3 : v ≡ 2, 4, 8, 10 (mod 12): λ0 = 4 and α0 = 3.
In Zv develop the base blocks: [i, 0, 1 + i], i = 1, 2, . . . , v−2; [v − 1, 0, 1] .

Case 4 : v ≡ 3 (mod 12): λ0 = 2 and α0 = 1..
For a solution see [4].

Case 5 : v ≡ 7, 11 (mod 12): λ0 = 2 and α0 = 3.
In Zv develop the base blocks: [i, 0, v − i], i = 1, 2, . . . , (v − 1)/2.

Case 6 : v ≡ 9 (mod 12): λ0 = 1 and α0 = 1.
For a solution see [4].
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4. The case G = P4

Here, we construct an α0-resolvable λ0-fold P4-design of any order v.
Case 1 : v ≡ 0, 8 (mod 12): λ0 = 3 and α0 = 1.

For a solution see [4].
Case 2 : v ≡ 1 (mod 6): λ0 = 1 and α0 = 4.

In Zv develop the base blocks: [i, 0, (v + 2)/3− i, (2v + 1)/3], i =
1, 2, . . . , (v − 1)/6.

Case 3 : v ≡ 2, 6 (mod 12): λ0 = 3 and α0 = 2.
Let Zv/2 × Z2 be the vertex set. In Zv/2 develop the base blocks:

[i0, 00, i1, 01], i = 1, 2, . . . , (v− 2)/2; [i0, 00, i1, 01], i = 1, 2, . . . , (v− 2)/4;
[((v + 2)/4 + i)1 , 00, i1, ((v − 2)/4)0], i = 0, 1, . . . , (v − 6)/4;
[01, 00, ((v − 2)/4)1 , ((v − 2)/4)0].

Case 4 : v ≡ 3, 5 (mod 6): λ0 = 3 and α0 = 4.
In Zv develop the base blocks: [i, 0, v − i, (v − 1)/2], i = 1, 2, . . . , (v−

3)/2; [(v − 1)/2, 0, 1, (v + 1)/2].
Case 5 : v ≡ 4 (mod 12): λ0 = 1 and α0 = 1.

For a solution see [4].
Case 6 : v ≡ 10 (mod 12): λ0 = 1 and α0 = 2.

Let v = 12k + 10 and Z6k+5 × Z2 be the vertex set. In Z6k+5 develop
the base blocks: [i0, 00, i1, 01], i = 1, 2, . . . , 3k + 2;
[(3k + 3 + i)1 , 00, (5k + 2− i)1 , (5k + 3)0], i = 0, 1, . . . , k − 1;
[(5k + 3)1 , 00, 01, (k + 1)0].

5. The case G = K1,3

To solve the spectrum problem for α-resolvable λ-fold K1,3-designs we
distinguish the following cases.
Case 1 : v ≡ 0, 8 (mod 12): λ0 = 6 and α0 = 1.

For a solution see [4].
Case 2 : v ≡ 1 (mod 6): λ0 = 1 and α0 = 4.

In Zv develop the base blocks: (0; i, (v − 1)/6 + i, (v − 1)/3 + i), i =
1, 2, . . . , (v − 1)/6.

Case 3 : v ≡ 2 (mod 12): λ0 = 6 and α0 = 2.
Let v = 12k+2 and Z12k+1∪{∞} be the vertex set. In Z12k+1 develop

the two base classes:

P1: {(12k − i+ 1; i, 12k − 2i+ 1, 12k − 2i+ 2) : i = 2, 3, . . . , 6k −
1} ∪ {(∞; 0, 1, 12k) , (12k; 1, 12k − 1,∞) , (6k + 1; 0, 2, 6k)};

P2: {(12k − i+ 1; i, 12k − 2i, , 12k − 2i+ 1), i = 2, 3, . . . , 6k, i 6=
4k} ∪ {(12k; 0, 4k, 12k − 1) , (12k; 1, 12k − 2,∞) , (8k + 1; 4k,
4k + 1,∞)}.

Case 4 : v ≡ 3, 5 (mod 6): λ0 = 3 and α0 = 4.
In Zv develop the base blocks: (0; i, v − i, 1 + i), i = 1, 2, . . . , (v −

3)/2; (0; (v − 1)/2, (v + 1)/2, 1) .
Case 5 : v ≡ 4 (mod 12): λ0 = 2 and α0 = 1.

For a solution see [4].
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Case 6 : v ≡ 6 (mod 12), then λ0 = 6 and α0 = 2.
Let v = 12k+6 and Z12k+5∪{∞} be the vertex set. In Z12k+5 develop

the two base classes:

P1: {(12k − i+ 5; i, 12k − 2i+ 5, 12k − 2i+ 6) : i = 2, 3, . . . , 6k +
1, i 6= 4k + 2} ∪ {(∞; 0, 1, 4k + 2) , (12k + 4; 1, 12k + 3, ∞) ,
(6k + 3; 0, 2, 6k + 2) , (8k + 3; 4k + 1, 4k + 2, 12k + 4)};

P2: {(12k − i+ 5; i, 12k − 2i+ 4, 12k − 2i+ 5) : i = 2, 3, . . . , 6k +
2} ∪ {(12k + 4; 0, 12k + 3,∞) , (12k + 4; 1, 12k + 2,∞)}.

Case 7 : v ≡ 10 (mod 12): λ0 = 2 and α0 = 2.
This case follows by the following lemmas.

Lemma 5.1. There exists an incomplete 2-resolvable 2-fold K1,3-design of
order 10 with a hole of size 4.

Proof. Let V = Z6 ∪H be the vertex set, where H = {∞1,∞2,∞3,∞4} is
the hole. The partial classes are:

{(3; 4, 0, 2), (4; 5, 1, 0), (5; 3, 2, 1)}, {(0; 4, 5, 1), (1; 5, 3, 2), (2; 3, 4, 0)}.

The full classes are:

{(∞1; 0, 1, 2), (∞2; 0, 1, 2), (3; 4,∞3,∞4), (4; 5,∞3,∞4), (5; 3,∞1,∞2)},
{(∞2; 3, 4, 5), (∞3; 3, 4, 5), (0; 1,∞1,∞4), (1; 2,∞1,∞4), (2; 0,∞2,∞3)},
{(∞3; 0, 1, 2), (∞4; 3, 4, 5), (3; 0,∞1,∞2), (4; 1,∞1,∞2), (5; 2,∞3,∞4)},
{(∞4; 0, 1, 2), (∞1; 3, 4, 5), (0; 5,∞2,∞3), (1; 3,∞2,∞3), (2; 4,∞1,∞4)}.

�

As a consequence of Lemma 5.1 and the existence of a 2-resolvable 2-fold
K1,3-design of order v = 4, the following lemma is obtained.

Lemma 5.2. There exists a 2-resolvable 2-fold K1,3-design of order v = 10.

Lemma 5.3. There exists a 2-resolvable 2-fold K1,3-GDD of type 62.

Proof. Take {a, b, c, d, e, f} and {1, 2, 3, 4, 5, 6} as groups and consider the
classes:

{(a; 1, 2, 4), (b; 2, 3, 5), (c; 3, 1, 6), (4; d, f, a), (5; e, d, b), (6; f, e, c)},
{(a; 2, 5, 6), (b; 3, 4, 6), (c; 1, 5, 4), (1; d, f, b), (2; e, d, c), (3; f, e, a)},
{(d; 3, 4, 6), (e; 1, 4, 5), (f ; 2, 5, 6), (1; b, e, a), (2; c, f, b), (3; d, a, c)},
{(d; 1, 2, 5), (e; 2, 3, 6), (f ; 3, 1, 4), (4; b, e, c), (5; c, f, a), (6; d, a, b)}.

�

Lemma 5.4. For every v ≡ 10 (mod 12), there exists a 2-resolvable 2-fold
K1,3-design of order v.

Proof. Let v=12k + 10. The case v = 10 follows by Lemma 5.2. For k ≥ 1,
start from a 2-frame of type 12k+1 with groupsGi, i = 1, 2, . . . , 2k+1, expand
each vertex six times and add a set H of size 4 such that H ∩ (∪2k+1

i=1 Gi) =
∅. For i = 1, 2, . . . , 2k + 1, let Pi be the partial class which misses the
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group Gi and for each block b ∈ Pi place on b × {1, 2, . . . , 6} a copy of a
2-resolvable 2-fold K1,3-GDD of type 62, which exists by Lemma 5.3; this
gives four partial classes missing Gi × {1, 2, . . . , 6}, say Pi,1, Pi,2, Pi,3, Pi,4.
For i = 1, 2, . . . , 2k + 1, place on H ∪ (Gi × {1, 2, . . . , 6}) a copy Di of an
incomplete 2-resolvable 2-fold K1,3-design of order 10 with a hole of size 4,
which exists by Lemma 5.1. Finally, filling in the hole H with a copy D
of a 2-resolvable 2-fold (K1,3)-design of order 4 gives a 2-fold (K1,3)-design
of order v which is also 2-resolvable. Indeed, for every i = 1, 2, . . . , 2k + 1
combining Pi,1, Pi,2, Pi,3, Pi,4 with the full classes of Di gives four 2-parallel
classes, while combining the two classes of D with the union of the partial
classes of Di, i = 1, 2, . . . , 2k + 1 gives the remaining ones. �

6. The case G = K3 + e

For G = K3 + e we have the following cases with the corresponding
solutions.
Case 1 : v ≡ 0 (mod 4): λ0 = 2 and α0 = 1.

For a solution see [4].
Case 2 : v ≡ 1 (mod 8): λ0 = 1 and α0 = 4.

In Z8k+1 develop the base blocks ([13]): (4k−i, 2k+1+i, 0)−(2k−2i),
i = 0, 1, . . . , k − 1.

Case 3 : v ≡ 2 (mod 4): λ0 = 4 and α0 = 2.
Let Z2k+1 × Z2 be the vertex set. In Z2k+1 develop the base blocks:

(ij , (2k + 1 − i)j , 0j+1) − ij+1, i = 1, 2, . . . , k, j ∈ Z2; (ij , (2k − 1 −
i)j , 0j+1) − (i + 1)j+1, i = 1, 2, . . . , k − 1, j ∈ Z2; (10, 11, 00) − 21,
(11, 10, 01)− 00, (00, 20, 01)− 21.

Case 4 : v ≡ 3 (mod 4): λ0 = 4 and α0 = 4.
In Z4k+3 develop the base blocks: (i, 4k + 3 − i, 0) − (1 + i), i =

1, 2, . . . , 2k; (2k + 1, 2k + 2, 0)− 1.
Case 5 : v ≡ 5 (mod 8): λ0 = 2 and α0 = 4.

In Z8k+5 develop the base blocks ([14]): (i, 4k+3−i, 0)−(4k−1+2i),
i = 1, 2, . . . , 2k + 1.

7. Main result

Theorem 1.3 along with the results of the previous sections allows us to
obtain our main result.

Theorem 7.1. For any graph G ∈ {P3, P4,K1,3,K3 + e}, the necessary
conditions (1.1)− (1.5) for the existence of α-resolvable λ-fold G-designs are
also sufficient.
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