

Volume 10, Number 2, Pages 39–44 ISSN 1715-0868

TRIANGLE-FREE UNIQUELY 3-EDGE COLORABLE CUBIC GRAPHS

SARAH-MARIE BELCASTRO AND RUTH HAAS

ABSTRACT. This paper presents infinitely many new examples of triangle-free uniquely 3-edge colorable cubic graphs. The only such graph previously known was given by Tutte in 1976.

1. HISTORY

Recall that a *cubic* graph is 3-regular, that a *proper 3-edge coloring* assigns colors to edges such that no two incident edges receive the same color, that *edge-Kempe chains* are maximal sequences of edges that alternate between two colors, and that a *Hamilton cycle* includes all vertices of a graph.

It is well known that a cubic graph with a Hamilton cycle is 3-edge colorable, as the Hamilton cycle is even (and thus 2-edge colorable) and its complement is a matching (that can be monochromatically colored). A uniquely 3-edge colorable cubic graph must have exactly three Hamilton cycles, each an edge-Kempe chain in one of the $\binom{3}{2}$ pairs of colors. The converse is not true, as a cubic graph may have some colorings with Hamilton edge-Kempe chains and other colorings with non-Hamilton edge-Kempe chains; examples are given in [12].

The literature classifying uniquely 3-edge colorable cubic graphs is sparse; there is no complete characterization [7]. It is well known that the property of being uniquely 3-edge colorable is invariant under application of $\Delta - Y$ transformations. It was conjectured that every simple planar cubic graph with exactly three Hamilton cycles contains a triangle [13, Cantoni], and also that every simple planar uniquely 3-edge colorable cubic graph contains a triangle [3]. The latter conjecture is proved in [4], where it is also shown that if a simple planar cubic graph has exactly three Hamilton cycles, then it contains a triangle if and only if it is uniquely 3-edge colorable.

Tutte, in a 1976 paper about the average number of Hamilton cycles in a graph [13], offhandedly remarks that one example of a nonplanar triangle-free uniquely 3-edge colorable cubic graph is the generalized Petersen graph

Received by the editors April 7, 2015, and in revised form July 1, 2015.

²⁰¹⁰ Mathematics Subject Classification. 05C10, 05C15.

Key words and phrases. edge coloring, unique coloring, triangle-free, cubic graphs.

Ruth Haas's work partially supported by NSF grant DMS-1143716 and Simons Foundation Award Number 281291.

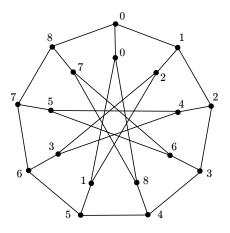


FIGURE 1. The generalized Petersen graph P(9,2) labeled with Tutte's indices.

P(9,2), pictured in Figure 1. He describes the graph as two 9-cycles $a_0 \ldots a_8$, $b_0 \ldots b_8$, with additional edges $a_i b_{2i}$ and index arithmetic done modulo 9. The generalized Petersen graph P(m, 2) is defined analogously, and in fact the known cubic graphs with exactly three Hamilton cycles and multiple distinct 3-edge colorings are P(6k + 3, 2) for k > 1 [12]. It appears that the search for examples of triangle-free nonplanar uniquely 3-edge colorable cubic graphs ended with Tutte, or at least that any further efforts have been unsuccessful. Multiple sources ([6], [7], [9]) note that Tutte's example is the only known triangle-free nonplanar example. It has been conjectured [3] that P(9, 2) is the only example. In Section 2 we give infinitely many such graphs.

2. New examples of triangle-free nonplanar uniquely 3-edge colorable cubic graphs

In [2] the authors introduced the following construction: Consider two cubic graphs, G_1 and G_2 , and form $G_1 \vee G_2$ by choosing a vertex v_i in G_i (i = 1, 2), removing v_i from G_i (i = 1, 2), and adding a matching of three edges joining the three neighbors of v_1 with the three neighbors of v_2 . Of course there are many ways to choose v_1, v_2 , and many ways to identify their incident edges, so the construction is not unique. However, it is reversible; given a cubic graph G with a 3-edge cut, we may decompose $G = G_1 \vee G_2$. In that paper we proved the following result:

Theorem 2.1 (3.8 of [2]). Let G_1, G_2 be cubic graphs and a_i the number of 3-edge colorings of G_i . Then $G_1 \\ \\ \\ G_2$ has $a_1 a_2$ edge colorings.

Define G^{\vee} to be the infinite family of graphs consisting of all graphs of the form $G \vee G \vee \cdots \vee G$. This leads to the following corollaries of Theorem 2.1:

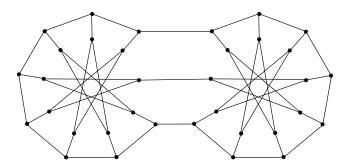


FIGURE 2. A nonplanar, triangle-free, uniquely 3-edge colorable graph with 34 vertices.

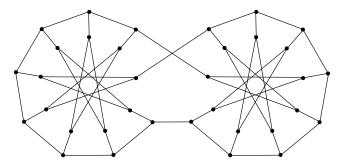


FIGURE 3. A nonplanar, triangle-free, uniquely 3-edge colorable graph with 34 vertices that is nonisomorphic to that shown in Figure 2.

Theorem 2.2. If G is a uniquely 3-edge colorable graph, then all graphs in G^{\uparrow} are uniquely 3-edge colorable.

Proof. The proof proceeds by induction on the number of copies of G.

Corollary 2.3. All members of the infinite family $P(9,2)^{\vee}$ are uniquely 3-edge colorable.

Note. In [5], Goldwasser and Zhang proved that if a uniquely 3-edge colorable graph has an edge cut of size 3 or 4 such that each remaining component contains a cycle, then the graph can be decomposed into two smaller uniquely 3-edge colorable graphs. It seems they did not observe the reverse construction.

2.1. Examples and Properties. The smallest member of $P(9,2)^{\vee}$ is of course P(9,2), which has 18 vertices. For every integer k > 1 there are multiple graphs in $P(9,2)^{\vee}$ with 16k + 2 vertices. Nonisomorphic examples with k = 2 are shown in Figures 2 and 3.

The graphs in $P(9,2)^{\vee}$ are clearly all nonplanar. We show next that there are graphs in $P(9,2)^{\vee}$ of every nonzero orientable and nonorientable genus.

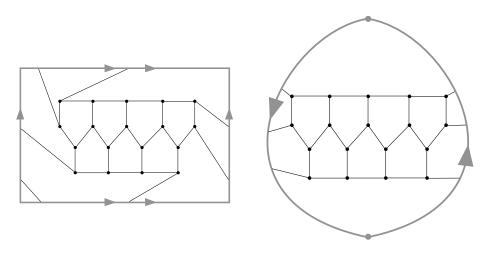


FIGURE 4. Embeddings of P(9,2) on the torus (left) and projective plane (right)

Theorem 2.4. Every graph in $P(9,2)^{\vee}$ with 16k+2 vertices has orientable and nonorientable genus at most k. Further, there is a large subfamily of graphs in $P(9,2)^{\vee}$, each of which has 16k+2 vertices and orientable and nonorientable genus exactly k.

Proof. We will show by induction that any graph Q_k created using the \forall -construction with k copies of P(9,2) has orientable and nonorientable genus at most k. The base case holds because P(9,2) embeds on both the torus (see Figure 4 (left)) and on the projective plane (see Figure 4 (right)).

Now consider Q_k , a graph created using the γ -construction with k copies of P(9,2). The graph Q_k was obtained by removing and associating $v \in$ P(9,2) and some $w \in Q_{k-1}$ via the γ -construction, where Q_{k-1} is some graph created using k-1 copies of P(9,2) that has genus k-1 or less by the inductive hypothesis. Let $\widehat{Q_k}$ be the graph produced by simply identifying the vertices v and w. The graph $\widehat{Q_k}$ has two blocks that meet at this vertex, so by Theorem 1 of [1] the genus of $\widehat{Q_k}$ is the sum of the genera of the blocks, which is k. Replacing the cut vertex by a 3-edge cut to implement the γ construction does not increase the genus, which completes the proof of the upper bound on genus.

A copy of a subdivision of $K_{3,3}$ is highlighted in the embedding of P(9,2)shown in Figure 5. There are four vertices $\{t_1, t_2, t_3, t_4\}$ whose edges are not involved in the subdivided $K_{3,3}$. Any (or all) of $\{t_1, t_2, t_3, t_4\}$ can be removed and the resulting graph will still have a $K_{3,3}$ minor. If Q_k is formed such that in each copy of P(9,2) only (some) of vertices $\{t_1, t_2, t_3, t_4\}$ are used in the γ construction, then there will still be k disjoint copies of subdivisions of $K_{3,3}$ in Q_k . The genus of a graph is the sum of the genera of its components [1, Cor. 2], so using this construction Q_k has a minor with orientable (resp.

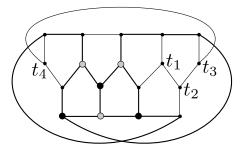


FIGURE 5. P(9,2) with a copy of a subdivision of $K_{3,3}$ highlighted.

nonorientable) genus exactly k. It is straightforward to draw an embedding of sample Q_k on a surface of orientable or nonorientable genus k.

43

3. Conclusion

While we have provided infinitely many examples of triangle-free nonplanar uniquely 3-edge colorable cubic graphs, it is still unknown whether other examples exist. All our examples support Zhang's conjecture [14] that every triangle-free uniquely 3-edge colorable cubic graph contains a Petersen graph minor. That conjecture remains open.

References

- J. Battle, F. Harary, Y. Kodama, and J. W. T. Youngs, Additivity of the genus of a graph, Bull. Amer. Math. Soc. 68 (1962), 565–568. MR 0155313
- s.-m. Belcastro and R. Haas, Counting edge-Kempe-equivalence classes for 3-edgecolored cubic graphs, Discrete Math. 325 (2014), 77–84. MR 3181236
- S. Fiorini and R. J. Wilson, *Edge colorings of graphs*, ch. 5, pp. 103–126, Academic Press, 1978.
- T. Fowler, Unique coloring of planar graphs, ProQuest LLC, Ann Arbor, MI, 1998, Thesis (Ph.D.)–Georgia Institute of Technology. MR 2698714
- J. Goldwasser and C.-Q. Zhang, On minimal counterexamples to a conjecture about unique edge-3-coloring, Congr. Numer. 113 (1996), 143–152, Festschrift for C. St. J. A. Nash-Williams. MR 1393706
- Uniquely edge-3-colorable graphs and snarks, Graphs Combin. 16 (2000), no. 3, 257–267. MR 1782186
- 7. J. Gross and J. Yellen (eds.), *Handbook of graph theory*, Discrete Mathematics and its Applications (Boca Raton), CRC Press, Boca Raton, FL, 2004. MR 2035186
- R. Isaacs, Infinite families of nontrivial trivalent graphs which are not Tait colorable, Amer. Math. Monthly 82 (1975), 221–239.
- T. Jensen and B. Toft, *Graph coloring problems*, Wiley-Interscience Series in Discrete Mathematics and Optimization, John Wiley & Sons, Inc., New York, 1995, A Wiley-Interscience Publication. MR 1304254
- B. Mohar and C. Thomassen, *Graphs on surfaces*, Johns Hopkins Studies in the Mathematical Sciences, Johns Hopkins University Press, Baltimore, MD, 2001. MR 1844449
- N. Robertson, D. Sanders, P. Seymour, and R. Thomas, *The four-colour theorem*, J. Combin. Theory Ser. B **70** (1997), no. 1, 2–44. MR 1441258

- 12. A. Thomason, Cubic graphs with three hamiltonian cycles are not always uniquely edge colorable, J. of Graph Theory 6 (1982), no. 2, 219–221.
- W. T. Tutte, *Hamiltonian circuits*, Colloquio Internazional sulle Teorie Combinatorics (Lincei, Roma I), Atti dei Convegni Lincei, vol. 17, Accad. Nazi. dei Lincei, 1976, pp. 91–99.
- C.-Q. Zhang, Hamiltonian weights and unique 3-edge-colorings of cubic graphs, J. of Graph Theory 20 (1995), no. 1, 91–99.

Department of Mathematics and Statistics, Smith College, Northampton, MA 01063 USA $$E\text{-mail}$ address: smbelcas@toroidalsnark.net}$

Department of Mathematics and Statistics, Smith College, Northampton, MA 01063 USA \$E-mail\$ address: rhass@smith.edu