
Volume 10, Number 1, Pages 134–144
ISSN 1715-0868

CHASING ROBBERS ON PERCOLATED RANDOM

GEOMETRIC GRAPHS

ANSHUI LI, TOBIAS MÜLLER, AND PAWE L PRA LAT

Abstract. In this paper, we study the vertex pursuit game of Cops
and Robbers, in which cops try to capture a robber on the vertices of a
graph. The minimum number of cops required to win on a given graph
G is called the cop number of G. We focus on G(n, r, p), a percolated
random geometric graph in which n vertices are chosen uniformly at
random and independently from [0, 1]2. Two vertices are adjacent with
probability p if the Euclidean distance between them is at most r. If
the distance is bigger then r then they are never adjacent. We present
asymptotic results for the game of Cops and Robbers played on G(n, r, p)
for a wide range of p = p(n) and r = r(n).

1. Introduction and Results

The game of Cops and Robbers, introduced independently by Nowakowski
and Winkler [13] and Quilliot [19] more than thirty years ago, is played on
a fixed graph G. We will always assume that G is undirected, simple, and
finite. There are two players, a set of k cops, where k ≥ 1 is a fixed integer,
and the robber. The cops begin the game by occupying any set of k vertices
(in fact, for a connected G, their initial position does not matter). The
robber then chooses a vertex. In each subsequent round, the cops first
move and then the robber moves. The players use edges to move from
vertex to vertex. More than one cop is allowed to occupy a vertex, and
the players may remain on their current positions. The players know each
others current locations. The cops win and the game ends if at least one
of the cops eventually occupies the same vertex as the robber; otherwise,
that is, if the robber can avoid this indefinitely, she wins. As placing a
cop on each vertex guarantees that the cops win, we may define the cop
number, written c(G), which is the minimum number of cops needed to win
on G. The cop number was introduced by Aigner and Fromme [1] who
proved (among other things) that if G is planar, then c(G) ≤ 3. The most
important open problem in this area is Meyniel’s conjecture (communicated
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by Frankl [8]). It states that c(n) = O(
√
n), where c(n) is the maximum

of c(G) over all n-vertex connected graphs. If true, the estimate is the
best possible as one can construct a graph based on the finite projective
plane with the cop number of order at least Ω(

√
n). Up until recently, the

best known upper bound of O(n log log n/ log n) was given in [8]. This was
improved to c(n) = O(n/ log n) in [7]. Today we know that the cop number

is at most n2−(1+o(1))
√

log2 n (which is still n1−o(1)) for any connected graph
on n vertices (a result obtained independently by Lu and Peng [11] and
Scott and Sudakov [20], see also [9] for some extensions). If one looks for
counterexamples for Meyniel’s conjecture, it is natural to study first the cop
number of random graphs. Recent years have witnessed significant interest
in the study of random graphs from that perspective [4, 6, 12, 16] confirming
that, in fact, Meyniel’s conjecture holds asymptotically almost surely for
binomial random graphs [18] as well as for random d-regular graphs [17].
For more results on vertex pursuit games such as Cops and Robbers, the
reader is directed to the monograph [5].

In this paper, we consider a percolated random geometric graph G(n, r, p)
which is defined as a random graph with vertex set V = {X1, X2, . . . , Xn} in
which the Xi’s are chosen uniformly at random and independently from the
unit square [0, 1]2, and for each pair of vertices within Euclidean distance
at most r we flip a biased coin with success probability p to determine
whether there is an edge (independently for each such a pair, and pairs
at distance bigger than r never share an edge). In particular, for p = 1
we get a (classic) random geometric graph G(n, r)—see, for example, the
monograph [15]. Percolated random geometric graphs were recently studied
by Penrose [14] under the name soft random geometric graphs. In [14] the
connectivity of percolated random geometric graphs was considered, and in
particular it was shown that the probability of being connected is governed
by the probability of having no isolated vertices, much like in the case of the
Erdős–Rényi model or the (unpercolated) classical random geometric graph
model.

As typical in random graph theory, in this paper we shall focus on asymp-
totic properties of G(n, r, p) as n → ∞, where p = p(n) and r = r(n) may
and usually do depend on n. We say that an event in a probability space
holds asymptotically almost surely (a.a.s.) if its probability tends to one as
n goes to infinity.

The following result for classic random geometric graphs was obtained
independently in [3] and in [2].

Theorem 1.1 ([3, 2]). There exists an absolute constant c > 0 so that if

r5 > c logn
n then a.a.s. c(G(n, r)) = 1.

In [3], the known necessary and sufficient condition for a graph to be cop-
win (see [13] for more details) is used; that is, it is shown that the random
geometric graph is what is called dismantlable a.a.s. The proof in [2] is quite
different, provides a tight O(1/r2) bound for the number of rounds required
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to catch the robber, and can be generalized to higher dimensions. In the
proof, an explicit strategy for the cop is introduced and it is shown that it
is a winning one a.a.s. Essentially the same proof also gives a generalization
of the result to higher dimensions. In [3] it was also shown that every (not
necessarily random) connected geometric graph has cop number at most
nine, that a.a.s. c(G(n, r)) ≤ 2 if r4 > c log n/n for some absolute constant
c, and that there are sequences r for which G(n, r) is a.a.s. connected while
its cop-number is strictly larger than one.

In this paper, we consider the cop number of percolated random geometric
graphs. In particular, we will prove the following result.

Theorem 1.2. For every ε > 0, and functions p = p(n) and r = r(n) so

that p2r2 ≥ n−1+ε and p ≤ 1−ε we have that a.a.s. c(G(n, r, p)) = Θ
(

logn
p

)
.

We find this result quite surprising, since the asymptotics of the cop
number for a large range of the parameters does not depend on r but only
on p. We conjecture that, under the conditions of our theorem, a.a.s. the
cop number is (1 + o(1)) log1/(1−p) n.

2. Proofs

For 0 < p ≤ 1− ε for some ε > 0, it is convenient to define

L = L(n) := log1/(1−p) n,

and to state our intermediate results in terms of L. Note that L = Θ
(

logn
p

)
.

We will use the following version of Chernoff bound. (For more details,
see, for example, [10].) Suppose that X ∈ Bin(n, p) is a binomial random
variable with expectation µ = np. If 0 < δ < 1, then

P[X < (1− δ)µ] ≤ exp

(
−δ

2µ

2

)
,

and if δ > 0,

P[X > (1 + δ)µ] ≤ exp

(
− δ2µ

2 + δ

)
.

The lower and upper bounds are proved separately in the following two
subsections.

2.1. Lower bound of Theorem 1.2. For the proof of the lower bound, we
employ the following adjacency property that was used for dense binomial
random graphs [6]. For a fixed k > 0 an integer, we say that G is (1, k)-
existentially closed (or (1, k)-e.c.) if for each k-set S of vertices of G and
vertex u 6∈ S, there is a vertex z /∈ S ∪ {u} not joined to a vertex in S
and joined to u. If G is (1, k)-e.c., then c(G) > k. (The robber may use
the property to construct a wining strategy against k cops; she escapes to
a vertex not joined to any vertex occupied by a cop.) Hence, to prove the
lower bound in Theorem 1.2 it suffices to prove the following.
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Lemma 2.1. Writing k := bεL/2c – where ε > 0 is as provided by the
conditions of Theorem 1.2 – we have that, a.a.s., G(n, r, p) is (1, k)-e.c. In
particular, a.a.s. c(G(n, r, p)) > k.

Proof. Let s(u) be the number of vertices within Euclidean distance r from
u. It follows easily from Chernoff bound that there exists a function t =
t(n) = Ω(r2n) such that a.a.s. for every vertex u ∈ V (G), s(u) ≥ t. Since
our goal is to show a result that holds a.a.s., we may assume that this
property holds deterministically. More precisely, we think of revealing the
graph in two stages. In the first stage, we reveal only the locations of the
points, in the second we reveal the relevant coin flips. In the remainder of
the proof all mention of probability, expectation, etc., will be with respect
to the situation where we have passed the first stage and it turned out that
s(u) ≥ t for all u ∈ V . In other words, the only randomness we consider
is in the coin flips deciding which pairs of points at Euclidean distance at
most r will become the edges of our graph.

Fix S, a k-subset of vertices and a vertex u not in S. For a vertex
x ∈ V (G) \ (S ∪{u}) that is within distance r of u, the probability that x is
joined to u and to no vertex of S is at least p(1−p)k (note that this is a lower
bound only, since y ∈ S is adjacent to x with probability p, provided that
the distance between them is at most r; otherwise, they are not adjacent).
Since edges are chosen independently, the probability that no suitable vertex
can be found for this particular S and u is at most

(1− p(1− p)k)t−k−1 = (1− p(1− p)k)Ω(r2n).

Let X be the random variable counting the number of S and u for which
no suitable x can be found. (Remember that this is after we have revealed
the locations of the points.) We then have that

E(X) ≤ n

(
n

k

)(
1− p(1− p)k

)Ω(r2n)

≤ nk+1 exp[−Ω(p(1− p)knr2)]

= exp
[
(k + 1) log n− Ω(n−ε/2 · pnr2)

]
≤ exp

[
O(log2 n/p)− Ω(n−ε/2 · pnr2)

]
= o(1),

where in the third line we have used the definition of k and the last inequality
follows from p2r2 ≥ n−1+ε (which implies that log2 n/p� n−ε/2 ·pnr2). This
concludes the proof of the lemma. �

2.2. Upper bound of Theorem 1.2. In this section we show that, a.a.s.,
21000L cops suffice to catch the robber. Before presenting a winning strategy
of the cops, we give some preparatory lemmas.
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2.2.1. Preliminaries. We say that a set of vertices A ⊆ V dominates another
set of vertices B ⊆ V if every vertex of B is adjacent to some vertex of A.
Throughout this paper we will denote by B(x, s) := {y ∈ R2 : ‖x− y‖ ≤ s}
the ball of radius s around x.

Lemma 2.2. Asymptotically almost surely, for every v, w ∈ V with ‖v −
w‖ ≤ 0.99 · r, there is a subset A ⊆ N(v) with |A| ≤ 1000L that dominates
{w} ∪N(w).

Proof. We will consider the number of “bad” (ordered) pairs (v, w) ∈ V 2

such that ‖v − w‖ ≤ 0.99 · r, yet no set A as required by the lemma exists.
We will compute the probability that (X1, X2) form such a bad pair. To
do this, we reveal the graph in three stages. In the first stage we reveal V
(the positions of the points). In the second stage, we reveal all edges that
have X1 as an endpoint (i.e. all coin flips that determine these edges). In
the third stage, we reveal all other edges (coin flips).

Let us condition on the event that ‖X1 −X2‖ ≤ 0.99 · r. (Note this does
not affect the locations of the other points nor the status of any of the coin
flips). We now define, for i, j ∈ {−1,+1}:

Bi,j := B(X2 + i(r/1010)e1 + j(r/1010)e2, r/1010),
Ui,j := N(X1) ∩Bi,j .

(Here, of course, e1 = (1, 0) and e2 = (0, 1). See Figure 1 for a depiction.)
The Bi,j have been chosen so that, no matter where in the unit square X2

B−1,−1

B1,1

B1,−1X1

X2

r

r

B−1,1

Figure 1. The definition of the Ui,j . (Not to scale.)

falls, for every z ∈ B(X2, r)∩[0, 1]2 there is at least one pair (i, j) ∈ {−1, 1}2
such that Bi,j ⊆ B(z, r) ∩ [0, 1]2.
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Observe that, conditioning on the event that the position of X2 is such
that Bi,j ⊆ [0, 1]2, we have

|Ui,j |=d Bin(n− 2, pπ(r/1010)2).

In particular, E|Ui,j | = Ω(pnr2) = Ω(nε/p)� L. Using the Chernoff bound,
it follows that

P(|Ui,j | < E|Ui,j |/2) ≤ exp[−Ω(nε)].

Note that, to find the Ui,j we have to reveal the first two stages, but we do not
need to reveal the coin flips corresponding to potential edges not involving
X1. Assuming that in the first two stages we managed to find Ui,j ’s of size
at least half of the expected size, we can now fix, for each i, j ∈ {−1, 1}
with Bi,j ⊆ [0, 1]2, an arbitrary subset Ai,j ⊆ Ui,j with |Ai,j | = 250L. We
let A be the union of these Ai,j ’s. Since each z ∈ B(X2, r) ∩ [0, 1]2 satisfies
Ai,j ⊆ B(z, r) for at least one pair (i, j) ∈ {−1, 1}2, the probability that
there is a vertex Xj ∈ N(X2) ∪ {X2} not connected by an edge to any
vertex of A is at most n(1− p)250L = n−249. It follows that

P((X1, X2) is a bad pair) ≤ 4e−Ω(nε) + n−249 ≤ 2n−249,

the last inequality holding for sufficiently large n. This shows that the
expected number of bad pairs is at most

(
n
2

)
2n−249 = o(1). The lemma

follows by Markov’s inequality. �

Lemma 2.3. Asymptotically almost surely, for every v ∈ V and every z ∈
B(v, r) ∩ [0, 1]2 there is a vertex w ∈ N(v) ∩B(z, r/1000).

Proof. We dissect [0, 1]2 into squares of side s := 1/d1010

r e (note s ≤ r/1010

and s = Θ(r)). Observe that if v, z ∈ [0, 1]2 with ‖v − z‖ ≤ r then there is
at least one square of our dissection contained in B(v, r) ∩B(z, r/1000). It
thus suffices to count the number Z of “bad pairs” consisting of a vertex v
and a square S of the dissection contained in B(v, r) such that N(v)∩S = ∅,
and to show this number is zero a.a.s. Note that the number of squares is
O(1/r2) = O(n). Hence we have

EZ = O(n2) · (1− ps2)n−1 = O(n2) · exp[−Ω(pnr2)]

= exp[O(log n)− Ω(nε)] = o(1),

and the proof of the lemma is finished by Markov’s inequality. �

Lemma 2.4. Asymptotically almost surely, for every v, w ∈ V with ‖v −
w‖ ≤ 1.99r there is a vertex u such that uv, uw ∈ E and ‖u− (v+w)/2‖ ≤
r/1000.

Proof. We use the same dissection into small squares of side s := 1/d1010

r e
as in the proof of the previous lemma. Note that if v, w ∈ [0, 1]2 then
B((v + w)/2, r/1000) contains at least one square of the dissection. It thus
suffices to count the number Z of “bad triples” consisting of two vertices
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v 6= w at distance at most 1.99r and one square S of the dissection that is
contained in B((v+w)/2, r/1000), such that N(v)∩N(w)∩S = ∅. We have

EZ ≤ O(n3) · (1− p2s2)n−2 = O(n3) · exp[−Ω(p2nr2)]

= exp[O(log n)− Ω(nε)] = o(1),

proving the lemma. �

The (easy) proof of the next, standard and elementary, observation is left
to the reader.

Lemma 2.5. Suppose that x1, x2, y1, y2 ∈ R2 are such that ‖x1−x2‖, ‖y1−
y2‖ ≤ r and the line segments [x1, x2], [y1, y2] cross. Then ‖xi− yj‖ ≤ r/

√
2

for at least one pair (i, j) ∈ {1, 2}2.

We say that a cop C controls a path P in a graph G if whenever the
robber steps onto P , then she either steps onto C or is caught by C on her
responding move. Let diam(G) denote the diameter of the graph. The ter-
minology “shortest path” will always refer to the graph distance (as opposed
to say the sum of the edge-lengths). Aigner and Fromme in [1] proved the
following useful result.

Lemma 2.6 ([1]). Let G be any graph, u, v ∈ V (G), u 6= v and P = {u =
v0, v1, . . . , vs = v} a shortest path between u and v. A single cop C can
control P after at most diam(G) + s moves.

2.2.2. The cop’s strategy. In the sequel, since we aim for a statement that
holds a.a.s., we assume that we are given a realization of G(n, p, r) that is
connected (which is true a.a.s. for our choice of parameters as, for instance,
follows from the work of Penrose [14]) and for which the conclusions of
Lemmas 2.2, 2.3 and 2.4 hold. We will show that under these conditions, a
team of 21000L cops is able to catch the robber. This will clearly prove the
upper bound of Theorem 1.2.

Our strategy is an adaptation of the strategy of Aigner and Fromme
showing c(G) ≤ 3 for connected planar graphs. We will have three teams
T1, T2, T3 of cops, each consisting of 7000L cops that are each charged with
guarding a particular shortest path.

In more detail, a team Ti that patrols a shortest path P = v0v1 . . . vm
is divided into 7 subteams Ti,−3, Ti,−2, Ti,−1, Ti,0, Ti,1, Ti,2, Ti,3 of 1000L cops
each. These subteams will move in unison (i.e. the cops in a particular
subteam will always be on the same vertex of P ). The team Ti,0 moves
exactly according to the strategy given by Lemma 2.6. That is, after an
initial period, the Ti,0-cops are able to move along P in such a way that,
whenever the robber steps onto a vertex vk ∈ P then either the entire team
Ti,0 is already on vk or they are on vk−1 or vk+1. Team Ti,j will be j places
along Ti,0 (i.e. if Ti,0 is on vk then Ti,j is on vk+j). If this is not possible
because Ti,0 is too close to the respective endpoint of P then Ti,j just stays
on that endpoint (i.e. if Ti,0 is on vk and k + j > m then Ti,j is on vm and
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if k + j < 0 then Ti,j stays on v0). We now claim that the robber can not
cross (in the sense that the edge she uses crosses an edge of P when both
are viewed as line segments) the path P without getting caught by the cops
of team Ti.

Ti,−2

Ti,0

Ti,−1 Ti,1

Ti,2

Robber

Figure 2. The robber tries to cross a path guarded by team Ti.

To see this, we first observe that if the robber moves along an edge that
crosses some edge of P , then either her position before the move or her
position right after the move is within distance at most r/

√
2 of some vertex

of P by Lemma 2.5. Next, we remark that whenever the robber steps onto
a vertex u within distance 0.99 · r of some vertex vk ∈ P , then the cops can
catch her in at most two further moves. This is because from u, the robber
could move to vk in at most two moves (Lemma 2.4). As the cops of subteam
Ti,0 follow the strategy prescribed by Lemma 2.6, they are guaranteed to be
on one of vk−3, vk−2, vk−1, vk, vk+1, vk+2, vk+3 when the robber arrives on
u. But then there must be some team Ti,j that inhabits the vertex vk at
the very moment when the robber arrived on u. This team now acts as
follows: at the time the robbers arrives on u, the subteam occupies the set
A provided by Lemma 2.2 (this one time the subteam do not all stay on the
same vertex; instead they “spread” following the strategy implied by the
lemma) and in the next move the cops are able to catch the robber, since
they now dominate the closed neighbourhood of the vertex she inhabits.
Thus, each of our three teams can indeed prevent the robber from crossing
a chosen path (after an initiation phase). What is more, the robber can
never get to within distance 0.99r of any vertex of such a path.

We can now mimic the strategy that Aigner and Fromme [1] developed
for catching the robber on connected planar graphs using three cops. The
idea is to confine the robber in smaller and smaller subgraphs of our graph,
until finally the cops apprehend her. We start by taking two vertices u, v.
We let P1 be the shortest uv-path, and we let P2 be the shortest uv-path
in the graph with all internal vertices of P1, and all edges that cross P1

removed. (Using Lemmas 2.3 and 2.4 it is easily seen that at least one
such path exists.) Note that P1 ∪ P2 constitutes a Jordan curve and hence
R2\(P1∪P2) consists of two connected regions, the interior and the exterior.
Once the game starts, we send T1 to patrol P1 and T2 to patrol P2. After
an initial phase, the robber will either be trapped in the interior region or
the exterior region of R2 \ (P1∪P2). Let us denote the region she is trapped
on by R. If it happens that every vertex inside R is within distance 0.99r
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v

P3

uu

v

P1

Robber

P2

P1

Robber

P2

Figure 3. The adapted Aigner–Fromme strategy.

of some vertex of P1 ∪ P2 then we are done by the previous argument. Let
us thus assume this is not the case. We then proceed as follows: we remove
all vertices not on P1 ∪ P2 or inside R, and we remove all edges that cross
P1 or P2. (Conceivably there can be vertices that lie inside R but with an
edge between them that passes through P1 ∪ P2.) We let P3 be a uv-path
in the remaining graph that is shortest among all uv-paths that are distinct
from P1, P2. (To see that at least one such path exists, we first find a vertex
u ∈ R that has distance at least 0.99r to every vertex of P1 ∪ P2. Then
we use Lemma 2.3 and 2.4 to construct vertex-disjoint paths between u and
two distinct vertices of P1 ∪ P2.) See Figure 3 for a depiction.

Note that P3 does not cross P1 or P2 (but it may share some edges with
them). In particular, R \ P3 consists of two or more connected parts, each
of which is either bounded by (parts of) P1 and P3 or by (parts of) P2 and
P3. We now send T3 to patrol P3. After an initial phase, the robber will be
caught in one of the connected parts R′ of R\P3. Without loss of generality
R′ is bounded by P2, P3. Discarding unneeded parts of P2, P3 (namely those
that do not bound R′) and relabelling we can also assume that P2, P3 only
meet in their endpoints u, v. If every vertex inside R′ is within distance 0.99r
of a vertex of P2, P3 we are again done. Otherwise, the team T1 abandons
guarding path P1, we remove all vertices not on P2, P3 or inside R′ and all
edges that cross P2 or P3, we find a uv-path P4 in the remaining graph,
shortest among all uv-paths different from P2, P3, and we let T1 patrol P4.
Now P4 will dissect R′ into two or more connected paths, and we repeat
the procedure to either catch the robber or restrict her to an even smaller
region.

It is clear that in each iteration of this process, at least one edge is re-
moved from the subgraph under consideration. Hence the process must
stop eventually. In other words, the robber will get caught eventually. This
concludes the proof of (the upper bound of) Theorem 1.2.

2.3. Concluding remarks. As mentioned earlier, we conjecture that the
Θ(log n/p) in Theorem 1.2 can in fact be improved to (1 +o(1)) log1/(1−p) n.
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We suspect that the p2 term in the conditions for Theorem 1.2 is just
an artefact of the proof and that the result should in fact hold when pr2 ≥
n−1+ε, p ≤ 1− ε.

Let us also remark that bounding p away from one is essential for our
result, as can be seen for instance from Theorem 1.1 or the result in [3]
that connected geometric graphs have bounded cop number. An interesting
avenue of further investigation would thus be to see what goes on when
p→ 1 as n→∞. Clearly some sort of phase change must occur, depending
on the speed at which p approaches one.

We remark that the proof of the lower bound in Theorem 1.2 readily
generalizes to arbitrary dimensions (replacing r2 by rd everywhere), but that
the reasoning using in the upper bound proof is essentially two-dimensional.
We would be very interested to learn of a proof technique that does work
for all dimensions.
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