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THE FORCING STRONG METRIC DIMENSION OF A

GRAPH

R. LENIN, KM. KATHIRESAN, AND M. BAČA

Abstract. For any two vertices u, v in a connected graph G, the inter-
val I(u, v) consists of all vertices which are lying in some u− v shortest
path in G. A vertex x in a graph G strongly resolves a pair of vertices
u, v if either u ∈ I(x, v) or v ∈ I(x, u). A set of vertices W of V (G)
is called a strong resolving set if every pair of vertices of G is strongly
resolved by some vertex of W . The minimum cardinality of a strong
resolving set in G is called the strong metric dimension of G and it is
denoted by sdim(G). For a strong resolving set W of G, a subset S of
W is called the forcing subset of W if W is the unique strong resolving
set containing S. The forcing number f(W, sdim(G)) of W in G is the
minimum cardinality of a forcing subset for W, while the forcing strong
metric dimension, fsdim(G), of G is the smallest forcing number among
all strong resolving sets of G. The forcing strong metric dimensions of
some well-known graphs are determined. It is shown that for any posi-
tive integers a and b, with 0 ≤ a ≤ b, there is nontrivial connected graph
G with sdim(G) = b and fsdim(G) = a if and only if {a, b} 6= {0, 1}.

1. Introduction

The distance between two vertices u, v, denoted by d(u, v), in a connected
graph G is the length of the shortest u − v path in G. The diameter of G,
diam(G), is given by max{d(u, v)|u, v ∈ V (G)}. A vertex v is said to be
extreme vertex if its neighbors induce a complete graph. For other termi-
nology in graph theory, refer to [15]. The interval I(u, v) consists of all
vertices which are lying in some shortest u− v path in G. For a set of ver-
tices S of V (G), the union of all I(u, v) for u, v ∈ S is denoted by I(S).
A set S is convex if I(S) = S, i.e., for every two vertices u, v ∈ S, the set
I(u, v) is contained in S. Clearly V (G) is always convex. The convexity
number, con(G), of a graph is defined in [4, 5] as the maximum cardinality
of a proper convex set of G. A vertex x ∈ V (G) resolves a pair of vertices
u, v ∈ V (G) if d(u, x) 6= d(v, x).
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A set of vertices S of V (G) is called a resolving set if every pair of distinct
vertices of G is resolved by some vertex of S. The minimum cardinality of
a resolving set of G is called the metric dimension of G and it is denoted
by dim(G). For more information about metric dimension in graphs, see
[1, 2, 3, 7, 8, 9, 10, 11].

A vertex x strongly resolves a pair u, v ∈ V (G) if u ∈ I(x, v) or v ∈ I(x, u).
A set of vertices S of V (G) is called a strong resolving set if every pair of
vertices of G is strongly resolved by some vertex of S. The minimum cardi-
nality of a strong resolving set of G is called the strong metric dimension,
sdim(G), was introduced by Sebö and Tannier in [14]. For more information
about strong metric dimension in graphs, see [12, 13, 14, 16, 17, 18].

A vertex x ∈ V (G) is maximally distant from y ∈ V (G) if d(x, y) ≥
d(z, y), for every z ∈ N(x), where N(x) = {v ∈ V (G)|xv ∈ E(G)}. If x is
maximally distant from y and y is maximally distant from x, then we say
that x and y are mutually maximally distant and denote this by xMMD y.
It is pointed out in [13] that if xMMD y in G, then any strong resolving set
of G must contain either x or y.

For a strong resolving set W of G, a subset S of W is called the forcing
subset of W if W is the unique strong resolving set containing S. The forcing
number f(W, sdim(G)) of W in G is the minimum cardinality of a forcing
subset for W, while the forcing strong metric dimension, fsdim(G), of G is
the smallest forcing number among all strong resolving sets of G. In [6],
Chartrand and Zhang studied the forcing dimension number of a graph.

For any connected graph G, 0 ≤ fsdim(G) ≤ sdim(G). For example we
consider the graph G depicted in Figure 1.
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Figure 1. A graph G with sdim(G) = 3 and fsdim(G) = 3.

Let S be any strong resolving set of G. Since v1 MMD v4, v1 MMD v7,
and v4 MMD v7, |S ∩ {v1, v4, v7}| ≥ 2. Furthermore, since v3 MMD v5, S ∩
{v3, v5} 6= ∅. So, sdim(G) ≥ 3. On the other hand, {v1, v4, v5} forms a
strong resolving set of G, and hence sdim(G) ≤ 3. Therefore, sdim(G) = 3.
Since any minimum strong resolving set must contain exactly two elements
from {v1, v4, v7} and exactly one element from {v3, v5}, no two vertices that
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belong to a minimum strong resolving set S of G fixes the remaining element
that belongs to S. Thus, fsdim(G) = 3.

Lemma 1.1. For any connected graph G, fsdim(G) = 0 if and only if G has
unique strong resolving set of G; fsdim(G) = 1 if and only if G has at least
two distinct strong resolving sets of G and some vertices belong to exactly
one of them; fsdim(G) = sdim(G) if and only if no strong resolving set of G
is the unique strong resolving set of G containing any of its proper subsets.

2. Forcing strong metric dimension of certain graphs

In this section we determine the forcing strong dimensions of certain
graphs. First we give the strong metric dimension of some well known
graphs.

Theorem 2.1 ([14, 17]). Let G be a connected graph of order n ≥ 2. Then,

a) sdim(G) = 1 if and only if G = Pn,
b) sdim(G) = n− 1 if and only if G = Kn,
c) for G = Cn, n ≥ 3, sdim(G) = dn/2e,
d) if G is a tree T, then sdim(T ) = k− 1, where k is the number of end

vertices of T.

Proposition 2.2. Let G be a connected graph of order n ≥ 2.

a) If G = Kn, then fsdim(Kn) = sdim(Kn) = n− 1.

b) If G = Cn, then fsdim(Cn) =

{
n/2, if n is even;
2, if n is odd.

Proof. Let G be the complete graph Kn of order n ≥ 2. Since every set
W of n − 1 vertices in Kn is a strong resolving set, W is not a unique
strong resolving set containing any of its proper subset of G. By Lemma
1.1, fsdim(Kn) = sdim(Kn) = n− 1.

Assume that G is a cycle Cn with V (Cn) = {v1, v2, . . . , vn}. Suppose n is
even. Then vi MMD v(n/2)+i, i = 1, 2, . . . , n/2 and every strong resolving set
of G contains either vi or v(n/2)+i. Let W be a strong resolving set of Cn, and
let S be a proper subset of W such that |S| ≤ |W |−1. Now consider the set
X = W − S. Then W ′ = (W −X) ∪X ′, where X ′ = {x|xMMD y, y ∈ X}.
Furthermore, W ′ is a strong resolving set of Cn containing S. Since W 6=
W ′, W is not a unique strong resolving set of Cn containing S. Therefore
fsdim(Cn) = n/2.

Suppose n is odd. Then vi MMD vdn/2e+(i−1) and vi MMD vdn/2e+i, i =
1, 2, . . . , dn/2e, where the indices taken modulo n. For every vertex vi, the
set {vi, vi+1, . . . , vi+dn/2e−1} and {vi+dn/2e, vi+dn/2e+1, . . . , vi} with indices
taken modulo n are strong resolving sets of Cn containing vi and fsdim(Cn) ≥
2. Let W = {v1, v2, . . . , vdn/2e}. Then W is a strong resolving set of Cn. Also,
every strong resolving set of Cn induces a connected subgraph of Cn. Hence
W is the unique strong resolving set containing {v1, vdn/2e} and fsdim(Cn) =
2. �
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Next we determine the forcing strong dimension of hypercubes Qn, n ≥ 2.

Proposition 2.3 ([12]). For n ≥ 2, sdim(Qn) = 2n−1.

Proposition 2.4 ([4]). For n ≥ 2, a set S is convex in Qn if and only if S
induces Qn−1 in Qn.

Proposition 2.5. For n ≥ 2, a set S is the strong resolving set in Qn if
and only if S induces a Qn−1 in Qn.

Proof. Assume that S is a set of vertices of Qn such that S induces a hy-
percube Qn−1 in Qn. For any two vertices x, y ∈ V (Qn) − S, we have
d(x, y) ≤ n− 1. Then there exists a vertex v ∈ N(x)∩ S, such that the pair
x, y is strongly resolved by v. Hence S is a strong resolving set of Qn.

Conversely, assume that S is a strong resolving set of Qn. Therefore we
have that d(x, y) ≤ n − 1 for all x, y ∈ V (Qn) − S. Thus, for every pair
u, v in S, the interval I(u, v) is contained in S and hence S is a convex set
in Qn. According to Proposition 2.4 the strong resolving set S induces a
hypercubes Qn−1 in Qn. �

Every strong resolving set of Qn is also a convex set of Qn and it was
proved in [5] that the forcing convexity number of Qn is 2 and hence we
have

Proposition 2.6. For n ≥ 2, fsdim(Qn) = 2.

Proposition 2.7. Let G be a connected graph of order at least 2.

a) If G = Km,n,m, n ≥ 1, then fsdim(G) = sdim(G).
b) If G = K1+(Kn1∪Kn2∪· · ·∪Knr), then fsdim(G) = sdim(G) = n−2.
c) If G is a tree with k end vertices, then fsdim(G) = sdim(G) = k− 1.

Proof. Assume that G = Km,n with partite sets V1 = {u1, u2, . . . , um} and
V2 = {v1, v2, . . . , vn}. Then sdim(G) = n − 2. Let W be a strong resolving
set of G. Then W = W1 ∪W2, Wi ⊆ Vi (i = 1, 2) with |W1| = m − 1 and
|W2| = n − 1. Assume W = V (G) − {um, vn}. Let S be a proper subset of
W. Then S = S1 ∪ S2, Si ⊆ Wi (i = 1, 2) and |S1| ≤ m− 2 or |S2| ≤ n− 2,
say, |S1| ≤ m − 2. Thus there exists a vertex ui ∈ W, 1 ≤ i ≤ m − 1, such
that ui /∈ S. Then W ′ = (W − {ui}) ∪ {um} is a strong resolving set of G
containing S. Since W ′ 6= W, W is not a unique strong resolving set of G
containing S. Therefore fsdim(G) = sdim(G).

Now, let G = K1 + (Kn1 ∪Kn2 ∪ · · · ∪Knr). Assume V (K1) = {x}. Since
sdim(G) = n−2, the vertex x does not belong to any of the strong resolving
set of G. Let W = V (G) − {x, y} where y ∈ V (Kni). Let S be a proper
subset of W with |S| ≤ |W | − 1. Then there exists a vertex z ∈W − S. Let
W ′ = (W −{z})∪ {y}. Then W ′ is a strong resolving set of G containing S
and W ′ 6= W. Thus W is not a unique strong resolving set of G containing
S. Therefore fsdim(G) = sdim(G).

Next, let G be a tree with k end vertices. Let E(G) be the set of end
vertices of G. Let W ⊆ E(G) with |W | = k − 1 and assume y ∈ E(G) −W.
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Then W is a strong resolving set of G. Let S be a proper subset of W
with |S| ≤ |W | − 1. Then there exists a vertex x ∈ W − S. Let W ′ =
(W − {x}) ∪ {y}. Then W ′ is a strong resolving set of G containing S and
W ′ 6= W. Thus W is not a unique strong resolving set of G containing S.
Therefore fsdim(G) = sdim(G). �

The Nordhaus–Gaddum-type results for the strong metric dimension of
unicyclic graphs are studied in [17], also [16] investigated the strong metric
dimension of unicyclic graphs.

Proposition 2.8. Let G be a unicyclic graph with p end vertices. If the
cycle C of G has length k, l is the greatest order of a path P on C, and
every vertex on P has degree 2 in G, then

sdim(G) =


p− 1, if l ≤ k−2

2 ;

p + l − bk2c, if k−1
2 ≤ l ≤ k − 2;

p + dk2e − 1, if l = k − 1.

Proof. Let C be the cycle v1v2 . . . vkv1 and X be the set of all end vertices
of G. Assume without loss of generality that P is the path v1v2 . . . vl, where
deg vi = 2 for i = 1, 2, . . . , l. So deg vk ≥ 3 and deg vl+1 ≥ 3.
Case 1 : l ≤ (k − 2)/2.

Let W ⊆ X and |W | = p− 1. Let x ∈ X −W with the property that
either vk ∈ I(x, v1) or vl+1 ∈ I(x, v1). Then W is a strong resolving set
of G and sdim(G) = p− 1.

Case 2 : (k − 1)/2 ≤ l ≤ k − 2.
Then W = X ∪ {v1, v2, . . . , vl−bk/2c} is strong resolving set of G and

sdim(G) = p + l − bk/2c.
Case 3 : l = k − 1.

Then W = X ∪{v1, v2, . . . , vdk/2e−1} is a strong resolving set of G and
sdim(G) = p + dk/2e − 1.

�

Proposition 2.9. Let G be a unicyclic graph with p end vertices. If the
cycle C of G has length k, l is the greatest order of a path P on C, and
every vertex on P has degree 2 in G, then

fsdim(G) =

 1, if l = k − 1 and if k−1
2 ≤ l ≤ k − 2;

p− 1, if l = 0;

m + n− 1, if 1 ≤ l ≤ k−2
2 .

Proof. Let C be the cycle v1v2 . . . vkv1 and X be the set of all end vertices
of G. Assume without loss of generality that P is the path v1v2 . . . vl, where
deg vi = 2 for i = 1, 2, . . . , l. So deg vk ≥ 3 and deg vl+1 ≥ 3.
Case 1 : l = k − 1.

Since diam(Ck) = bk/2c, the only strong resolving sets are X∪{v1, v2,
. . . , vdk/2e−1} and X ∪ {vk−1, vk−2, . . . , vbk/2c+1}. According to Lemma
1.1, we have that fsdim(G) = 1. Assume that (k−1)/2 ≤ l ≤ k−2. Then
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X ∪ {v1, v2, . . . , vdk/2e−1} and X ∪ {vbk/2c+1, . . . , vl} are the only strong
resolving set of G, and from Lemma 1.1, it follows that fsdim(G) = 1.

Case 2 : l = 0.
It is easy to see that fsdim(G) = p− 1.

Case 3 : 1 ≤ l ≤ (k − 2)/2.
Let Y = {y| y is an end vertex with the property that vk ∈ I(y, v1)}

and Z = {z| z is an end vertex with the property that vl ∈ I(z, v1)}
and assume that |Y | = m and |Z| = n. Let W ⊆ X with |W | = p − 1
and W = X − {u}, where the end vertex u has the property that either
u ∈ Y or u ∈ Z. Then every strong resolving set contains X − (Y ∪ Z).
Let W = X − {y} where y ∈ Y. Let S be a subset of minimum strong
resolving set W of G and assume S = Y ∪Z − {y}. Then W is a unique
strong resolving set of G containing S and fsdim(G) = m + n− 1.

�

3. Realization results

In this section, we determine which pair a, b of integers with 0 ≤ a ≤ b
and b ≥ 1 are realizable as the forcing strong metric dimension and strong
metric dimension of some nontrivial connected graph.

Theorem 3.1. For any positive integer a and b with 0 ≤ a ≤ b, there is
a nontrivial connected graph G with sdim(G) = b and fsdim(G) = a if and
only if (a, b) 6= (0, 1).

Proof. Since the path Pn is the only nontrivial connected graph with strong
metric dimension 1 and with only two strong resolving sets in Pn, we have
fsdim(Pn) = 1. Hence there is no connected graph G with sdim(G) = 1 and
fsdim(G) = 0. Thus (a, b) 6= (0, 1).

Assume a = 0 and b = 2. The required graph G is illustrated in Figure 2.

�
�
�
�
rv1

rv2 rv3

rv4 v5r
Figure 2. A graph G with sdim(G) = 2 and fsdim(G) = 0.

Let W = {v1, v4}. Then W is a strong resolving set of G and sdim(G) ≤ 2.
Since G is not a path, then sdim(G) = 2. Also W is the unique strong
resolving set of G and fsdim(G) = 0.
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Suppose a = 0 and b ≥ 3. Let G be a graph obtained from the path P6

with vertices v1v2v3v4v5v6 and adding new edges, v2v4, v3v5, v3v6, v4v6 and
uiv4, uiv6, 1 ≤ i ≤ b− 1, where u1, . . . , ub−1 are new vertices. The graph G
is shown in Figure 3.

r r r rr
r r p p rp

rv1 v2 v3 v4 v5 v6

u1 u2 ub−1

Figure 3

Let W = {u1, u2, . . . , ub−1, v1}. Then W is a strong resolving set of G
and sdim(G) ≤ b. Since any minimum strong resolving set contains at least
b − 2 vertices from the set {u1, u2, . . . , ub−1}, sdim(G) ≥ b − 2. Assume
sdim(G) = b − 1 and W ′ is a minimum strong resolving set of G. Then
there exists a vertex uk such that uk /∈W ′. Suppose v1 ∈W ′. Then the pair
(v3, uk) is not strongly resolved by any vertex of W ′. Suppose vi ∈ W ′, for
some i 6= 1. Then certainly W ′ is not a strong resolving set of G. Therefore
sdim(G) ≥ b and hence sdim(G) = b.

Next we show that W is a unique minimum strong resolving set of G.
Assume there exists a strong resolving set W ′ such that W 6= W ′. Then
there exists a vertex uk ∈W and uk /∈W ′. Suppose v1 /∈W ′. Then the pair
(v1, uk) is not strongly resolved by any vertex of W ′. Therefore v1 ∈ W ′.
Furthermore, W ′ contains exactly one vertex vi (i 6= 1). Suppose v2 ∈ W ′.
Then the pair (v5, uk) is not strongly resolved by any vertex of W ′. Suppose
v3 ∈ W ′. Then the pair (v5, uk) is not strongly resolved by any vertex of
W ′. Suppose v4 ∈ W ′. Then the pair (v5, uk) is not strongly resolved by
any vertex of W ′. Suppose v5 ∈ W ′. Then the pair (v3, uk) is not strongly
resolved by any vertex of W ′. Suppose v6 ∈W ′. Then the pair (v3, uk) is not
strongly resolved by any vertex of W ′. Hence W ′ is not a strong resolving set
of G. Therefore W is a unique strong resolving set of G and fsdim(G) = 0.

Now, assume a > 0.
Case 1 : a = b.

When a = b = 1, the path Pn has the desired property. When a =
b = 2, the star K1,3 has the required property. When a = b ≥ 3, the
complete graph Ka+1 has the desired property.

Case 2 : a < b.
We investigate two subcases:

Subcase 1. b = a + 1.
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Let G be the graph obtained from the 4-cycle u1u2u3u4u1 by
adding a new edge u2u4 and joining b new vertices v1, v2, . . . , vb to u2

and u3. The graph G is shown in Figure 4.
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v1

v2

vb

ppp
Figure 4. A graph G with sdim(G) = b and fsdim(G) = a =
b− 1.

Since G contains b extreme vertices, every strong resolving set of
G contains at least b − 1 vertices from the set {v1, v2, . . . , vb}. Let
W = {v1, v2, . . . , vb−1, u1}. Then W is a minimum strong resolving
set of G and sdim(G) = b. Also, every strong resolving set of G
contains u1, therefore fsdim(G) ≤ b− 1. Let S ⊆ W with |S| ≤ b− 2.
Assume vb−1 /∈ S. Then W ′ = (W−{vb−1})∪{vb} is a strong resolving
set of G containing S and W ′ 6= W. Thus W is not a unique strong
resolving set of G containing S. Hence fsdim(G) = b− 1 = a.

Subcase 2. b ≥ a + 2.
Let F = K2,b−a be a complete bipartite graph with the vertex set

V (F ) = {u, v} ∪ {u1, u2, . . . , ub−a}. The graph G is obtained from
F by adding new vertices x, v1, v2, . . . , va+1 and adding new edges
xu, xub−a, vix, viub−a, 1 ≤ i ≤ a + 1. The graph G is shown in Figure
5 for a = 2 and b = 4.
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r
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u1
u2

v v1 v2 v3

x

Figure 5. A graph G with sdim(G) = 4 and fsdim(G) = 2.

First we note that every strong resolving set contains at least a
vertices from {v1, v2, . . . , va+1}. Let W = {v1, v2, . . . , va, u1, u2, . . . ,
ub−a−1, v}. Then W is a strong resolving set of G and sdim(G) ≤ b.
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Let W ′ be the minimum strong resolving set of G. Suppose there exist
two vertices ui, uj ∈ V (F )−W ′. Since d(ui, uj) = 2 and diam(G) = 3,
the pair (ui, uj) is not strongly resolved by W ′. Hence W ′ contains
at least b − a − 1 vertices from V (F ). Also W ′ contains at least a
vertices from v1, v2, . . . , va+1 and sdim(G) ≥ b− 1. Suppose u ∈ W ′.
Then the pair (v, x) is not strongly resolved by W ′. Suppose x ∈W ′.
Then the pair (u, v) is not strongly resolved by W ′. Hence the only
possibility is that v must belong to W ′. Therefore sdim(G) = b.

Since every strong resolving set contains the vertices v, u1, u2, . . . ,
ub−a−1 then fsdim(G) ≤ a. Let W = {v, u1, u2, . . . , ub−a−1, v1, v2, . . . ,
va}. Assume S is a proper subset of W −{v, u1, u2, . . . , ub−a−1} with
|S| ≤ a−1. Assume that v1 /∈ S. Then W ′ = (W −{v1})∪{va+1} is a
minimum strong resolving set of G containing S and W 6= W ′ . Thus
W is not a unique strong resolving set of G containing S. Therefore
fsdim(G) = a.

�
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