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COLOURING ISONEMAL FABRICS WITH MORE THAN

TWO COLOURS BY THIN STRIPING

ROBERT S. D. THOMAS

Abstract. Perfect colouring of isonemal fabrics by thin striping of
warp and weft with more than two colours is examined. Examples of
thin striping in all possible species with no redundancy and with re-
dundant cells arranged as twills are given. Colouring woven flat tori is
discussed.

1. Background

This paper takes up the subject of colouring fabrics perfectly with more
than two colours introduced in [12] and extends it to thin striping, that is,
to colouring the strands in both directions with a finite number of colours
cyclically. The first three sections of [12] and the standard references [1, 4]
are relevant and will not be repeated here.

The next three paragraphs will give some idea of terms and notations to
be used. A fabric is a two-fold weave that does not fall apart having warps
(vertical and dark in colour) crossing wefts (horizontal and pale) in square
cells, in each of which one strand (warp or weft) is uppermost or visible in
an illustration of the obverse side of the weave. The other side, the reverse,
is illustrated (if at all) as reflected in a mirror set up behind/below the plane
of the fabric to preserve symmetries. Isonemal fabrics have symmetry group
G1 transitive on the strands. The pattern of over and under is periodic along
a strand, this period being called order, distinct from the two-dimensional
period, the area of the smallest period parallelograms. A group’s period
parallelogram with corners that are translates of one another is called a
lattice unit. Two catalogues of fabrics have been published [2, 3] giving
catalogue numbers for isonemal fabrics of small order in the form a-b-c,
where a is order, b is a unique representation of the over-and-under pattern,
and c is a serial number.

Most isonemal fabrics were divided into five genera by Grünbaum and
Shephard [2] and 39 species in [7, 9, 8], based on Roth’s [5] description of
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(a) (b) (c)

Figure 1. Designs of fabrics that could be patterns of re-
dundancy with symmetries marked. (a) The 2/1 twill. (b)
The 4/1 twill. (c) 4-1-1.

39 types of symmetry-group pairs 〈G1, H1〉, where H1 is the subgroup of
G1 consisting of elements not including reflection in the plane of the fabric,
represented τ . (The few fabrics outside a genus or species are called excep-
tional.) G1 consists of elements 〈s, t〉, where s is a two-dimensional transfor-
mation (translation, reflection, glide-reflection, half-turn (♦), or quarter-turn
(�)) and t is either the identity e or the reflection τ . H1 is the subgroup
consisting of elements 〈s, e〉, and G2 is the group that is the projection of G1

defined by 〈s, τ〉 7→ 〈s, e〉 and 〈s, e〉 7→ 〈s, e〉 to avoid the issue of reflections
in the plane of the fabric. Axes of reflection pass diagonally across cells
(Fig. 1); axes of glide-reflection are not so restricted (Fig. 1, Fig. 2a). When
they do so (Fig. 3a), they are said to be in mirror position. Figure 1ab illus-
trates the simplest isonemal fabrics, twills, in which each strand’s pattern
is the adjacent strand’s shifted by one; a twill’s over-and-under pattern is
represented a1/a2/b1/b2/ . . . until its order, the sum of a1 +a2 + . . . , is used
up.

The standard colouring (warp dark, weft pale) is a perfect colouring in the
sense that each symmetry in G1 either preserves or reverses the colour of all
cells. A non-standard colouring is called perfect if each symmetry permutes
the colours of all cells of each colour. When the two strands passing through
a cell are of the same colour, the cell is called redundant in that colouring
because which strand is uppermost has no effect on the cell’s appearance.

Thin stripes overlap in individual cells—all cells—of the fabric. Thin
stripes of the same colour overlap in redundant cells, in this paper arranged
as twills. The natural unit of measurement in the fabric is the side of a cell,
in which the diagonal of the square cells have the length

√
2, which will be

abbreviated δ. It is convenient to represent δ/2 by β. In [12] the following
results about thin striping were shown.

Theorem 1.1. Some non-exceptional fabrics in all species can be perfectly
coloured by the assignment of different colours to all strands.
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(a) (b)

Figure 2. (a) Order-30 species-1o example of Fig. 10b of
[7]. (b) Three-colouring by thin striping with redundant cells
strictly between the cells through which the axes run.

(a) (b)

Figure 3. (a) Design of Roth’s [5] example 12-183-1 of
species 1m. (b) Three-colouring by thin striping with re-
dundant cells along the axes.

Theorem 1.2. If no colour is common to warps and wefts in the assignment
of a finite number of colours to the striping of an isonemal fabric, then the
necessary conditions: the same number of colours are assigned to warps as to
wefts, and the vertical and horizontal sequences of the colours of the stripes
are periodic with the same period, are sufficient constraints on the colours
to allow perfect colouring by thin striping.

2. No Redundancy

Sections 5 and 6 of my [12] were written on the erroneous assumption,
conflicting with earlier sections of that paper, that there will always be
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(a) (b)

Figure 4. Fabric of species 11e in Fig. 15b thickly 4-
coloured two ways with no redundant cells.

(a) (b)

Figure 5. Fabric 12-315-4 of species 30 in Fig. 12a thickly
4-coloured two ways with no redundant cells.

redundant cells in a colouring.1 That is of course only the case when there
are perpendicular strands of the same colour. This section, which should
have been in [12], takes up the interesting possibility where there are no
such strands and so no redundancy, there being stripes of two colours in
each direction, a total of four colours — not too many to make an attractive
pattern.

Lemma 3.1 of [12] gives the necessary and sufficient condition for an as-
signment of all different colours to a thick striping of a fabric to be perfect,
namely preservation of the stripes by the symmetries, followed by the con-
ditions on the symmetries to allow this. No mention is made of conditions
on the striping, but striping almost always has to be done with some care,

1This apparently absurd event is an inexcusable result of sections 5 and 6 having been
written when two-colourings were generalized to more than two colours with redundancy
before the further generalization of earlier sections of the paper had been thought of.
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(a) (b) (c)

Figure 6. (a) Fabric 10-55-2 of species 333 (Fig. 5a of [12]).
(b), (c), Thickly 4-coloured two ways with no redundant cells.

as was noted by Roth [6]. In particular, the striping of wefts dictates how
the warps can be striped, as is illustrated with four colours in Figure 4a and
b. These diagrams show two ways in which the fabric of Figure 15b can be
thickly striped perfectly with two colours in each direction. In each case,
the striping in one direction dictates the boundaries of the stripes in the
other direction. What one cannot do is to stripe the fabric with its hori-
zontal stripes as in Figure 4a and its vertical stripes as in Figure 4b. Not
that this cannot be woven, but warp-weft-interchanging symmetries cannot
take stripes to stripes. The same condition of Lemma 3.1 suffices for the
same finite number of colours in each direction repeating cyclically with no
redundancy. While this condition is a slight relaxation of the conditions for
striping with two colours — and therefore unavoidably with redundancy, it
still bans twills and twillins as in Section 3 of [11]. That eliminates species
1–10, 12, 14, 16, 18, 20, 23, 24, 26, 28, 31, 32, 34, 36, and 39 leaving 11, 13,
15, 17, 19, 21, 22, 25, 27e, 29, 30, 33, 35, 37, and 38. Any fabric of these
species should be perfectly thickly colourable with any number of colours
greater than 1 in each direction. Only two colours will be explored briefly
because they are likely to be more attractive than more colours. Examples
are in Figures 5 and 6 as well as 4. These are all from species that cannot
be thickly 4-coloured with twilly redundancy. That they cannot be thickly
4-coloured with twilly redundancy led to the erroneous remark in [12] (which
assumed, as explained in footnote 1, that redundancy was inevitable) that
fabrics of species 38 (p. 50) and 33–39 (p. 54) cannot be thickly coloured
with four colours at all. Theorems 3.2 and 3.3 clarify this for thin striping.

Turning to thin striping, one sees that none of the thick-striping restric-
tions on species is relevant. And any striping in both directions with no
redundancy will do; what can go wrong with thick stripes mentioned in the
previous paragraph cannot occur with thin stripes. Unfortunately, since
what can be coloured that way is just longer or shorter strips, no interesting
motif of a single colour can emerge, and two-coloured motifs seem not to
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(a) (b)

Figure 7. Thin 4-colourings with no redundant cells. (a)
Fabric of species 30 thickly coloured in Fig. 5. (b) 4-1-1
reverse.

(a) (b)

Figure 8. Fabrics of species 11e and 333, thickly coloured
in Figs 4 and 6, thinly 4-coloured with no redundant cells.

be of much interest.2 As examples I give a thinly striped version of the
three fabrics used to illustrate thick striping (there not being two essentially
different thin stripings) in Figures 7 and 8.

3. Preliminaries

The remainder of this paper determines the constraints on the fabric
designs to allow perfect colourings by thin striping with twilly redundancy
and how to arrange them. In [12] the following result is Lemma 4.4.

2Not of sufficient interest to be noticed? This may be a matter of psychology or
eyesight. When I look at Figure 39b I recognize immediately a red and blue braid motif
but must search for the green and yellow one that perfect colouring ensures. A possible
exception to this claim is the smallest possible two-colour motif, just two cells, illustrated
in Figure 7b.
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(a) (b)

Figure 9. (a) Roth’s [5] example of species 34, 10-107-1
with lattice unit and centres of G1 marked (Fig. 8a of [8]).
(b) Five-colouring by thin striping.

Lemma 3.1. The assignment of a finite number of colours to stripes of an
isonemal fabric can be a perfect colouring only if the colours of the warps
are the colours of the wefts or no colour is shared.

The order of the colours does not need to be the same vertically as hor-
izontally. For example, Figure 9 shows a five-colouring otherwise of Roth’s
[5] example of species 34, catalogue number 10-107-1. This topic will not be
pursued here. The centres of the cross motifs are redundant cells at which
strands of the same colour cross. In order for the colouring to be a perfect
colouring, Roth’s Colouring Theorem [6] shows that the symmetry group
G1 of the fabric must leave the redundant cells/blocks invariant as a whole
and each element of the group must permute them, if at all, in a consistent
way. The group G2 of the fabric must be a subgroup of the group G2 of the
pattern of redundant cells, as in Figures 1a and b. For a specific colouring
of the wefts, say, as illustrated in Figure 9b, the positions of the redundant
cells must be chosen in accordance with the consistency requirement. This
choice determines the colouring of the warps.

From now on, warps and wefts will be coloured with the same finite set of
c colours. For thin striping, the redundant cells may be arranged as (c−1)/1
twills, and for c ≥ 4 as various other isonemal fabrics, 6-1-1, 8-1-1, 8-1-2,
and including in particular the square satins beginning with 5-1-1. Fabrics
will have order five or more, and redundant cells will be arranged as twills
(Figs 1a and b).

There is reason to consider mostly isomenal fabrics with order more than
four because those of order four or less are few and mostly exceptional, but
in order to consider colourings with three colours, one needs — there being
no choice — to begin with the 2/1 twill (Fig. 1a) as a redundancy pattern.
Mainly because of their aesthetic appeal, but also for practical reasons, I
intend to use three colours to represent what can be done with a twilly
pattern of redundant cells for any odd number of colours, four colours for
a twilly redundancy pattern for any even number of colours congruent to



64 ROBERT S. D. THOMAS

0 mod 4, and six colours for a twilly redundancy pattern for even numbers
of colours congruent to 2 mod 4. Also, because side-reversing symmetries
(mirrors and side-reversing glide-reflections, half-turns, and quarter-turns)
of a fabric relate its opposite sides and one sees fabrics one side at a time,
side-reversing symmetries have less appeal in striped fabrics. Emphasis will
be on fabrics with side-preserving symmetries just because their symmetries
are visible when the fabric is striped.3

Theorem 3.2. For three colours, perfect colouring of non-exceptional fab-
rics can be done only with a twilly arrangement of redundant cells.

Proof. The same colours must be used for warp and weft because three is
odd. The only isonemal design to serve as a redundancy pattern with order
three and a single dark cell per order length is the 2/1 twill. �

Here three strands are not standing proxy, as they will later, for larger
odd numbers. Similarly, four strands in the next theorem are not standing
proxy for more. These two numbers of colours, like two, are exceptional.

Theorem 3.3. For four colours, perfect colouring of non-exceptional fab-
rics can be done either with no redundancy or with a twilly arrangement of
redundant cells.

Proof. Two colours in each direction will colour with no redundancy. With
redundancy, there is the 3/1 twill and the apparent exception, 4-1-1 (Fig. 1c),
which must be shown to be useless. This design is exceptional both in being
of order four and in being a member of no genus.

It is impossible for the group G2 of an isonemal fabric to be a subgroup
of the group G2 of 4-1-1 for several reasons. The glide-reflection axes of
4-1-1 are horizontal and vertical, and those of other isonemal fabrics are all
at π/4 to the horizontal. The mirrors of 4-1-1 are at the right angle to be
potentially useful, but they are 2δ apart. Any selection from them (for genus
I or II) will be an even number of δs apart, and the isonemality constraint of
[7] prevents such a selection from combining with a diagonal period of 4δ (or
multiple of 4δ). Finally, the centres of rotation, as the diagram indicates,
fall only on alternate strand boundaries, preventing an isonemal fabric from
falling into genus III, IV, or V. �

This does not say that 4-1-1 cannot be the pattern of redundant cells
for a thin striping, only that the only isonemal fabric for which it is useful
is itself. Unfortunately, when a design that is suitable as a redundancy
pattern is itself coloured, the result is just stripes. Compare Figure 7b,
4-1-1 4-coloured with no redundancy. All that changes with a different
redundancy pattern is the order of the stripes. With 4-1-1 the order of
the colours of the stripes is different in the two directions, but with a twill

3While the presence of side-reversing symmetry makes it uninteresting and therefore
unnecessary to look at both sides of such coloured fabrics, the absence of all such symmetry
makes the two sides of a fabric that lacks it patterns of independent interest.
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as redundancy pattern the order is the same in the two directions. It is
obvious in twilly cases that no fabric with quarter-turn symmetry can have
G2 a subgroup of the 2/1 or 3/1 twill—or of any other (c−1)/1 twill doubled
or not, since these twills fall into species with no quarter-turns in their G2s.
(2/1 is of 28o, 3/1 is of 26e, 6-3-1 is of 27o, and 8-3-1 is of subspecies 25e.)
Accordingly, no fabric of species 33–39 can be perfectly coloured thickly or
thinly with the same three or four colours vertically and horizontally — or,
with twilly redundancy, any number of colours greater than two. Call this
the quarter-turn ban. On the other hand, some fabrics from all other species
are perfectly 3-colourable by thin striping.

4. Three colours

The G1 of the redundant twill 2/1 for thin striping with three colours,
of subspecies 28o and illustrated in Figure 1a, contains perpendicular glide-
reflections with axes not in mirror position and mirrors, allowing the pos-
sibility of fitting axes of species 1–32 among them. As the characteristic
feature of these twills is diagonal lines of, say, dark cells, axes of the fabric
to be coloured can be specified as through, between, or perpendicular to
the ‘dark lines’ of the redundancy twill. As Figure 1 indicates, there is no
shortage of mirrors and axes of glide-reflections perpendicular to the dark
lines; they occur at every opportunity, a mirror and two axes not in mir-
ror position through every cell. No ingenuity is required to fit axes in this
direction, and little in the direction of the dark lines for various clumps of
species.

For subspecies 1o, 2o, and 4o, successive glide-reflection axes not in mirror
position an odd multiple m ≥ 1 of 3β apart can be placed along the glide-
reflection axes between the dark lines that have that spacing. An example of
this treatment is Figure 2, where a species-1o fabric is 3-coloured this way;
the redundant cells run half-way between the fabric’s axes of side-preserving
glide-reflection, which are not in mirror position. Since the length of the
lattice unit in δ units is 5 and the number of colours 3, the length of the
lattice unit for fixed-colour translational symmetry is 15. Other ways of
arranging the colouring of these and other subspecies (1e, 2e, and 4e, for
example) are possible; all that is being indicated here is that there are some
fabrics of each species 1–32 that can be so coloured.

For species 1m, 2m, 3, 5o, and 7o, alternate glide-reflection axes in mirror
position (1m, 2m, 3) or alternate mirrors (5o, 7o) an odd multiple m ≥ 1
of 3δ apart can be placed along the mirrors in the dark lines that have
that spacing. Then the other axes will fall on intervening mirrors. Glide-
reflection axes can lie on these mirrors regardless of parity of glide. An
example of this is Figure 3, where Roth’s [5] example of subspecies 1m is
3-coloured this way.
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(a) (b)

Figure 10. (a) Design of 12-139-1 of species 6. (b) Three-
colouring by thin striping with redundant cells along the
axes.

(a) (b)

Figure 11. (a) Design of order 30 and species 32 from Fig-
ure 17a of [9]. (b) Three-colouring by thin striping with
redundant cells along the mirrors of positive slope.

For species 5e and 6, successive mirrors that can be an odd multiple m ≥ 1
of 3δ apart can lie along mirrors in the dark lines that have that spacing.
An example is shown thinly striped with 3 colours in Figure 10.

For species 8o and 10; 28o and 32, successive mirrors that can be an odd
multiple m ≥ 1 of 3β apart can be put on dark lines’ mirrors. Intervening
glide-reflection axes will lie on intervening axes parallel to the dark lines, and
the fabric’s perpendicular mirrors and glide-reflection axes, if any (28o and
32), can be put on the perpendicular mirrors and axes respectively, which are
close enough together to make this possible. An example of species 32 (with
the spacing of 28o) is shown in Figure 11. The disappearance of the mirror
symmetry and half of the half-turns makes such a pattern less attractive
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(a) (b)

Figure 12. (a) Roth’s [5] example 12-315-4 of species 30.
(b) Three-colouring by thin striping with redundant cells
along the mirrors of negative slope.

than one hopes for unless there is extraneous symmetry introduced, but
there is hardly room here.

For species 8e, 9, 27o, 28e, 28n, 30, and 31, successive mirrors that can
be an odd multiple m ≥ 1 of 3δ apart can be put on dark lines’ mirrors
that are that far apart. Intervening glide-reflection axes will then lie on in-
tervening parallel mirrors, and then the fabric’s perpendicular mirrors and
glide-reflection axes (27o, 28e, 28n, 30, 31) can be put on the perpendic-
ular mirrors and axes respectively. An example with the same motif as
12-183-1 (Fig. 3b) arranged in a more complex way is 12-315-4 of species
30 in Figure 12b. Another example is the species-31 fabric of Figure 35a,
which produces a slightly complicated zig-zag when thinly striped with three
colours, visible in Figure 35b if one considers the dark and pale versions of
the three colours green, red, and blue to be merged to just the three colours
green, red, and blue. This example will be referred to later.

The previous paragraph can be repeated with 6δ in place of 3δ for species
27e and 29. An example is shown in Figures 13 and 14.

For species 11, 13, 15, 17, 19, 21, 22, and 25, successive axes in mirror
position or mirrors that can be an odd multiple m ≥ 1 of 3δ apart can be
put on some dark lines’ mirrors. Then the fabric’s perpendicular axes in
mirror position and/or mirrors can be put on the mirrors perpendicular to
the dark lines. Examples are Roth’s [5] example of species 11o shown in
Figure 15a, the example of species 11e shown in Figure 15b, an example of
species 21 in Figure 17, the example of species 22 from Figure 11a of [9]
in Figure 19a, and an example of subspecies 25o in Figure 20a, coloured
respectively in Figures 16a, 16b, 18, 19b, and 20b.

For species 12e, 14e, 16, 18, 20, 23, 24, and 26, successive glide-reflection
axes in mirror position that can be an odd multiple m ≥ 1 of 3β apart
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Figure 13. Order-48 fabric of species 29; the fabric of
Fig. 35a doubled.

Figure 14. Three-colouring of the design of Fig. 13 by thin
striping with redundant cells along the mirrors of negative
slope.
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(a) (b)

Figure 15. Fabrics coloured in Fig. 16. (a) Roth’s [5] ex-
ample 12-111-2 of species 11o. (b) Example of species 11e
from Fig. 5a of [9].

(a) (b)

Figure 16. Three-colourings by thin striping with some
axes of fabric marked. (a) Example of Fig. 15a. (b) Example
of Fig. 15b.

can be put on the dark lines’ mirrors. The fabric’s perpendicular axes not
in mirror position and perpendicular mirrors can be put on the axes and
mirrors perpendicular to the dark lines. Examples are Roth’s [5] example of
species 12 in Figure 21a and coloured in Figure 21b (having mirrors in the
pattern along what are axes in the design); Roth’s [5] example of species
18 in Figure 22a and coloured in Figure 22b (symmetry except for half-
turns, of which there are a lot, and translations disappears); an example of
a subspecies-23o fabric in Figure 23a and coloured in Figure 23b (symmetry
gained as the side-preserving glide-reflections become mirrors too at the
same time as the mirrors become visible glide-reflections); Roth’s [5] example
of species 24 in Figure 24; and Roth’s [5] example of species 26 in Figure 25.
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Figure 17. Design of a fabric of species 21 and order 96.

Figure 18. Three-colouring by thin striping of the fabric
of Fig. 17 with redundant cells along the axes of positive
slope. Much of the symmetry disappears but a half-turn
centre remains in the exact centre of the diagram and along
a diagonal of positive slope.

In the above paragraphs, the dimensions 3β, 3δ, and 6δ for three colours
need only be changed to pβ, pδ, and 2pδ for any odd number of colours p to
specify how thin striping can be done in each possible species.
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(a) (b)

Figure 19. (a) Species-22 example from Fig. 11a of [9]. (b)
Three-colouring by thin striping with redundant cells along
the mirrors of negative slope, which appear as axes of glide-
reflection.

(a) (b)

Figure 20. (a) Subspecies-25e example; the fabric 12-619-1
of Fig. 25 doubled. (b) Three-colouring by thin striping with
redundant cells along the mirrors of negative slope.

Theorem 4.1. In each of the species 1–32, that is, all those allowed by
the quarter-turn ban, there are fabrics that can be perfectly coloured by thin
striping with an odd number 2q + 1 of colours and redundant cells arranged
as a 2q/1 twill for q = 1, 2, . . . .
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(a) (b)

Figure 21. (a) 12-231-1 (Fig. 6a of [9]) of subspecies 12e.
(b) Three-colouring by thin striping with redundant cells
along the axes in mirror position (negative slope).

(a) (b)

Figure 22. (a) 12-135-1 (Fig. 9b of [9]) of subspecies 18s.
(b) Three-colouring by thin striping with redundant cells
along the glide-reflection axes.

(a) (b)

Figure 23. (a) 12-31-1 (Fig. 11b of [9]) of subspecies 23o.
(b) Three-colouring by thin striping with redundant cells
along the glide-reflection axes of negative slope.
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(a) (b)

Figure 24. (a) 12-189-1 of subspecies 24e. (b) Three-
colouring by thin striping with redundant cells along the mir-
rors.

(a) (b)

Figure 25. (a) 12-619-1 of subspecies 26e (Fig. 4b of [9]).
(b) Three-colouring by thin striping with redundant cells
along the mirrors of negative slope.

5. Six colours

When the number of colours is 4p, the redundant twill is of the form
(4p − 1)/1 of subspecies 26e (Figure 26a). When the number of colours is
congruent to 2 mod 4, which is what we pursue in this section, the redundant
twill is of the form (4p+ 1)/1 of subspecies 26o (Figure 26b). In the former
case the mirrors between the dark lines have a cell-centre ♦ half-way between
cell-centre ♦s in redundant cells and a cell-corner ♦ half-way between cell-
corner ♦s where redundant cells touch. In the latter case, the cell-centre ♦
in the middle lies between cell-corner ♦s in the dark lines and vice versa.
In both cases, there are only mirrors every β perpendicular to the dark
lines. Therefore for all even numbers of colours no glide-reflection axis not
in mirror position can be accommodated. This rules out subspecies 1e, 1o,
2e, 2o, 8o, 18o, 18e, and 28o and whole species 4, 10, 12, 14, 16, 20, 24, and
32 as for two colours. Call this the mirror-position requirement. Subspecies
left from partly affected species are 1m, 2m, 8e, 18s, 28e, and 28n. The
quarter-turn ban eliminates species 33–39. Left are 1m, 2m, 3, 5–7, 8e, 9,
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(a) (b)

Figure 26. Twills for colouring with an even number of
colours, redundant cells for thin striping dark. (a) 5/1 twill
for six-colouring. (b) 3/1 twill for four-colouring.

11, 13, 15, 17, 18s, 19, 21–23, 25, 26, 27e and 29, 27o and 30, 28e and 31,
and 28n.

Because the redundant twill 5/1 for thin striping with six colours is of
subspecies 26o, no further subspecies are ruled out than those just ruled
out for all even numbers of colour. Since the aim here is to show which
species contain some perfectly colourable designs, 28n need not be sepa-
rately considered. All of those listed do contain 6-colourable designs, i.e., all
but those eliminated by the mirror-position requirement and the quarter-
turn ban. Since the symmetry group for the 5/1 twill is a subgroup of
the symmetry group of both the 2/1 twill and plain weave, 6-colourability,
which I shall use as a shorthand for perfect colourability by thin striping
with 6 colours, implies both 3-colourability and 2-colourability by thin strip-
ing. Three-colourability of a fabric does not ensure 6-colourability because
of the mirror-position requirement. Two-colourability of a fabric does not
ensure 6-colourability because the symmetry group of plain weave is very
much larger (both infinite of course) than that of the 5/1 twill, but all of the
species that contain 2-colourable fabrics do also contain 6-colourable fabrics.

When glide-reflection axes are in mirror position as they must be here,
the length of a lattice unit, where there are only parallel axes, must be even
(twice the glide). For species 1m, 2m, 3, 6, and 7 (where glide-reflection
axes are also mirrors), axes of glide-reflection with glide a multiple m ≥ 1 of
3δ can be placed on mirrors perpendicular to the dark lines. For example,
a fabric of species 1m is illustrated in Figure 27 and a Roth [5] example
of species 6 is illustrated in Figure 28. For subspecies 5e, provided that
the length of the lattice unit is a multiple m ≥ 1 of 3δ (there is no glide-
reflection), the mirrors can also be placed on mirrors perpendicular to the
dark lines. Because the only symmetry axes are mirrors, which involve
reflection in the plane of the fabric (τ), the only symmetry visible on a
single side of such a fabric—unless an extraneous symmetry is introduced—
is translational. To check the perfection of the colouring it is necessary to
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(a) (b)

Figure 27. (a) Design of fabric of species 1m with glide 3.
(b) Six-colouring of fabric of Fig. 27a with lines of redundant
cells across the axes of symmetry.

(a) (b)

Figure 28. (a) Design of 12-23-1, Roth’s [5] example of
species 6 (Fig. 6b of [7]). (b) Six-colouring by thin strip-
ing with lines of redundant cells across axes.

see the reverse. Despite the involvement of τ , the reverse is not the same
coloured pattern as the obverse reflected because it is coloured differently.
We shall however continue the policy of not illustrating reverses. Species 8e
and 9 with glides an odd multiplem ≥ 1 of 3δ can be treated like the previous
subspecies. An example from species 9 (so as to have side-preserving glide-
reflections) is illustrated in Figure 29. These arrangements have been chosen
for simplicity of exposition; there are other possibilities.

For species 11, 13, 15, 17, 19, 21, 22, and 25, successive axes or mirrors
that can be an odd multiple m ≥ 1 of 3δ apart can be placed on dark lines’
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(a) (b)

Figure 29. (a) Design of fabric of species 9. (b) Six-
colouring of fabric of Fig. 29a with lines of redundant cells
across axes.

Figure 30. Six-colouring of fabric of Fig. 15b with lines of
redundant cells along axes with negative slope.

mirrors as in 3-colouring. Then the fabric’s perpendicular axes, which are
in mirror position (the only constraint on them), can be put on mirrors
perpendicular to the dark lines. Examples are illustrated for species 11e
(Figs 15b and 30), 21 (Figs 17 and 31), 22 (Figs 19a and 32), and 25 (Figs 20a
and 33a).

For species 18s, 23o, and 26e with cell-centre ♦, successive axes, axes, and
mirrors respectively that can be an odd multiple m ≥ 1 of 3β apart can
be placed on the mirrors along and between the dark lines. The fabric’s
mirrors perpendicular to these will fall on mirrors perpendicular to the dark
lines. Examples of 6-colourings are the species-18s fabric of Figure 22a
in Figure 33b, the species-23o fabric of Figure 23a in Figure 34a, and the
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Figure 31. Six-colouring of the species-21 design of Fig. 17
with lines of redundant cells along axes with positive slope.

Figure 32. Six-colouring of the species-22 design of Fig. 19a
with lines of redundant cells along mirrors/axes with negative
slope.

species-26e fabric of Figure 25a, in Figure 34b, where only the half-turns
and translational symmetry remain in the pattern.

For species 27–31, central rectangles of 27o, 28e, 28n, 30, and 31 can have
one dimension an odd multiple m ≥ 1 of 3δ, and those of 27e and 29 can
have one dimension an odd multiple m ≥ 1 of 6δ. The former can have
these mirrors placed on dark lines’ mirrors, axes falling between them, and
the latter can have mirrors and axes placed on dark lines’ mirrors. Fabrics’
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(a) (b)

Figure 33. (a) Six-colouring of the species-25e design of
Fig. 20a with lines of redundant cells along mirrors with neg-
ative slope. (b) Six-colouring of species-18s fabric of Fig. 22a
with redundant cells along axes of negative slope between the
zig-zags.

(a) (b)

Figure 34. (a) Six-colouring by thin striping of species-23o
fabric of Fig. 23a with lines of redundant cells along the axes
of side-preserving glide-reflection that are not also mirrors.
(b) Six-colouring of the species-26e design of Fig. 25a with
lines of redundant cells along mirrors with negative slope.

perpendicular mirrors and axes fall on mirrors and axes perpendicular to
the dark lines. An example is a species-31 fabric (Fig. 35a) 6-coloured with
redundant cells along the mirrors of negative slope in Figure 35b. The mirror
symmetry and side-reversing half-turns are missing from the pattern, but
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(a) (b)

Figure 35. (a) Species-31 fabric (Fig. 15b of [9]). (b) Six-
colouring by thin striping with lines of redundant cells along
mirrors of negative slope.

the ordinary half-turns are there in the middle of what can be seen as tri-
colour flags and the centre of what can be seen as flag poles. (Each flag and
pole has the other motif at both ends—in the same colour or colours—rather
than just the normal one on account of the half-turn symmetries.)

Theorem 5.1. In each of the species 1–3, 5–9, 11, 13, 15, 17–19, 21–23,
and 25–31, that is, all those allowed by the mirror-position requirement on
glide-reflection axes and the quarter-turn ban, there are fabrics that can be
perfectly coloured by thin striping with 4p + 2 colours and redundant cells
arranged as a (4p+ 1)/1 twill for p = 1, 2, . . . .

6. Four colours

For four colours there is a further constraint because the species-26e lattice
units of the redundant 3/1 twill (Fig. 26b) are odd by even in δ. Species 27o
and 30 (with 27o spacing) have glide-reflection axes an odd distance apart in
δ in both perpendicular directions; they can therefore not be accommodated
on mirrors of the redundant twill because the glides in both perpendicular
directions must be odd. In these two species, however, 27e remains; only
30 is eliminated altogether. However, 1m, 2m, 3, 5–7, 8e, 9, 11, 13, 15, 17,
18s, 19, 21–23, 25, 26, 27e, 28, 29, and 31 can be perfectly coloured by thin
striping with four colours, that is, fabrics in all the species but 30 and those
eliminated by the mirror-position requirement and the quarter-turn ban.
Since the redundant cells and symmetry axes for four colours are related
as they are to those for two colours, the symmetry group of the redundant
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(a) (b)

Figure 36. (a) Species-1m fabric. (b) Four-colouring by
thin striping with lines of redundant cells perpendicular to
the axes.

twill is a subgroup of that for two colours. Accordingly, if a fabric is four-
colourable by thin striping then it is two-colourable by thin striping but not
the converse. The biggest actual difference is the two-colourability of species
30 and 36s.

When glide-reflection axes are in mirror position as they must be here,
the length of a lattice unit, where there are only parallel axes, must be even
(twice the glide); as a result, the width must be odd for species 1m, 2m, 3,
5e, and 7e [7]. For species 1m, 2m, 3, and 7e, axes of glide-reflection with
glide a multiple m ≥ 1 of 2δ must therefore be placed on mirrors perpen-
dicular to the dark lines. For example, Figure 36a shows a species-1m fabric
with glide 2δ, and Figure 36b shows it perfectly 4-coloured by thin striping
with redundant cells perpendicular to the axes. For subspecies 5e, provided
that the length of the lattice unit is a multiple m ≥ 1 of 2δ, the mirrors
can be placed on mirrors perpendicular to the dark lines exactly like the
glide-reflection axes two sentences back. An example is Roth’s [5] example
of subspecies 5e, illustrated in Figure 37a, 4-coloured in Figure 37b with
mirrors across the dark lines as they must be. Because the only symmetry
axes are mirrors, which involve τ , the only symmetry visible on a single side
of such a fabric—unless an extraneous symmetry is introduced—is transla-
tional. To check the perfection of the colouring it is necessary to see the
reverse. Despite the involvement of τ , the reverse is not the same coloured
pattern as the obverse reflected because it is coloured differently. We shall
however continue the policy of not illustrating reverses. An example of sub-
species 7e is illustrated in Figure 38, where the reflective symmetry with
mirrors coincident with the axes of the visible glide-reflections is not visible,
but extraneous reflective symmetry introduced by the colouring has mirrors
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(a) (b)

Figure 37. (a) The species-5e fabric 12-35-1 (Fig. 2a of [7]).
(b) Four-colouring by thin striping with lines of redundant
cells perpendicular to the axes.

(a) (b)

Figure 38. (a) A species-7e fabric (Fig. 16a of [7]). (b)
Four-colouring by thin striping with lines of redundant cells
perpendicular to the axes.

perpendicular to the axes through the lines of redundant cells 2δ apart. This
is side-preserving reflective symmetry, which cannot happen in a design.

Species-6 lattice units have width a multiple m ≥ 1 of 2δ and so can
have their bounding mirrors placed along or between dark lines’ mirrors,
their intervening mirrors falling on mirrors between or on dark lines. They
cannot be arranged perpendicular to the design’s axes because the glides are
odd. An example is Roth’s [5] example of species 6 in Figure 39a, coloured
two different ways in Figures 39b and c.
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(a) (b) (c)

Figure 39. (a) 8-11-1 of species 6 (Fig. 6a of [7]). (b) Four-
colouring by thin striping with lines of redundant cells along
the mirrors. (c) Second four-colouring with lines of redun-
dant cells between the mirrors. Extraneous mirrors are in-
troduced along the lines of redundant cells.

(a) (b)

Figure 40. (a) Species-9 fabric 8-19-2 (Fig. 7b of [7]).
(b) Four-colouring by thin striping, which looks thick, with
lines of redundant cells along the mirrors. Extraneous side-
preserving glide-reflections are along the mirrors.

For species 8e and 9, successive mirrors a multiple m ≥ 1 of 2δ apart can
be placed along the dark lines’ mirrors or all between them if the glides are
even. The axes of glide-reflection will then fall on mirrors in or between the
dark lines. Odd glides too can be accommodated by making sure that the
mirrors fall all on dark lines or all between them, since that makes room
for the axes on or between the lines. An example with odd glides and the
redundant cells along the mirrors is Roth’s [5] example of species 9 (for the
sake of having side-preserving glide-reflections) in Figure 40.
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(a) (b)

Figure 41. (a) Species-11e fabric of Fig. 15b (Fig. 5a of
[9]) 4-coloured by thin striping with redundant cells along
the axes of positive slope. (b) Four-colouring of fabric of
Fig. 20a of species 25e with redundant cells along mirrors of
positive slope.

(a) (b)

Figure 42. (a) 8-19-7 of species 17e. (b) Four-colouring by
thin striping with redundant cells along mirrors.

For species 11e, 13e, 15e, 17e, 18s, 19e, 21, 22, 23e, 25e, and 26e, closest-
together axes or mirrors (17e, 18s, 21, 23e mirrors; 19e, 22 axes) with sep-
aration a multiple m ≥ 1 of 2δ can be placed along dark lines’ mirrors.
The fabric’s perpendicular axes or mirrors will fall on mirrors perpendicu-
lar to the dark lines. Examples are the fabric of Figure 15b of species 11e
coloured in Figure 41a, Roth’s [5] species-17e example in Figure 42, a fab-
ric of species 18s in Figure 43, Roth’s [5] species-19e example in Figure 44,
Roth’s [5] species-21 example in Figure 45, the fabric of species 22 in Fig-
ure 19a coloured in Figure 46a, Roth’s [5] species-23e example in Figure 47,
the fabric of species 25e in Figure 20a coloured in Figure 41b, and the fabric
of species 26e in Figure 25a coloured in Figure 46b.
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(a) (b)

Figure 43. (a) A fabric of species 18s. (b) Four-colouring
by thin striping with redundant cells along mirrors.

(a) (b)

Figure 44. (a) 8-19-4 of species 19e (Fig. 9c of [9]). (b)
Four-colouring by thin striping with redundant cells along
axes.

(a) (b)

Figure 45. (a) 8-7-2 of species 21 (Fig. 10a of [9]). (b)
Four-colouring by thin striping with redundant cells along
mirrors.
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(a) (b)

Figure 46. (a) Species-22 fabric of Fig. 19a (Fig. 11a of
[9]) 4-coloured by thin striping with redundant cells along the
axes that are not mirrors (positive slope). (b) Four-colouring
of fabric of Fig. 25a of species 26e with redundant cells along
mirrors of positive slope.

(a) (b)

Figure 47. (a) Roth’s [5] species-23e example 8-27-1. (b)
Four-colouring with redundant cells along mirrors.

Species 27e, 28e, 28n, 29 with the spacing of 27e, and 31 with the spacing
of 28e, can have their mirrors with separation a multiple m ≥ 1 of 2δ placed
along the dark lines’ mirrors. Intervening fabric axes will then lie along
intervening mirrors, and perpendicular fabric axes and mirrors will lie along
perpendicular mirrors. Examples are fabric 8-5-1 of species 28n in Figure 48
(compare Fig. 47b), Roth’s [5] example of species 29 in Figure 49 coloured in
Figure 50a, and the species-31 fabric of Figure 35a coloured in Figure 50b.
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(a) (b)

Figure 48. (a) Fabric 8-5-1 of species 28n (Fig. 13b of [9]).
(b) Four-colouring with redundant cells along mirrors of pos-
itive slope

.

Figure 49. Roth’s [5] example 16-2499 of species 29
(Fig. 15a of [9]).

The above discussion for four colours contains the expression ‘multiple of
2δ’ repeatedly. For 4p colours, 2δ needs to be replaced by 2pδ.

Theorem 6.1. In each of the species 1–3, 5–9, 11, 13, 15, 17, 18, 19, 21–23,
25–29, and 31, that is, all those allowed by the mirror-position requirement
on glide-reflection axes and the quarter-turn ban except 30, there are fabrics
that can be perfectly coloured by thin striping with 4p colours and redundant
cells arranged as a (4p− 1)/1 twill for p = 1, 2, . . . .

7. Colouring woven flat tori

The weaving and colouring by thick striping of flat tori was discussed in
§§2 and 7 of [12]. The possibility of weaving Klein bottles is mentioned
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(a) (b)

Figure 50. (a) Four-colouring of the fabric of Fig. 49 with
redundant cells along mirrors of negative slope. (b) Four-
colouring of the fabric of Fig. 35 with redundant cells along
mirrors of positive slope.

there but not discussed. The opposite sides of a period parallelogram of a
design or pattern can be identified to weave or colour a woven torus, e.g.,
a quarter of Figure 1a. The rectangular lattice unit in the same figure or
a square multiple of the order-by-order square, like the whole of Figure 1a,
can also be used. In the latter case, there are mn strands in each direction
if there are m by m n× n squares, but in the former case there are usually
rather fewer, in this case one strand in each direction. Too few strands are
obviously an obstacle to interesting colouring.

As redundancy of cells plays no role in choosing period parallelograms
in the plane to map to tori, the patterns with no redundancy discussed
in section 2 behave, if their stripes are thick, like those with thick stripes
discussed in §7 of [12] — another reason why section 2 should have been in
[12]. For the same reason, if their stripes are thin, they behave like those
with thin stripes and twilly redundancy, to which we now turn.

The designs of the fabrics coloured in sections 2 and 4–6 can all be used
to weave flat tori. For colouring the torus, the topological constraint ‘that
the rectangle to be mapped to the torus must be a period parallelogram’
has in addition ‘that the rectangle must also be a period parallelogram of
the colouring’.

This topic was ignored altogether in the papers [10] and [11] on striping
with two colours. In that case the parities of the dimensions of lattice units
or of the smallest oblique rectangle (at π/4) enclosing a rhombic lattice
unit (e.g., Fig. 13) indicate whether they are suitable for two-colouring a
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torus with thin striping. The species at issue, i.e., those that can be two-
coloured in the plane are, according to Theorems 2.1 and 2.2 of [10], 1m,
2m, 3 (Fig. 5a of [10]), 5o, 5e, 6 (Fig. 5b of [10]), 7, 8e (Fig. 5c of [10]), 9
(Fig. 5d of [10]), 11 (Fig. 9ab of [10]), 13, 15, 17, 18s, 19, 21, 22 (Fig. 9cd
of [10]), 23, 25–27, 28e, 28n, 29, 30 (Fig. 9ef of [10]), 31, and 36s. Of these,
most allow the lattice unit of the striped pattern to be used for a torus.
There are two kinds of exception. Patterns of species 1m, 2m (Fig. 4ab
of [10]), 5e (Fig. 4ef of [10]), 7 (Fig. 6 of [10]), 18s, and 26e need to have
one of the odd lattice-unit dimensions doubled, and patterns of species 5o
(Fig. 4cd of [10]) and 26o must have both doubled. As well, the lattice unit
for species 36s is interesting because, while its square lattice unit can simply
be doubled in both directions, taking it from level 2 to level 4, the square at
the intermediate level 3 is sufficient to make the weaving work for a torus,
as can be seen in Figures 7 and 8 of [10].

Order-by-order squares are suitable in all cases because all perfectly 2-
colourable fabrics are of even order.

When we turn to more than two colours, we find that everything is as
it was for thick striping except simpler. Given a perfect c-colouring by
thin striping of an order-n isonemal design, one needs to choose a suitable
period parallelogram. Since the design is given, with its various period
parallelograms, both n × n and oblique lattice units of the side-preserving
subgroup H1, it is just a question of how many copies are needed. In the
n×n case, the smallest mn×mn choice must have mn be the lowest common
multiple of n and c, since each stripe of the colouring is one cell wide. The
size of a lattice unit must be inflated (if at all) similarly. The smallest period
parallelograms of any colouring can of course be assembled to make others
as large as one pleases.

Another approach would take the number of colours c and the species as
given and select the lattice unit appropriate to the species, if any, so that
fabrics based on it are perfectly colourable.

Consider the example of Figure 2, a 3-coloured species-1o fabric of order
n = 30. The lattice unit shown in Figure 2a is too small to become a torus
with the colouring of Fig. 2b because it is 3δ×5δ. While the pattern repeats
with the same colour with a translation of 3δ in the direction perpendicular
to the axes, the illustrated lattice unit has to be repeated three times along
the axes to bring the colours as well as the pattern into phase, making the
torus 3δ × 15δ. In this case, the mn ×mn square of the first paragraph of
the section would be 30 × 30 with area 900 since m can be 1, as against
3δ × 15δ = 90 for the oblique rectangle. More interestingly, the 30 × 30
square/torus has 10 thin stripes of each colour in each direction, whereas
the rectangle/torus has only a single strand of each colour in each direction,
each crossing the torus six times on account of the way the strand’s ends in
the rectangular lattice unit match up in the torus.

Because a woven flat torus is a link in the sense of knot theory, it is of
interest how many strands there are — the same number of each colour in
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each direction. As an example of what happens, let us pursue the example
of the previous paragraph. When the 3δ × 5δ H1 lattice unit is replicated
to make the 3δ × 15δ torus, a translational symmetry subgroup is created,
for the successive images of the 3δ× 5δ lattice unit, while woven identically,
must differ by a cyclic permutation of the colours. The behaviour now being
discussed is independent of how the torus is woven but depends solely on the
dimensions of the H1 lattice unit. Considering vertical strands and starting
with the strand next to the bottom corner of the lattice unit marked in
Figure 2a, they are yellow, red, and blue cyclically left to right. When
these three strands, which we can call a tricoloured band reaches the upper
boundary of the lattice unit, they are identified with the next band to the
right by the identification of boundaries, and then the next, and so on until
eventually they emerge at the upper right boundary of the third copy of the
lattice unit to be identified with the band entering the lower left boundary
upward. This is identified with the band with which we began. There is a
single band in each direction and so a single strand of each colour.

The multiple-of-three dimensions required for torus formation with colours
in phase ensure that the bands of the previous paragraph can be chosen as
units that will not be split up as they pass across the torus. The twilly
redundancy of the colouring ensures that the colouring of the bands in one
direction is a cyclic permutation of the colouring of the strands of the bands
in the other direction, but there is no reason for them to be the same.

The 3δ×15δ torus is by no means the only possibility with this lattice unit.
The short dimension can be multiplied by any positive integer. Five gives an
interesting result for the 15δ × 15δ square torus. The five bands that enter
the lower right side of the period parallelogram (which is the torus) reach
its upper right side together, are identified with the five bands entering the
lower left side, and rise to the upper left side to be identified with themselves
respectively. As happens with any square period parallelogram at π/4 to the
horizontal, the bands — and so all the strands — remain separate. There
are five bands of each colour in each direction. Any multiple of five gives
the same result.

What about non-multiples of five? If the 3δ × 15δ period parallelogram
is multiplied by 7 to be 21δ × 15δ, then as the five bands at the lower right
boundary rise up through copies of the lattice unit, we know that, as they
cross the boundary between the fifth and sixth copies of the lattice unit,
they fill it as they did the lower right side — as they did in the previous
paragraph. The multiples like 7 can be taken modulo 5 — or whatever
makes a square. Seven gives the same result as two. Crossing only two of
the 3δ × 15δ rectangles brings the fourth and fifth bands to the left end of
the upper left side, with the first, second, and third bands following on. As
the permutation ( 1 2 3 4 5

4 5 1 2 3 ) has period 5 like ( 1 2 3 4 5
5 1 2 3 4 ) for just one 3δ× 15δ,

each supposed band passes through each position on its successive crossings
of the torus, and so there is actually only one band. The same happens for
multiples congruent to 3 and 4 modulo 5, making congruence to zero quite
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special. The primality of 5, the apparent number of bands entering the lower
right side, makes one band be the almost uniform answer.

When the apparent b bands entering one side of the smallest period par-
allelogram, which is an H1 lattice unit perhaps replicated to put the colours
in phase, reach the opposite side of the period parallelogram they are per-
muted by running into a perpendicular side. Call that permutation p. A
square period parallelogram has actually b distinct bands, the index of the

identity in the cyclic subgroup of permutations, in the example ( 1 2 3 4 5
5 1 2 3 4 )

5
.

When b is prime, we have seen that, because the index of the powers of p
other than pb is one, there is only one band. When b is composite there is
room for different indices and therefore numbers of bands different from 1
and b.
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