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THE EXACT MAXIMAL ENERGY OF INTEGRAL

CIRCULANT GRAPHS WITH PRIME POWER ORDER

J. W. SANDER AND T. SANDER

Abstract. The energy of a graph was introduced by Gutman in 1978
as the sum of the absolute values of the eigenvalues of its adjacency
matrix. We study the energy of integral circulant graphs, also called gcd
graphs. These are Cayley graphs on cyclic groups (i.e. there adjacency
matrix is circulant) each of whose eigenvalues is an integer.

Given an arbitrary prime power ps, we determine all integral circulant
graphs of order ps having maximal energy. This enables us to compute
the maximal energy Emax(ps) among all integral circulant graphs of
order ps.

1. Introduction

A graph is called circulant if it is a Cayley graph on a cyclic group, and
thus its adjacency matrix is circulant. An integral graph has the property
that all of its eigenvalues are integers. Fixing a positive integer n, it is
well known (cf. [27]) that any integral circulant graph G of order n is
characterized by a set D of positive divisors of n such that G is isomorphic
to ICG(n,D), defined as the graph having the residue class ring Z/nZ as
vertex set and {{a, b} | a, b ∈ Z/nZ, gcd(a − b, n) ∈ D} as edge set. These
graphs are also known as gcd graphs in the literature. For |D| = 1 we obtain
the subclass of so-called unitary Cayley graphs. We consider only loopfree
gcd graphs, i.e. we require n /∈ D. Moreover, we note that ICG(n,D) with
D = {d1, . . . , dr} is connected if and only if gcd(n, d1, . . . , dr) = 1 (cf. [27]).
For a prime power n = ps this is equivalent to 1 ∈ D.

In recent years, quite a few structural properties of integral circulant
graphs have been brought to light (cf. [1, 4, 9, 12, 13, 14, 18, 19, 27]).
Some emphasis has lately been placed on researching the energy of integral
circulant graphs (see [2, 6, 7, 8, 17, 21, 22, 23, 24, 26]). The energy E(G)
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of a graph G on n vertices is defined as

E(G) =
∑

λ∈Spec(G)

|λ| =

n∑
i=1

|λi|,

where the spectrum Spec(G) = {λ1, . . . , λn} of G denotes the set of eigen-
values λi of the adjacency matrix of G, counted with multiplicities. Observe
that an undirected graph has real spectrum, since its adjacency matrix is
symmetric.

Let us abbreviate E(n,D) = E(ICG(n,D)). Since ICG(n,D) is an in-
tegral graph, we have Spec(ICG(n,D)) ⊂ Z, hence E(n,D) is an integer.
Given a positive integer n, it is most desirable to determine both

Emin(n) := min {E(n,D) | D ⊆ {1 ≤ d < n | d divides n}}

and

Emax(n) := max {E(n,D) | D ⊆ {1 ≤ d < n | d divides n}},

which are of particular interest with respect to the question of hyperener-
geticity or hypoenergeticity of certain classes of graphs.

Consider a prime power n = ps and a divisor set D = {pa1 , pa2 , . . . , par}
with arbitrary exponents 0 ≤ a1 < · · · < ar ≤ s − 1. In [23], Theorem 2.1,
the authors proved that

E(ps,D) = 2(p− 1)ps−1
(
r − (p− 1)hp,r(a1, . . . , ar)

)
,(1.1)

where

hp,r(x) = hp,r(x1, . . . , xr) :=

r−1∑
k=1

r∑
i=k+1

1

pxi−xk
(1.2)

for x = (x1, . . . , xr) ∈ Rr. Observe that hp,r has the symmetry property

hp,r(a1, . . . , ar) = hp,r(s− 1− ar, . . . , s− 1− a1)(1.3)

for all integral exponents 0 ≤ a1 < a2 < · · · < ar−1 < ar ≤ s− 1.
A rather straightforward consequence of (1.1) is that

Emin(ps) = 2(p− 1)ps−1,

and this minimal energy is attained precisely for the singleton divisor sets
D = {pt} with 0 ≤ t ≤ s− 1 (cf. [23], Theorem 3.1).

Divisor setsD producing graphs with maximal energy Emax(ps) were stud-
ied for the first time in [24]. Since, by the aforementioned result, singleton di-
visor sets generate integral circulant graphs having minimal energy Emin(ps),
minimisers of some hp,r producing integral circulant graphs with maximal
energy Emax(ps) necessarily satisfy r ≥ 2 if s ≥ 2; note that for s = 1 there
is only one possible divisor set, namely D = {1}. For that reason, we may
henceforth assume without loss of generality that 2 ≤ r ≤ s. Furthermore,
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any minimiser 0 ≤ a1 < a2 < · · · < ar ≤ s− 1 must have the entries a1 = 0
and ar = s− 1, because otherwise replacing a1 by a smaller integer or ar by
a larger one, respectively, would obviously summandwise lessen the value of
hp,r as defined in (1.2). Accordingly, any minimiser a = (a1, . . . , ar) of hp,r
lies in the set

A(s, r) := {(a1, . . . , ar) ∈ Zr | 0 = a1 < a2 < · · · < ar−1 < ar = s− 1},

and such an a is called an admissible exponent tuple. Hence 1 = pa1 ∈ D
for all a ∈ A(s, r), and by one of our introductory remarks we incidentally
have that Emax(ps) can only be generated by connected gcd graphs.

Our strategy in [24] for finding these maximising divisor sets was to start
by fixing r and discover exponent tuples (a1, . . . , ar) minimising hp,r, at least
approximately. Applying methods from convex optimisation it was shown
that, for fixed s and r, the function hp,r becomes minimal if 0 = a1 < a2 <
· · · < ar−1 < ar = s − 1 are chosen in nearly equidistant position ([24],
Corollary 3.2). Inserting the corresponding approximations hp,r(a1, . . . , ar)
into (1.1) and varying r, the order of magnitude of Emax(ps) was determined
in the sense that explicit upper and lower bounds for Emax(ps) were given,
which differed roughly by a factor of 2. More precisely, it was shown in [24],
Theorem 4.2 that, on setting C(p) := 1− (log log p)/ log p,

C(p)(p− 1)ps−1(s− 1) ≤ Emax(ps) ≤ 2C(p)(p− 1)ps−1s

for all primes p ≥ 17. Numerical examples suggested that Emax(ps) ap-
proached the lower bound with increasing p, i.e. we had conjecturally
Emax(ps) ≈ sps.

In [25] the authors used combinatorial instead of analytic arguments to
refine the earlier approximative results on minimisers of hp,r for fixed values
of r. This shed more light on the structure of these minimisers, which can be
regarded as the result of a repeated balancing process. In several cases this
process allowed us to obtain accurate results after only one or two balancing
steps.

In this paper, we completely settle the problem to find all divisor sets
maximising the energy of an integral circulant graph of prime power order,
i.e. for any prime power ps we shall explicitly determine all divisor sets D
satisfying E(ps,D) = Emax(ps). At the same time this enables us to compute
Emax(ps) precisely, thus confirming the conjecture mentioned above.

For an admissible exponent tuple a = (a1, . . . , ar), we denote by

D(a) := {pa1 , . . . , par}

the corresponding divisor set. Our main result is the following.
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Theorem 1.1. Let p be a prime, and let s be a positive integer.

(i) If s is odd, then

(1.4) Emax(ps) =
1

(p+ 1)2

(
(s+ 1)(p2 − 1)ps + 2(ps+1 − 1)

)
,

and the only exponent tuple a satisfying E(ps,D(a)) = Emax(ps) is
a = (0, 2, 4, . . . , s − 3, s − 1) ∈ A(s, r) in case p ≥ 3, while we have
the additional maximising tuple a = (0, 1, 3, 5, . . . , s− 4, s− 2, s− 1)
in case p = 2.

(ii) If s is even, then

(1.5) Emax(ps) =
1

(p+ 1)2

(
s(p2 − 1)ps + 2(2ps+1 − ps−1 + p2 − p− 1)

)
,

and the only exponent tuples a satisfying E(ps,D(a)) = Emax(ps)
are a = (0, 2, 4, . . . , s− 2, s− 1) and a = (0, 1, 3, 5, . . . , s− 3, s− 1).

We would like to add the following remarks with regard to Theorem 1.1:

(a) For computational reasons we prefer to present formulae (1.4) and
(1.5) in a compact form. However, being the sum of the moduli
of integral eigenvalues, Emax(ps) is certainly a positive integer. In
fact, it is an immediate consequence of identity (1.1) that Emax(ps)
is always divisible by 2(p−1). This is in line with the work of Bapat
and Pati [5] who showed that the energy of any graph is never an
odd integer (see also Pirzada and Gutman [16]). The divisibility
property of Emax(ps) becomes obvious by not using geometric sum
formulae in (3.3) and (3.4), which leads to

Emax(p2m+1) = 2(p− 1)

(
(m+ 1)p2m − (p− 1)

m−1∑
j=0

(j + 1)p2j
)

and

Emax(p2m) = 2(p− 1)

(
mp2m−1 − (p− 1)

m−3∑
j=0

(j + 1)p2j+3 + 1

)
instead of (1.4) and (1.5).

(b) Note that the two different exponent tuples in part (ii) just occur
due to the symmetry property (1.3) of the function hp,r.

(c) A graphG on n vertices is called hyperenergetic if its energy is greater
than the energy of the complete graph Kn, i.e. if E(G) > E(Kn) =
2(n − 1). There exist several bounds for the energies of different
graph classes. For an arbitrary graph G with n vertices, Koolen and
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Moulton [20] showed that

(1.6) E(G) ≤ n

2

(√
n+ 1

)
.

Shparlinksi [26] constructed an infinite family of circulant graphs
that asymptotically achieves the upper bound in (1.6). We observe
that integral circulant graphs of prime power order ps with maximal
energy, that is Emax(ps) ≈ sps by Theorem 1.1, are hyperenergetic,
but do not come close to the bound in (1.6). The graphs ICG(ps,D)
with minimal energy, studied in [23], are hypoenergetic, which means
Emin(ps) < 2(ps− 1). The reader finds more on hyperenergeticity as
well as hypoenergeticity of gcd graphs in [23] and [24].

The proof of Theorem 1.1 uses an accordion-like compression and expan-
sion procedure, which generates for any given admissible a(0) ∈

⋃s
r=2A(s, r)

a finite sequence (a(`))0≤`≤m, say, of admissible a(`) ∈
⋃s
r=2A(s, r) satisfying

E(ps,D(a(0))) < E(ps,D(a(1))) < · · · < E(ps,D(a(m))),

where a(m) is one of the maximising exponent tuples to be found in Theorem
1.1. Let us point out that, contrary to earlier strategies applied in [24] and
[25], we now compare the energies related to admissible exponent tuples of
different lengths. We recommend to take a look at the illustrative Example
3.1.

With respect to possible generalisations, let us point out some existing
obstacles. So far, no formula comparable with (1.1) in terms of simplicity
is available for E(n,D) if n is not a prime power. In particular, the energy
reveals practically no signs of multiplicativity in terms of divisors of n. As a
singular result it has been observed in [23] that Emax(pq) = Emax(p)Emax(q)
for distinct odd primes p and q. However, in this case it is a straightforward
exercise to determine and compare the energies for the four possible divisor
sets {1}, {1, p}, {1, q}, {1, p, q} by evaluating the formula

E(n,D) =
n∑
k=1

∣∣∣∣∣∣
∑
d∈D

µ

(
n

(n, kd)

)
·

ϕ
(
n
d

)
ϕ
(

n
(n,kd)

)
∣∣∣∣∣∣ ,

(cf. [18], Theorem 16) with Möbius’ function µ and Euler’s totient function
ϕ. The multiplicativity already vanishes for n = p2q or a product of three
distinct primes. Moreover, no conjectures regarding the structure of the
energy maximising divisor sets exist so far, not even for square-free n. For
example, Emax(3 · 5 · 7) = 520 with unique maximiser {1, 15, 21, 35} and
Emax(2 · 3 · 5 · 7) = 1414 with unique maximiser {1, 2, 3, 30, 35, 42, 70, 105},
while Emax(p) = 2(p− 1) with unique maximiser {1} for each prime p.
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2. Comparison of certain admissible exponent tuples

Given 2 ≤ r ≤ s, we define for each a ∈ A(s, r) its delta vector

δr(a) := (d1, d2, . . . , dr−1) ∈ Nr−1

by setting dj := aj+1 − aj (1 ≤ j ≤ r − 1). Obviously, we have
∑r−1

j=1 dj =
s− 1. Thus, introducing

D(s, r) :=

(d1, . . . , dr−1) ∈ Nr−1
∣∣∣∣∣∣
r−1∑
j=1

dj = s− 1

 ,

the function

δr :

 A(s, r) −→ D(s, r)

(a1, a2, . . . , ar) 7→ (a2 − a1, a3 − a2, . . . , ar − ar−1)

is 1–1 with its inverse

δ−1r :

 D(s, r) −→ A(s, r)

(d1, d2, . . . , dr−1) 7→
(

0, d1, d1 + d2, . . . ,
∑r−2

i=1 di, s− 1
)
.

As an immediate consequence of [23], Theorem 2.1, we have the following
observation, which will be used several times in the sequel.

Lemma 2.1. Let p be a prime, and let s ≥ 2 be a fixed integer. Let a ∈
A(s, r) and a′ ∈ A(s, r′). If

(2.1) hp,r(a)− hp,r′(a′) >
r − r′

p− 1
,

then E(ps,D(a′)) > E(ps,D(a)).

Proof. It follows from (1.1) that

E(ps,D(a′))−E(ps,D(a))

2(p− 1)ps−1
= r′ − r − (p− 1)

(
hp,r′(a

′)− hp,r(a)
)
,

which is positive by (2.1). �

We denote by ‖d‖∞ := max{dj | 1 ≤ j ≤ r − 1} the standard maximum
norm of d = (d1, . . . , dr−1) ∈ D(s, r).
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Proposition 2.2. Let p be a prime, and let s ≥ 2 be a fixed integer. Assume
that d = (d1, . . . , dr−1) ∈ D(s, r) for some 2 ≤ r ≤ s satisfies one of the
following two conditions

(i) ‖d‖∞ ≥ 4,
(ii) ‖d‖∞ = 3 and dj ≥ 2 for 1 ≤ j ≤ r − 1.

Let 1 ≤ u ≤ r − 1 be such that du = ‖d‖∞, and define

d′ = (d′1, . . . , d
′
r) := (d1, . . . , du−1, 2, du − 2, du+1, . . . , dr−1).

Then d′ ∈ D(s, r + 1) and E(ps,D(δ−1r+1(d
′))) > E(ps,D(δ−1r (d))).

Proof. By the fact that
∑
dj = s− 1 for d ∈ D(s, r), we have

1 ≤ u ≤ r − 1 ≤ s− ‖d‖∞ ≤ s− 3,

thus r+ 1 ≤ s− 1 and
∑
d′j = s− 1, which implies d′ ∈ D(s, r+ 1). For a =

(a1, . . . , ar) := δ−1r (d) ∈ A(s, r), we obtain that a′ = (a′1, . . . , a
′
r, a
′
r+1) :=

δ−1r+1(d
′) ∈ A(s, r + 1) satisfies

a′j =


aj for 1 ≤ j ≤ u,

au + 2 for j = u+ 1,

aj−1 for u+ 2 ≤ j ≤ r + 1.

By definition of the functions hp,r and hp,r+1 in (1.2), we have

hp,r+1(a
′)− hp,r(a) =

r∑
k=1

r+1∑
i=k+1

1

pa
′
i−a′k

−
r−1∑
k=1

r∑
i=k+1

1

pai−ak
.

Since all entries of a are also entries of a′, each difference ai−ak occurring in
the second double sum also occurs in the first one. Hence the corresponding
summands cancel out. However, in comparison with a the tuple a′ has the
additional entry a′u+1 = au + 2. Therefore, hp,r+1(a

′) − hp,r(a) consists of
all summands in which a′u+1 shows up, thus

hp,r+1(a
′)− hp,r(a) =

u∑
k=1

1

pa
′
u+1−a′k

+
r+1∑
i=u+2

1

pa
′
i−a′u+1

=

u∑
k=1

1

p(au+2)−ak
+

r+1∑
i=u+2

1

pai−1−(au+2)

=

u∑
k=1

1

pau−ak+2
+

r∑
i=u+1

1

pai−au−2
.

(2.2)

Case 1 : du ≥ 4.
Since a1 < a2 < · · · < au, we have au−ak ≥ u−k for k = 1, 2, . . . , u, and
since au+1−au = du ≥ 4, we have ai−au ≥ i−u+ 3 for i = u+ 1, . . . , r.
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By (2.2), this implies

hp,r+1(a
′)− hp,r(a) ≤

u∑
k=1

1

pu−k+2
+

r∑
i=u+1

1

pi−u+1

< 2
∞∑
j=2

1

pj
=

2

p(p− 1)
≤ 1

p− 1

for each prime p.
Case 2 : du = 3 and dj ≥ 2 for j 6= u.

Since au+1 − au = du = 3 and aj+1 − aj = dj ≥ 2 for all j, we have
au − ak ≥ 2(u − k) for k = 1, 2, . . . , u and ai − au ≥ 2(i − u) + 1 for
i = u+ 1, . . . , r. By (2.2), this implies

hp,r+1(a
′)− hp,r(a) ≤

u∑
k=1

1

p2(u−k+1)
+

r∑
i=u+1

1

p2(i−u)−1

<
∞∑
j=1

1

p2j
+

1

p

∞∑
j=0

1

p2j
=

1

p− 1
.

In both cases we have hp,r(a) − hp,r+1(a
′) > − 1

p−1 , hence Lemma 2.1

proves our Proposition.
�

Before we proceed, we introduce a helpful tool to visualise the calculation
of differences hp,r(a)−hp,r′(a′). Given a = (a1, . . . , ar) ∈ A(s, r) for some 2 ≤
r ≤ s, we define the delta tableau A = (ak,i)1≤k<i≤r of a as a triangular array
of integers, corresponding to a strictly upper triangular matrix (ak,i)1≤k,i≤r
with ak,i := ai − ak for 1 ≤ k < i ≤ r and no entries attributed to the
positions k ≥ i below or on the diagonal of the matrix.

Example 2.3. Let us look at an example of the kind that occurs in the
proof of Proposition 2.4. The entries aj and a′j of

a = (0, 3, 5, 6, 8, 10, 12, 15, 16, 20, 23) ∈ A(24, 11),

a′ = (0, 3, 5, 7, 9, 11, 13, 15, 16, 20, 23) ∈ A(24, 11),

pairwise coincide for 1 ≤ j ≤ 3 =: u and for v := 8 ≤ j ≤ 11 =: r. The delta
tableaux A and A′ of a and a′, respectively, are depicted by the following
two diagrams:
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3 5 6 8 10 12 15 16 20 23

2 3 5 7 9 12 13 17 20

1 3 5 7 10 11 15 18

2 4 6 9 10 14 17

2 4 7 8 12 15

2 5 6 10 13

3 4 8 11

1 5 8

4 7

3

3 5 7 9 11 13 15 16 20 23

2 4 6 8 10 12 13 17 20

2 4 6 8 10 11 15 18

2 4 6 8 9 13 16

2 4 6 7 11 14

2 4 5 9 12

2 3 7 10

1 5 8

4 7

3

If we wish to evaluate hp,11(a)−hp,11(a′), we have to subtract summands of

type p−a
′
k,i from summands of type p−ak,i . We observe that the entries inside

the dark-coloured areas (three triangles and the upper right rectangle) of A
one by one coincide with those of A′, which means that the corresponding
summands annihilate each other. Consequently, we only have to consider
the entries in each of the two remaining light-coloured rectangles of A and
A′, where differences ak,i−a′k,i are −1 between the upper left rectangles and
+1 between the lower right rectangles. Note that the three vertical blocks
in the tableaux have column indices i running in the intervals 2 ≤ i ≤ u and
u+1 ≤ i ≤ v−1 and v ≤ i ≤ r, while the row indices of the three horizontal
blocks have ranges 1 ≤ k ≤ u and u+ 1 ≤ k ≤ v − 1 and v ≤ k ≤ r − 1.
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The following result is a corollary to Proposition 3.1 in [25]. Yet, in view
of the new perspective of this exposition and for the convenience of the
reader, we provide a short proof of it.

Proposition 2.4. Let p be a prime. For some integers 2 ≤ r ≤ s and
1 ≤ u < v ≤ r − 1, let d = (d1, . . . , dr−1) ∈ D(s, r) have the following
properties:

(i) (du, dv) ∈ {(1, 3), (3, 1)},
(ii) dj = 2 for u < j < v.

Then d′ = (d′1, . . . , d
′
r−1), defined by

d′j :=

 2 for j = u and j = v,

dj otherwise,

satisfies d′ ∈ D(s, r) and E(ps,D(δ−1r (d′))) > E(ps,D(δ−1r (d))).

Proof. By condition (i) and the symmetry property (1.3) of hp,r we may
assume without loss of generality that du = 1 and dv = 3, i.e.

d = (d1, . . . , du−1, 1, 2, . . . , 2, 3, dv+1, . . . , dr−1) ∈ D(s, r),

and

d′ = (d1, . . . , du−1, 2, 2, . . . , 2, 2, dv+1, . . . , dr−1).

Clearly,
∑
d′j =

∑
dj = s − 1, hence d′ ∈ D(s, r). For a = (a1, . . . , ar) :=

δ−1r (d) ∈ A(s, r), this means that a′ = (a′1, . . . , a
′
r) := δ−1r (d′) ∈ A(s, r)

satisfies

(2.3) a′j =


aj for 1 ≤ j ≤ u,

aj + 1 for u+ 1 ≤ j ≤ v,

aj for v + 1 ≤ j ≤ r.

By definition of the function hp,r in (1.2), we have

hp,r(a)− hp,r(a′) =
r−1∑
k=1

r∑
i=k+1

(
1

pai−ak
− 1

pa
′
i−a′k

)
.

By use of (2.3), comparison of the delta tableaux A = (ak,i)1≤k<i≤r and
A′ = (a′k,i)1≤k<i≤r (cf. Example 2.3), where ak,i := ai−ak and a′k,i := a′i−a′k
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for 1 ≤ k < i ≤ r, reveals that

hp,r(a)− hp,r(a′) =
u∑
k=1

v∑
i=u+1

(
1

pak,i
− 1

pa
′
k,i

)

+
v∑

k=u+1

r∑
i=v+1

(
1

pak,i
− 1

pa
′
k,i

)

=
u∑
k=1

v∑
i=u+1

(
1

pak,i
− 1

pak,i+1

)

+

v∑
k=u+1

r∑
i=v+1

(
1

pak,i
− 1

pak,i−1

)

=

(
1− 1

p

) u∑
k=1

v∑
i=u+1

1

pak,i
+ (1− p)

v∑
k=u+1

r∑
i=v+1

1

pak,i
.

Since assumption (ii) implies that

(2.4) aj = au+1 + 2(j − (u+ 1)), for u+ 1 ≤ j ≤ v,

it follows that

hp,r(a)− hp,r(a′) =

(
1− 1

p

) u∑
k=1

pak
v∑

i=u+1

1

pau+1+2(i−(u+1))

+ (1− p)
v∑

k=u+1

pau+1+2(k−(u+1))
r∑

i=v+1

1

pai

=

(
1− 1

p

)
1

pau+1

u∑
k=1

pak
v−u−1∑
i=0

1

p2i

− (p− 1)pau+1

v−u−1∑
k=0

p2k
r∑

i=v+1

1

pai
.

(2.5)

The identity av = au+1 + 2(v− (u+ 1)), being a special case of (2.4), yields

1

pau+1

v−u−1∑
i=0

1

p2i
=

1

pau+1
· 1

p2(v−u−1)

v−u−1∑
i=0

p2i =
1

pav

v−u−1∑
i=0

p2i .

Inserting this into (2.5), we obtain

hp,r(a)− hp,r(a′) =

(
1

pav+1

u∑
k=1

pak − pau+1

r∑
i=v+1

1

pai

)
(p− 1)

v−u−1∑
i=0

p2i

=

(
1

pav+1

u∑
k=1

pak − pau+1

r∑
i=v+1

1

pai

)
p2(v−u) − 1

p+ 1
.

(2.6)
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Since du = 1 and dv = 3 by assumption, we have au+1 = au + 1 and
av+1 = av + 3. Therefore,

∑u
k=1 p

ak ≥ pau = pau+1−1 and

r∑
i=v+1

1

pai
<

1

pav+1

∞∑
i=0

1

pi
=

p

(p− 1)pav+1
=

1

(p− 1)pav+2
.

With this, (2.6) yields

hp,r(a)− hp,r(a′) >
(
pau+1−av−2 − pau+1−av−2

p− 1

)
p2(v−u) − 1

p+ 1

=
p− 2

p2 − 1
· pau+1−av−2(p2(v−u) − 1) ,

hence hp,r(a) − hp,r(a′) > 0 for each prime p. By Lemma 2.1, we finally
obtain the desired conclusion. �

In Proposition 2.4, tableaux of the same size were “subtracted” from each
other. Now we study the case where a given tableau has to be compared
with a smaller one. For that purpose, we introduce the (u, v)-derivative of
an admissible tuple.

Definition 2.5. Let a ∈ A(s, r) for some 3 ≤ r ≤ s, and let 1 ≤ u < v ≤
r − 1 be arbitrary integers. Then ∂u,v(a) = (a′1, . . . , a

′
r−1) ∈ A(s, r − 1),

defined by setting

a′j :=


aj for 1 ≤ j ≤ u,

aj + 1 for u+ 1 ≤ j ≤ v − 1,

aj+1 for v ≤ j ≤ r − 1,

is called the (u, v)-derivative of a.

Lemma 2.6 (Tableau Reduction Lemma). Let p be a prime, and let a =
(a1, . . . , ar) ∈ A(s, r) be admissible for some 3 ≤ r ≤ s. Moreover, let
1 ≤ u < v ≤ r−1 be arbitrary integers. If aj+1−aj = 2 for u+1 ≤ j ≤ v−1,
then

hp,r(a)− hp,r−1(∂u,v(a)) =
1

p+ 1

(
p+

1

p2(v−u−1)

)(
U

pau+1
+ pavV

)
+

1

p2 − 1

(
1− 1

p2(v−u−1)

)
,

(2.7)

where

U :=

u∑
k=1

pak and V :=

r∑
i=v+1

1

pai
.
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Proof. By definition of the functions hp,r and hp,r−1 in (1.2), we have for
a′ = (a′1, . . . , a

′
r−1) := ∂u,v(a)

∆h := hp,r(a)− hp,r−1(∂u,v(a)) =

r−1∑
k=1

r∑
i=k+1

1

pai−ak
−

r−2∑
k=1

r−1∑
i=k+1

1

pa
′
i−a′k

.

Using (2.5), we obtain the following two delta tableaux A = (ak,i)1≤k<i≤r
and A′ = (a′k,i)1≤k<i≤r−1, where ak,i := ai − ak (1 ≤ k < i ≤ r) and

a′k,i := a′i − a′k for 1 ≤ k < i ≤ r − 1:

a1,2 . . . . . . a1,u a1,u+1 . . . . . . . . . . . . . . . . . . . . . . . . a1,v a1,v+1 . . . . . . . . . . . . . . . a1,r
. . .

...
...

...
...

...

au−1,u

au,u+1 . . . . . . . . . . . . . . . . . . . . . . . . au,v au,v+1 . . . . . . . . . . . . . . . au,r

au+1,u+2 . . . au+1,v−1 au+1,v au+1,v+1 . . . . . . . . . . . . . . . au+1,r

. . .
...

...

av−2,v−1 av−2,v
...

...

av−1,v

av,v+1 . . . . . . . . . . . . . . . av,r

av+1,v+2 . . . av+1,r

. . .
...

ar−1,r

a1,2 . . . . . . a1,u a′1,u+1 . . . . . . . . . . . . a′1,v−1 a1,v+1 . . . . . . . . . . . . . . . a1,r
. . .

...
...

...
...

...

au−1,u

a′u,u+1 . . . . . . . . . . . . a′u,v−1 au,v+1 . . . . . . . . . . . . . . . au,r

au+1,u+2 . . . au+1,v−1 a′u+1,v . . . . . . . . . . . . . . . a′u+1,r−1
. . .

...
...

...

av−2,v−1 a′v−2,v . . . . . . . . . . . . . . . a′v−2,r−1

a′v−1,v . . . . . . . . . . . . . . . a′v−1,r

av+1,v+2 . . . av+1,r

. . .
...

ar−1,r

Observe that the entries inside the dark-coloured areas (three triangles
and the upper right rectangle) of A one by one equal the corresponding
entries of A′. For that reason, we only have to consider the entries in each
of the two remaining light-coloured rectangles of A and A′ and finally the
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entries in the white-coloured column inside A. Hence

∆h =

(
u∑
k=1

v∑
i=u+1

+
v∑

k=u+1

r∑
i=v+1

)
1

pak,i
+

v−1∑
k=u+1

1

pak,v

−

(
u∑
k=1

v−1∑
i=u+1

+
v−1∑

k=u+1

r−1∑
i=v

)
1

pa
′
k,i

.

Then (2.5) yields

∆h =
u∑
k=1

(
v−1∑
i=u+1

(
1

pak,i
− 1

pa
′
k,i

)
+

1

pak,v

)

+
v−1∑

k=u+1

(
r∑

i=v+1

1

pak,i
−

r−1∑
i=v

1

pa
′
k,i

)
+

r∑
i=v+1

1

pav,i
+

v−1∑
k=u+1

1

pak,v

=
u∑
k=1

(
v−1∑
i=u+1

(
1

pak,i
− 1

pak,i+1

))
+

u∑
k=1

1

pak,v

+

v−1∑
k=u+1

(
r∑

i=v+1

1

pak,i
−

r∑
i=v+1

1

pak,i−1

)
+

r∑
i=v+1

1

pav,i
+

v−1∑
k=u+1

1

pak,v

=
p− 1

p

u∑
k=1

pak
v−1∑
i=u+1

1

pai
+

1

pav

u∑
k=1

pak

+ (1− p)
v−1∑

k=u+1

pak
r∑

i=v+1

1

pai
+ pav

r∑
i=v+1

1

pai
+

v−1∑
k=u+1

1

pak,v

=
p− 1

p
U

v−1∑
i=u+1

1

pai
+

U

pav
− (p− 1)V

v−1∑
k=u+1

pak + pavV +

v−1∑
k=u+1

1

pak,v
.

(2.8)

Our assumption aj+1 − aj = 2 for u+ 1 ≤ j ≤ v − 1 implies that

(2.9) aj = au+1 + 2(j − (u+ 1)), for u+ 1 ≤ j ≤ v.
It follows that

v−1∑
k=u+1

pak = pav−1

v−1∑
k=u+1

1

pav−1−ak
= pav−1

v−u−2∑
k=0

1

p2k

= pav−1
p2

p2 − 1

(
1− 1

p2(v−u−1)

)
,

v−1∑
i=u+1

1

pai
=

1

pau+1

v−1∑
k=u+1

pai−au+1 =
1

pau+1

v−u−2∑
i=0

1

p2i

=
1

pau+1
· p2

p2 − 1

(
1− 1

p2(v−u−1)

)
,
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and
v−1∑
i=u+1

1

pak,v
=

v−1∑
i=u+1

1

p2(v−k)
=

v−u−1∑
k=1

1

p2k
=

1

p2 − 1

(
1− 1

p2(v−u−1)

)
.

If we insert these identities into (2.8) and use av = au+1+2(v−u−1), being
a special case of (2.9), we obtain

∆h =

(
1

pav
+

1

pau+1
· p

p+ 1

(
1− 1

p2(v−u−1)

))
U

+

(
pav − pav−1

p2

p+ 1

(
1− 1

p2(v−u−1)

))
V

+
1

p2 − 1

(
1− 1

p2(v−u−1)

)
=

(
1

p2(v−u−1)
+

p

p+ 1

(
1− 1

p2(v−u−1)

))
U

pau+1

+

(
1− p2−(av−av−1)

p+ 1

(
1− 1

p2(v−u−1)

))
pavV

+
1

p2 − 1

(
1− 1

p2(v−u−1)

)
.

(2.10)

In case v ≥ u+ 2 we know by (2.9) that av−av−1 = 2, and (2.7) follows. To
complete the proof we observe that identity (2.7) is a trivial consequence of
(2.10) in case v = u+ 1. �

Proposition 2.7. Let p be a prime. For some integers 3 ≤ r ≤ s and
1 ≤ u < v ≤ r − 1, let d = (d1, . . . , dr−1) ∈ D(s, r) have the following
properties:

(i) du = dv = 1,
(ii) dj = 2 for u < j < v.

Then d′ = (d′1, . . . , d
′
r−2), defined by

d′j :=


dj for 1 ≤ j ≤ u− 1,

2 for u ≤ j ≤ v − 1,

dj+1 for v ≤ j ≤ r − 2,

satisfies d′ ∈ D(s, r − 1) and E(ps,D(δ−1r−1(d
′))) > E(ps,D(δ−1r (d))) with

precisely one exceptional case, namely p = 2, u = 1 and v = r − 1, i.e.
p = 2 and d = (1, 2, 2, . . . , 2, 1), where d′ = (2, 2, . . . , 2, 2) ∈ D(s, r − 1) and
E(2s,D(δ−1r−1(d

′))) = E(2s,D(δ−1r (d))).

Proof. Since
∑
d′j =

∑
dj = s − 1, we have d′ ∈ D(s, r − 1). We set

a = (a1, . . . , ar) := δ−1r (d) ∈ A(s, r). Then it is easy to check that a′ :=
δ−1r−1(d

′) ∈ A(s, r−1) is the (u, v)-derivative of a. By virtue of condition (ii),
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we can apply the Tableau Reduction Lemma 2.6. Before evaluating (2.7),
we observe that

U =
u∑
k=1

pak ≥ pau and V =
r∑

i=v+1

1

pai
≥ 1

pav+1
,

where equality in both cases simultaneously holds if and only if u = 1
and v = r − 1. Inserting this into (2.7) and making use of (i), that is
au+1 − au = du = 1 and av+1 − av = dv = 1 by definition of δr, we obtain

hp,r(a)− hp,r−1(a′) = hp,r(a)− hp,r−1(a′)

≥ 1

p+ 1

(
p+

1

p2(v−u−1)

)(
pau

pau+1
+

pav

pav+1

)
+

1

p2 − 1

(
1− 1

p2(v−u−1)

)
=

2

p(p+ 1)

(
p+

1

p2(v−u−1)

)
+

1

p2 − 1

(
1− 1

p2(v−u−1)

)
=

2p− 1

p2 − 1
+

p− 2

p2v−2u−1(p2 − 1)

≥ 1

p− 1

for all primes p, but equality in the final step only for p = 2. Altogether, we
have shown that hp,r(a)−hp,r−1(a′) > 1/(p− 1) in all cases with the unique
exception excluded in the Proposition, where equality holds. The proof is
completed by Lemma 2.1. �

Proposition 2.8. Let p be a prime. For some integers 4 ≤ r ≤ s and
1 ≤ u < v ≤ r − 2, let d′ = (d′1, . . . , d

′
r−2) ∈ D(s, r − 1) have the following

properties:

(i) d′u = d′v = 3,
(ii) d′j = 2 for u < j < v.

Then d = (d1, . . . , dr−1), defined by

dj :=


d′j for 1 ≤ j ≤ u− 1 or u+ 1 ≤ j ≤ v − 1,

2 for u ≤ j ≤ v + 1,

d′j−1 for v + 2 ≤ j ≤ r − 1,

satisfies d ∈ D(s, r) and E(ps,D(δ−1r (d))) > E(ps,D(δ−1r−1(d
′))).

Proof. Since
∑
dj =

∑
d′j = s − 1, we have d ∈ D(s, r). Let

a′ = (a′1, . . . , a
′
r−1) := δ−1r−1(d

′) ∈ A(s, r − 1), and define a = (a1, . . . , ar) :=

δ−1r (d) ∈ A(s, r). It is straightforward to check that a′ = ∂u,v(a). By con-
dition (ii), we can thus apply the Tableau Reduction Lemma 2.6, which
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yields

hp,r(a)− hp,r−1(a′) =
1

p+ 1

(
p+

1

p2(v−u−1)

)(
U

pau+1
+ pavV

)
+

1

p2 − 1

(
1− 1

p2(v−u−1)

)
,

where

U =
u∑
k=1

pak <
∞∑
k=0

pau−k =
p1+au

p− 1

and

V =
r∑

i=v+1

1

pai
<
∞∑
i=0

1

pav+1+i
=
p1−av+1

p− 1
.

Putting this together and applying au+1 − au = du = d′u − 1 = 2 and
av+1 − av = dv = d′v − 1 = 2 by virtue of (i), we have

hp,r(a)− hp,r−1(a′) <
1

p2 − 1

(
p+

1

p2(v−u−1)

)(
pau+1

pau+1
+

pav

pav+1−1

)
+

1

p2 − 1

(
1− 1

p2(v−u−1)

)
=

2

p(p2 − 1)

(
p+

1

p2(v−u−1)

)
+

1

p2 − 1

(
1− 1

p2(v−u−1)

)
=

1

p2 − 1

(
3− p− 2

p2v−2u−1

)
≤ 1

p− 1

for all primes p. By Lemma 2.1, this concludes the proof. �

Proposition 2.9. Let p be a prime. If d = (d1, . . . , dr−1) ∈ D(s, r) for
some integers 4 ≤ r ≤ s with du = 1 for some u satisfying 2 ≤ u ≤ r − 2
and dj = 2 for j 6= u, then E(ps,D(δ−1r (d))) < E(ps,D(δ−1r (d′))), where
d′ := (2, 2, . . . , 2, 2, 1) ∈ D(s, r).

Proof. This is a special case of [25], Proposition 3.2. Instead of becoming
acquainted with the notation there, the reader might be well advised to look
at the involved delta tableaux and do some calculations similar to those
above. �
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3. Proof of the Theorem

As mentioned at the end of the introduction, the proof of Theorem 1.1 uses
an accordion-like compression and expansion procedure. Starting with an
arbitrary a(0) ∈

⋃s
r=2A(s, r), a finite sequence (a(`))0≤`≤m, say, of admissible

a(`) ∈
⋃s
r=2A(s, r) satisfying

(3.1) E(ps,D(a(0))) < E(ps,D(a(1))) < · · · < E(ps,D(a(m))),

can be generated, where a(m) is one of the maximising exponent tuples to be
found in Theorem 1.1. It simplifies the matter if we perform our compression
and expansion procedure on the delta vectors d(`) := δr(`)(a

(`)) ∈ D(s, r(`)),
0 ≤ ` ≤ m, for suitable lengths parameters r(`). By this (3.1) is replaced by

E(ps,D(δ−1r(0)(d
(0)))) < E(ps,D(δ−1r(1)(d

(1)))) < · · ·

· · · < E(ps,D(δ−1r(m)(d
(m)))).

(3.2)

Each transformation d(`) −→ d(`+1) corresponds to the application of one
of the Propositions in Section 2. In order to indicate which Proposition is
used and which effect it has, we label the transformation arrows according
to the table below:

Transf. Prop. # Effect Condition

Ia−→ 2.2(i) Replaces entry du ≥ 4 by ./.

successive entries 2, du − 2

Ib−→ 2.2(ii) Replaces du = 3 by 2 ≤ dj ≤ 3 for all j

successive entries 2, 1

II−→ 2.4 Replaces du = 1, dv = 3 or dj = 2 for u < j < v

du = 3, dv = 1 (u < v) by 2, 2

III−→ 2.7 Replaces du = dv = 1 (u < v) dj = 2 for u < j < v

by 2

IV−→ 2.8 Replaces du = dv = 3 (u < v) dj = 2 for u < j < v

by 2, 2, 2

V−→ 2.9 Shifts du = 1 (u < r − 1) to dj = 2 for j 6= u

the right

Table 1. List of transformations

The following proof of Theorem 1.1 demonstrates in which order the trans-
formations can be applied to an initial delta vector d(0). Observe that the
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sequence (3.2) is by no means unique, but the final delta vector d(m) very
well is (with the solitary ambiguity for p = 2 mentioned in Theorem 1.1(i)).
Example 3.1 right behind the proof will illustrate the transformation pro-
cess.

Proof of Theorem 1.1. In [23], Theorem 3.2, the maximal energies Emax(ps)
along with the corresponding divisor sets were determined for s ≤ 4. Hence
we may assume s ≥ 5. Let a be an exponent tuple having the property that
D(a) maximises the energy of ICG(ps,D), i.e. E(ps,D(a)) = Emax(ps). In
Section 1 we saw that necessarily a ∈ A(s, r) for some r satisfying 2 ≤ r ≤ s.
Define d = (d1, . . . , dr−1) := δr(a) ∈ D(s, r).

It follows from Proposition 2.2(i) that dj ∈ {1, 2, 3} for 1 ≤ j ≤ r − 1.
Thus we can visualise d as an (r−1)-tuple possibly containing some entries 1
and 3 as well as entries 2 filling the gaps. If d contained two or more entries
from the set {1, 3}, this would contradict at least one of the Propositions
2.4, 2.7 or 2.8, except for the special case d = (1, 2, 2, . . . , 2, 1) for p = 2
from Proposition 2.7. Therefore, only three situations remain: (i) d =
(2, 2, . . . , 2), (ii) d = (1, 2, 2, . . . , 2, 1) and p = 2, (iii) d has a single entry 1
or 3 with all other entries equal to 2.
Case 1 : s is odd.

Since
∑r−1

j=1 dj = s−1 is even, d = (2, 2, . . . , 2) ∈ D(s, (s+1)/2) or, only in

the case p = 2, d = (1, 2, 2, . . . , 2, 1) ∈ D(s, (s+3)/2). By use of (1.1) and
comparison of the delta tableaux corresponding to δ−1(s+1)/2((2, 2, . . . , 2))

and δ−1(s+3)/2((1, 2, 2, . . . , 2, 1)), it is an easy exercise to check that

E(2s,D(δ−1(s+1)/2(2, 2, . . . , 2))) = E(2s,D(δ−1(s+3)/2(1, 2, 2, . . . , 2, 1))).

It remains to prove the formula for Emax(ps). We have

hp,(s+1)/2(0, 2, 4, . . . , s− 3, s− 1) =

(s−1)/2∑
k=1

(s+1)/2∑
i=k+1

1

p2(i−k)

=

(s−1)/2∑
j=1

1

p2j

(
s+ 1

2
− j
)

=
(s− 1)ps+1 − (s+ 1)ps−1 + 2

2(p2 − 1)2ps−1
,

(3.3)

and hence by (1.1)

Emax(ps) = E(ps,D((0, 2, 4, . . . , s− 3, s− 1)))

= 2(p− 1)ps−1
(
s+ 1

2
− (p− 1)hp,(s+1)/2(0, 2, 4, . . . , s− 3, s− 1)

)
=

1

(p+ 1)2
(
(s+ 1)(p2 − 1)ps + 2(ps+1 − 1)

)
,

which proves (i).
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Case 2 : s is even.
Since

∑r−1
j=1 dj = s − 1 is odd, d must have a single entry 1 or 3 with

all other entries equal to 2. By Proposition 2.2(ii) the unique odd
entry is 1, and by Proposition 2.9 and the symmetry property (1.3),
we necessarily have d = (2, 2, . . . , 2, 2, 1) ∈ D(s, (s + 2)/2) or d =
(1, 2, 2, . . . , 2, 2) ∈ D(s, (s+2)/2) with equal corresponding energy. With
regard to Emax(ps), we have in this case

hp,(s+2)/2(0, 2, . . . , s− 2, s− 1) =

(s−2)/2∑
k=1

s/2∑
i=k+1

1

p2(i−k)
+

s/2∑
k=1

1

ps−1−2(k−1)

=

(s−2)/2∑
j=1

1

p2j

(s
2
− j
)

+
1

ps−1

(s−2)/2∑
k=0

p2k

=
(s− 2)ps − sps−2 + 2

2(p2 − 1)2ps−2
+

ps − 1

(p2 − 1)ps−1
,

(3.4)

and hence by (1.1)

Emax(ps) = E(ps,D((0, 2, 4, . . . , s− 2, s− 1)))

= 2(p− 1)ps−1
(
s+ 2

2
− (p− 1)hp,(s+2)/2(0, 2, 4, . . . , s− 2, s− 1)

)
=

1

(p+ 1)2
(
s(p2 − 1)ps + 2(2ps+1 − ps−1 + p2 − p− 1)

)
,

and this proves (ii).
�

Example 3.1. Let

a(0) := (0, 5, 6, 9, 12, 14, 15, 16, 22, 23, 24, 27, 29) ∈ A(30, 13),

and hence

d(0) := δ13(a
(0)) = (5, 1, 3, 3, 2, 1, 1, 6, 1, 1, 3, 2) ∈ D(30, 13).

Using the abbreviation ∂(`) := δ−1r(`)(d
(`)) and applying the transformations

of Table 1, we obtain step by step:
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` d(`) r(`) E(230,D(∂(`))) E(330,D(∂(`)))

0 (5, 1, 3, 3, 2, 1, 1, 6, 1, 1, 3, 2) 13 9 167 691 382 2 293 430 091 118 444yIa
1 (2,3, 1, 3, 3, 2, 1, 1, 6, 1, 1, 3, 2) 14 9 761 773 390 2 479 571 746 112 800yIa
2 (2, 3, 1, 3, 3, 2, 1, 1,2,4, 1, 1, 3, 2) 15 10 226 403 150 2 655 370 924 580 476yIa
3 (2, 3, 1, 3, 3, 2, 1, 1, 2,2,2, 1, 1, 3, 2) 16 10 429 199 182 2 770 612 868 608 768yIII
4 (2, 3, 1, 3, 3, 2, 1,2, 2, 2, 2, 1, 3, 2) 15 10 869 926 478 2 937 991 189 453 948yII
5 (2, 3,2,2, 3, 2, 1, 2, 2, 2, 2, 1, 3, 2) 15 11 022 317 518 3 022 615 444 978 108yIII
6 (2, 3, 2, 2, 3, 2,2, 2, 2, 2, 2, 3, 2) 14 11 182 822 222 3 112 785 070 640 560yIV
7 (2, 3, 2, 2,2, 2, 2, 2, 2, 2, 2,2,2, 2) 15 11 438 333 038 3 216 413 472 521 788yIb
8 (2,1,2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2) 16 11 483 072 286 3 218 955 338 350 144yV
9 (2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,1) 16 11 572 550 770 3 234 206 533 320 112

According to Theorem 1.1(ii) we have

Emax(230) = E(230,D((0, 2, 4, . . . , 28, 29))) = 11 572 550 770,

and

Emax(330) = E(330,D((0, 2, 4, . . . , 28, 29))) = 3 234 206 533 320 112.
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