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GEOMETRIC ALGORITHMS FOR MINIMAL ENCLOSING
DISKS IN STRICTLY CONVEX NORMED PLANES

THOMAS JAHN

Abstract. With the geometric background provided by Alonso, Mar-
tini, and Spirova on the location of circumcenters of triangles in normed
planes, we show the validity of the Elzinga–Hearn algorithm and the
Shamos–Hoey algorithm for solving the minimal enclosing disk problem
in strictly convex normed planes.

1. Introduction

In 1857, Sylvester [18] posed the minimal enclosing disk problem, which
asks for the smallest disk which covers a given finite point set in the Eu-
clidean plane. This problem has been tackled by several authors since the
development of computational geometry in the 1970s. For instance, the cel-
ebrated algorithm by Megiddo [15] provides a linear-time solution for the
minimal enclosing disk problem. Welzl [20] proposes a randomized algo-
rithm which works well for arbitrary finite dimensions. A natural extension
of Sylvester’s problem can be obtained by replacing the family of Euclidean
disks by the family F of homothetic images of a given non-empty, convex,
compact set B µ R2 which is centrally symmetric with respect to its in-
terior point 0 = (0, 0) (the origin). The family F becomes the family of
disks with respect to a suitable norm Î·Î on R2. Clearly, B and Î·Î are
combined by the two relations B =

)
x œ R2 -- ÎxÎ Æ 1

*
and, for x œ R2,

ÎxÎ = inf
)
⁄ > 0

-- ⁄≠1
x œ B

*
. We write B(x, ⁄) =

)
z œ R2 -- Îz ≠ xÎ Æ ⁄

*

and S(x, ⁄) =
)
z œ R2 -- Îz ≠ xÎ = ⁄

*
for the disk (i.e., a ball in two di-

mensions) and the circle centered at x with radius ⁄, respectively. The pair
(R2, Î·Î) is called a normed plane. For a compact set P µ R2, the minimal

enclosing disk problem is posed by
(1.1) inf

xœR2

max
pœP

Îx ≠ pÎ .

The existence of solutions can be shown by standard compactness argu-
ments. We denote the solution set of (1.1) by C(P ), i.e., C(P ) is the set
of centers of disks that have smallest possible radius and contain P . The
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2 THOMAS JAHN

optimal value of (1.1), i.e., the corresponding radius, is denoted by R(P ).
In general, the minimal enclosing disk problem is not uniquely solvable, as
depicted in Figure 1.

Figure 1. Minimal enclosing disks need not to be unique.
The dots mark the vertices of a triangle P , and the figure
shows two minimal enclosing disks with respect to the ¸Œ-
norm.

For the Euclidean norm, two algorithmic approaches are known which
rely on simple geometric concepts; that of Elzinga and Hearn [8] and that of
Shamos and Hoey [17]. These geometric concepts are given by the notions
of obtuseness, rightness, and acuteness of triangles as well as the notion of
Voronoi diagrams. The purpose of this article is to show how these concepts
can be generalized to a wider class of norms (see Section 2) and how the
corresponding algorithms can be proved to be valid (see Section 3).

2. Strictly convex norms, triangles, and Voronoi diagrams

A norm Î·Î on R2 is called strictly convex if Îx + yÎ < 2 whenever ÎxÎ =
ÎyÎ = 1. Geometrically this means that the boundary of the unit disk does
not contain any non-degenerate line segments. Throughout this article, we
shall work in strictly convex normed planes (R2, Î·Î). At first, let us fix the
notation for some geometric entities. For x, y œ R2, we write

Èx, yÍ = {⁄x + (1 ≠ ⁄)y | ⁄ œ R}

and

[x, y] = {⁄x + (1 ≠ ⁄)y | 0 Æ ⁄ Æ 1}
for the straight line passing through x and y and line segment with endpoints
x and y, respectively. The diameter of a set P µ R2 is denoted by diam(P ).
By the term triangle, we understand a set P µ R2 of cardinality card(P ) = 3.
If x satifies the equation

Îx ≠ p1Î = Îx ≠ p2Î = Îx ≠ p3Î ,

then x is called a circumcenter of the triangle {p1, p2, p3}. In that case, we
call the disk B(x, Îx ≠ p1Î) a circumdisk of P . Note that in strictly convex
normed planes, the number of circumcenters of each triangle is at most
one [14, Proposition 14 8.]. The setting of strictly convex normed planes
rules out topological di�culties which are encountered in the investigation
of bisectors in arbitrary finite-dimensional normed spaces, see [10].
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Proposition 2.1 ([13, Lemma 2.1.1.1]). Let p1, p2 œ R2
be distinct points

in a strictly convex normed plane. The bisector

bis(p1, p2) =
Ó

x œ R2
--- Îx ≠ p1Î = Îx ≠ p2Î

Ô

is homeomorphic to a straight line.

In Algorithm 3.2, we will use the so-called farthest-point Voronoi diagrams
for a geometrical solution the minimal enclosing disk problem (1.1).

Definition 2.2 ([17, p. 159]). Let P µ R2
be a given finite point set. The

farthest-point Voronoi region of p œ P is defined as

Ó
y œ R2

--- Îy ≠ pÎ Ø Îy ≠ qÎ ’ q œ P \ {p}
Ô

.

The collection of all farthest-point Voronoi regions is said to be the farthest-
point Voronoi diagram.

By Proposition 2.1, bisectors do not have interior points in strictly convex
normed planes. Therefore, the boundary of a farthest-point Voronoi region
consists of pieces of curves without endpoints (loci of points belonging to ex-
actly two farthest-point Voronoi regions) and their endpoints (points belong-
ing to at least three farthest-point Voronoi regions). The former are called
edges, and the latter are called vertices of the diagram. For given x œ R2

and an arbitrary finite set P µ R2 with convex hull conv P , one can eas-
ily verify the equality sup {Îy ≠ xÎ | y œ conv P} = sup {Îp ≠ xÎ | p œ P}.
Due to this fact and the strict convexity of the norm, the points of P , which
are farthest from x, are necessarily extreme points of conv P . In particular,
the farthest-point Voronoi region of p œ P is empty, if p is not an extreme
point of conv P .

The next two lemmas describe how one half of the bisector can be param-
etrized by the distance from the two points generating the bisector.

Lemma 2.3. Let µ0 œ R and let Ï : [0, Œ) æ [µ0, Œ) be a continuous

bijection. Then Ï is strictly increasing.

Lemma 2.4 ( [19, Lemma 2.2]). Let p1, p2 œ R2
. Furthermore, let H+

be one of the closed half-planes bounded by the straight line Èp1, p2Í, define

bis+(p1, p2) = bis(p1, p2) fl H+
, and let “ : [0, Œ) æ bis+(p1, p2) be a

homeomorphism. Then the mapping Ï : [0, Œ) æ [Îp1 ≠ p2Î /2, Œ), Ï(t) =
Îp1 ≠ “(t)Î, is strictly increasing.

Proof. Obviously, Ï is continuous. Let us assume that Ï is not injective.
Then there exist two distinct points x, y œ bis+(p1, p2) such that ⁄ :=
Îp1 ≠ xÎ = Îp1 ≠ yÎ. By [1, Corollary 3.1(a)], S(p1, ⁄) fl S(p2, ⁄) contains
the whole segment [x, y]. This contradicts the strict convexity. The mapping
Ï is also surjective. Indeed, for µ œ [Îp1 ≠ p2Î /2, Œ), the intersection
S(p1, µ) fl S(p2, µ) fl H+ is a singleton (see [14, Proposition 14 3.]) which,
by definition, belongs to bis+(p1, p2). We have “(0) = (p1 +p2)/2, and thus
Ï(0) = Îp1 ≠ p2Î /2. By Lemma 2.3, the assertion follows. ⇤
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For the sake of completeness, we cite two propositions each of which is
crucial both for Theorem 2.7 and the understanding of the algorithms in
Section 3.

Proposition 2.5 ([3, Lemma 1.2]). Let (R2, Î·Î) be a normed plane. The

norm is strictly convex if and only if C(P ) is a singleton for every compact

set P µ R2
.

Proposition 2.6 ([9, Section (1.7)]). Let (R2, Î·Î) be a strictly convex

normed plane. Let (c, ⁄) œ R2 ◊ [0, +Œ) and x, y œ B(c, ⁄). If Îx ≠ yÎ =
diam(c, ⁄) = 2⁄, then (x + y)/2 = c.

Rademacher and Toeplitz [16, Chapter 16] proved the following theorem
for the Euclidean plane. We give an extension for strictly convex normed
planes.

Theorem 2.7. Let n Ø 2, and let P = {p1, . . . , pn} be a finite set in the

strictly convex normed plane (R2, Î·Î). Further, let B(x̄, ⁄̄) be the minimal

enclosing disc of P . Then card(S(x̄, ⁄̄) fl P ) Ø 2, and every semicircle

of S(x̄, ⁄̄) (that is, the intersection of the circle with a closed half-plane

containing x̄ on its boundary) contains at least one point from P .

Proof. Suppose card(S(x̄, ⁄̄) fl P ) = 0. Then Îx̄ ≠ piÎ < ⁄̄ for all i œ
{1, . . . , n}. Hence, the disk centered at x̄ with radius maxi=1,...,n Îx̄ ≠ piÎ
contains P but has smaller radius. This contradicts ⁄̄ = R(P ).

Suppose card(S(x̄, ⁄̄) fl P ) = 1, say Îx̄ ≠ p1Î = ⁄̄ > Îx̄ ≠ piÎ for all
i œ {2, . . . , n}. There exists Á > 0 such that B(pi, Á) µ B(x̄, ⁄̄) for all
i œ {2, . . . , n}. Therefore, B(x̄ + Á(p1 ≠ x̄), ⁄̄) is another disk containing P
and having radius ⁄̄. Thus we have a contradiction to Proposition 2.5. It
follows that card(S(x̄, ⁄̄) fl P ) Ø 2.

Suppose now that there is an arc A (that is, a connected subset of a
circle) containing a semicircle of S(x̄, ⁄̄) without points from P and having
endpoints p1, p2 œ P . Move the center x̄ along the bisector bis(p1, p2)
towards (p1 +p2)/2 and keep Îx̄ ≠ p1Î as the radius until the center reaches
(p1 + p2)/2 or a third point from P hits the boundary. In the language of
Lemma 2.4, the center x̄ is an arbitrary bisector point x̄ = “(t). As it
moves towards the midpoint (p1 + p2)/2, the parameter t decreases. Thus
the distance Îp1 ≠ “(t)Î = Îp2 ≠ “(t)Î, which coincides with the radius,
also decreases. ⇤

An illustration of the main steps of the proof of Theorem 2.7 can be found
in Figure 2.

From Theorem 2.7, it follows that the minimal enclosing disk B(x̄, ⁄̄)
of a finite set P is a two-point disk, i.e., there are p, p

Õ œ P such that
x̄ = (p + p

Õ)/2 and ⁄̄ = Îp ≠ p

ÕÎ /2, or it is the circumdisk of at least three
points from P .
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Figure 2. An ¸4-norm example for the Rademacher–
Toeplitz theorem. The unfilled dots are the points of P ,
the filled ones are centers or auxiliary points.

Alonso, Martini, and Spirova [1,2] extend the notions of acuteness, right-
ness, and obtuseness of triangles in the following way to normed planes
(R2, Î·Î).
Definition 2.8. A triangle with vertices p1, p2, p3 œ R2

is called norm-
acute at pk if

(2.1)
....pk ≠ pi + pj

2

.... >
Îpi ≠ pjÎ

2 ,

where {i, j, k} = {1, 2, 3}. It is called norm-right at pk if we instead have

equality in (2.1) and it is called norm-obtuse at pk if this inequality is re-

versed.

Figure 3 shows an example for this classification for the ¸4-norm.

p3

p1 p2 p1 p2

p3

p1 p2

p3

Figure 3. Norm-obtuseness, norm-rightness, and norm-
acuteness at p3, resp., for the ¸4-norm.

The results of [2, Section 3] show that the following definition provides, for
normed planes, a subdivision of the family of all triangles into the subfamilies
described therein.
Definition 2.9 ([2, Definition 3.1]). A triangle P µ R2

is called

(a) norm-obtuse if it is norm-obtuse at one vertex and norm-acute at the

other two vertices;

(b) doubly norm-right if it is norm-right at two vertices and norm-acute at

the remaining vertex;
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(c) norm-right if it is norm-right at exactly one vertex and norm-acute at

the other two vertices;

(d) norm-acute if it is norm-acute at all three vertices.

From [2, Lemma 5.1] it follows that doubly norm-right triangles cannot
occur in strictly convex normed planes.

3. The algorithms

In this section, we show that the algorithms by Shamos and Hoey [17] and
Elzinga and Hearn [8], which were designed to solve the Euclidean minimal
enclosing disk problem for finite sets P , can be carried over verbatim to
strictly convex normed planes. After Chrystal’s algorithm [6], Elzinga and
Hearn’s algorithm was the second milestone in tackling the minimal enclos-
ing disk problem for the Euclidean plane. Drezner and Shelah [7] prove its
�(n2) running time, where n is the number of given points. The original
Elzinga–Hearn algorithm for the Euclidean plane uses acuteness, rightness,
and obtuseness of triangles to reduce the problem for n points to a problem
for at most three points. In the Euclidean plane, there are explicit con-
structions for solving these “small” problems, namely the construction of
midpoints of segments and of circumcenters of acute triangles. In strictly
convex normed planes (R2, Î·Î), we replace the determination of triangle
types via angle measures by the Thales-like method of Definition 2.9 which
relies only on distance measurement. Furthermore, let us assume that we
are given a construction for finding the circumcenter of an norm-acute tri-
angle. Then the solution of the minimal enclosing disk problem for n given
points can be done in exactly the same way as in the Euclidean plane.

Algorithm 3.1 (Elzinga/Hearn 1972)
Require: P µ R2, card(P ) Ø 2

1: Choose p1, p2 œ P , p1 ”= p2
2: x̄ Ω≠ 1

2(p1 + p2), ⁄̄ Ω≠ 1
2 Îp1 ≠ p2Î

3: if Îx̄ ≠ pÎ Æ ⁄̄ ’ p œ P then
4: return (x̄, ⁄̄)
5: else
6: Choose p3 œ P such that Îx̄ ≠ p3Î > ⁄̄
7: end if
8: if the triangle {p1, p2, p3} is norm-obtuse or norm-right at a vertex pi,

say, then
9: {p1, p2} Ω≠ {p1, p2, p3} \ {pi}

10: Go to 2
11: else Û the triangle {p1, p2, p3} is norm-acute
12: {x̄} Ω≠ bis(p1, p2) fl bis(p2, p3)
13: ⁄̄ Ω≠ Îx̄ ≠ p1Î
14: end if
15: if Îx̄ ≠ pÎ Æ ⁄̄ ’ p œ P then
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16: return (x̄, ⁄̄)
17: else
18: Choose p4 œ P such that Îx̄ ≠ p4Î > ⁄̄
19: Choose p5 œ {p1, p2, p3} such that Îp4 ≠ p5Î = maxi=1,2,3 Îp4 ≠ piÎ

20: if p4 /œ Èp5, x̄Í then

21: p6 Ω≠
I

the point among {p1, p2, p3} \ {p5} in the half-plane
bounded by Èp5, x̄Í opposite to p4

22: else
23: Choose p6 œ {p1, p2, p3} \ {p5}
24: end if
25: {p1, p2, p3} Ω≠ {p4, p5, p6}
26: Go to 8
27: end if

Theorem 3.1. Algorithm 3.1 computes the center x̄ and the radius ⁄̄ of the

minimal enclosing disk of the given point set P .

Proof. It is easy to see that Algorithm 3.1 only checks two-point disks and
circumdisks determined by points of P . Since there are only finitely many
such disks, it su�ces to show that the considered radii increase with each
iteration. Assume there are two chosen points p1, p2 and we enter step 2. We
check if the two-point disk B(xÕ, ⁄Õ) of these two points already contains the
whole set P . If the answer is a�rmative, we are finished since no smaller disk
contains p1 and p2. (This is a consequence of Proposition 2.6.) Otherwise
there is a point outside B(xÕ, ⁄Õ). We call it p3 and enter step 8 with p1,
p2, and p3.

Case 1 : The triangle {p1, p2, p3} is norm-obtuse at, say, p1.
The next disk B(xÕÕ, ⁄ÕÕ) under consideration is the two-point disk of

p2 and p3. By [2, Table 1], we have 2⁄ÕÕ = Îp2 ≠ p3Î > Îp1 ≠ p2Î = 2⁄Õ,
i.e., ⁄ÕÕ > ⁄Õ.

Case 2 : The triangle {p1, p2, p3} is norm-right at, say, p1.
The next disk B(xÕÕ, ⁄ÕÕ) under consideration is the two-point disk of

p2 and p3. By [2, Table 1], we have

(3.1) 2⁄ÕÕ = Îp2 ≠ p3Î Ø Îp1 ≠ p2Î = 2⁄Õ

with equality if the triangle {p1, p2, p3} is equilateral or if the triangle
is isosceles with Îp2 ≠ p3Î = Îp1 ≠ p2Î > Îp1 ≠ p3Î. By [2, Proposi-
tion 3.3.(ii)], the former case only occurs in normed planes where the
disks are parallelograms. The latter case is impossible in strictly convex
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normed planes because
....

p3 + p2
2 ≠ p1

.... = Îp2 ≠ p3Î
2

>

....
1
2

3
p3 + p2

2 ≠ p1

4
+ 1

2
p2 ≠ p3

2

.... = Îp2 ≠ p1Î
2

would yield a contradiction to the assumption that {p1, p2, p3} is isosce-
les. It follows that the inequality in (3.1) is strict.

Case 3 : The triangle {p1, p2, p3} is norm-acute.
In step 12 and step 13, the circumdisk B(xÕÕ, ⁄ÕÕ) of {p1, p2, p3} is

constructed. Note that the feasibility of step 12 follows from the fact
that norm-acute triangles in strictly convex normed planes have exactly
one circumcircle, see [14, Proposition 14 8.] and [2, Theorem 6.1]. By
applying Proposition 2.6 twice, we conclude that ⁄ÕÕ > ⁄Õ since

2⁄ÕÕ = diam(B(xÕÕ, ⁄ÕÕ)) > Îp1 ≠ p2Î = diam(B(xÕ, ⁄Õ)) = 2⁄Õ.

If B(xÕÕ, ⁄ÕÕ) contains the whole set P , it is already the solution since
no smaller disk contains {p1, p2, p3}. (This is a consequence of [2, The-
orem 6.4].) Otherwise there is an outside point p4 œ P . We cannot
have

Îp4 ≠ p1Î = Îp4 ≠ p2Î = Îp4 ≠ p3Î
in step 19, since otherwise p4 = x

ÕÕ, which is not outside B(xÕÕ, ⁄ÕÕ).
In other words, there are at most two points among p1, p2, p3 which
are candidates for p5. The choice of p6 in step 21 is possible by [2,
Theorem 6.3], which says in particular that x

ÕÕ lies in the interior of the
convex hull of {p1, p2, p3}. Consequently, the straight line through p5
and the x

ÕÕ does not pass through any point from {p1, p2, p3} \ {p5}. If
p4 lies on this straight line, we will show that it is irrelevant which of
the two points from {p1, p2, p3} \ {p5} is chosen as p6.

For that reason, let p5 := p1 be a farthest point to p4 among {p1, p2,
p3}. Without loss of generality, p6 := p2. We allow p6 to be a farthest
point to p4 among {p1, p2, p3}, i.e., Îp4 ≠ p5Î = Îp4 ≠ p6Î, and we allow
p4 œ Èp5, x

ÕÕÍ. Let us denote by R the region of “possible locations” of
p4 due to these restrictions:

R :=

Y
__]

__[
z œ R2

--------

Îz ≠ x

ÕÕÎ > ⁄ÕÕ,
Îz ≠ p1Î Ø Îz ≠ p2Î , Îz ≠ p1Î Ø Îz ≠ p3Î ,

p4 does not lie in the open half-plane
bounded by Èp1, x

ÕÕÍ and containing p2

Z
__̂

__\
.

Case 3.1 : The triangle {p4, p5, p6} is norm-obtuse at p5.
This would imply that Îp4 ≠ p5Î < Îp4 ≠ p6Î, see [2, Table 1]. This

is a contradiction to our assumptions.
Case 3.2 : The triangle {p4, p5, p6} is norm-obtuse at p6.

Then x

ÕÕÕ = (p4 +p5)/2 is the new center and ⁄ÕÕÕ = Îp4 ≠ p5Î /2 is the
new radius. By norm-obtuseness at p6, we have Îx

ÕÕÕ ≠ p6Î < Îx

ÕÕÕ ≠ p5Î
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and, consequently, x

ÕÕÕ /œ bis(p5, p6). If we assume ⁄ÕÕÕ Æ ⁄ÕÕ, then x

ÕÕÕ

does not lie on Èp5, x

ÕÕÍ since otherwise p4 œ B(xÕÕ, ⁄ÕÕ). Hence x

ÕÕÕ lies
in the interior of R. Furthermore, we have Îx

ÕÕÕ ≠ p5Î = ⁄ÕÕÕ Æ ⁄ÕÕ and
thus the interior of R intersects B(p5, ⁄ÕÕ). In particular, the intersection
of bis(p5, p6) and B(p5, ⁄ÕÕ) contains a point y. But y lies “strictly
after” x

ÕÕ on the bisector of p5 and p6 (in the sense of Lemma 2.4), i.e.,
⁄ÕÕ Ø Îy ≠ p5Î > Îx

ÕÕ ≠ p5Î = ⁄ÕÕ. This is a contradiction.

bis(p
1,

p

3)bis
(p

1,
p

2)

R

p2 = p6
p1 = p5

p3

p4

x

ÕÕ

s

Figure 4. Proof of Theorem 3.1, Case 3.

Case 3.3 : In any other case, x

ÕÕÕ œ bis(p5, p6).
If we assume ⁄ÕÕ Ø ⁄ÕÕÕ, then x

ÕÕÕ œ conv{p5, p6, x

ÕÕ}, see [14, Proposi-
tion 18] and Lemma 2.4. The straight line through p4 and x

ÕÕ separates
conv{p5, p6, x

ÕÕ} into two parts, namely conv{s, p6, x

ÕÕ} and conv{p5, s,
x

ÕÕ} as depicted in Figure 5. Note that although it is the case in Figure 5,
it is not clear whether the part of bis(p5, p6) between x

ÕÕ and (p5 +p6)/2
is fully contained in one of the sets conv{s, p6, x

ÕÕ} and conv{p5, s, x

ÕÕ}.
Case 3.3.1 : x

ÕÕÕ œ conv{p5, s, x

ÕÕ}.
In this case, we have conv{p4, x

ÕÕ, p6} µ conv{p4, x

ÕÕÕ, p6}. Now [14,
Corollary 28] yields

2⁄ÕÕÕ Ø
..
p4 ≠ x

ÕÕÕ.. +
..
p6 ≠ x

ÕÕÕ..

>
..
p4 ≠ x

ÕÕ.. +
..
p6 ≠ x

ÕÕ..

> 2⁄ÕÕ,
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a contradiction to the assumption.
Case 3.2.2 : x

ÕÕÕ œ conv{s, p6, x

ÕÕ}.
In this case, we have p4, x

ÕÕ, x

ÕÕÕ and p6 form in this order a convex
quadrangle. Now [14, Proposition 7] yields

..
x

ÕÕ ≠ p4
.. +

..
x

ÕÕÕ ≠ p6
.. <

..
x

ÕÕÕ ≠ p4
.. +

..
x

ÕÕ ≠ p6
..

=∆
..
x

ÕÕ ≠ p4
.. <

..
x

ÕÕÕ ≠ p4
.. ≠

..
x

ÕÕÕ ≠ p6
..

¸ ˚˙ ˝
Æ0

+
..
x

ÕÕ ≠ p6
..

=∆ ⁄ÕÕ <
..
x

ÕÕ ≠ p4
.. <

..
x

ÕÕ ≠ p6
.. = ⁄ÕÕ,

a contradiction.
⇤

p2 = p6
p1 = p5

p4

x

ÕÕ

x

ÕÕÕ

s

(a) Case 3.3.1.

p2 = p6
p1 = p5

p4

x

ÕÕ

x

ÕÕÕ

s

(b) Case 3.3.2.

Figure 5. Proof of Theorem 3.1: Case 3.3.

Remark. In fact, the interior of R in Figure 4 has only one connected
component. This follows from a sharpening of [14, Corollary 18], which
reads as follows. Suppose the unit circle of a normed plane (R2, Î·Î) does
not contain a line segment parallel to the straight line through p and q.
Then, for every point z œ bis(p, q), the following relation holds:

bis(p, q) \ {z} µ {z + ⁄(z ≠ p) + µ(z ≠ q) | ⁄µ > 0} .

For the proof of this statement it su�ces to assume the existence of a
point w œ bis(p, q) which is distinct from z and lies, say, on the ray
{–z + (1 ≠ –)p | – Ø 1}. Since z, w œ bis(p, q), we have Îz ≠ pÎ = Îz ≠ qÎ
and Îw ≠ pÎ = Îw ≠ qÎ. The collinearity of the points p, z, and w yields
Îw ≠ pÎ = Îw ≠ zÎ + Îz ≠ pÎ. Substituting the term on the left-hand
side and the second one on the right-hand side, we obtain Îw ≠ qÎ =
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Îw ≠ zÎ + Îz ≠ qÎ. By [14, Lemma 1], we conclude that the unit circle
contains a line segment parallel to the straight line through p and q, a
contradiction.
Remark. As already mentioned, Algorithm 3.1 requires an additional sub-
routine which computes the circumdisk of a given triangle. Assuming that
this computation can be done in constant time, the running time of Algo-
rithm 3.1 will still show an �(n2) behavior like in the Euclidean case.

In the early years of Computational Geometry, Shamos and Hoey [17]
proposed an algorithm for the minimal enclosing disk problem for n given
points in the Euclidean plane. Their algorithm is based on the construction
of farthest-point Voronoi diagrams. For that purpose, they use a divide-
and-conquer technique to obtain O(n log n) running time. For wider classes
of norms, constructions of Voronoi diagrams and respective running time
results are included in the papers of Lee [11, 12], Chew and Drysdale [5],
and Chazelle and Edelsbrunner [4]. The simple structure of farthest-point
Voronoi diagrams enables an O(n) search for the optimal disk once the
diagram is constructed.

Algorithm 3.2 (Shamos/Hoey 1975)
Require: n Ø 2, P = {p1, . . . , pn} µ R2

1: Construct the farthest-point Voronoi diagram with respect to p1, . . . , pn

2: for each edge of the diagram do
3: Determine the distance between the two defining points
4: end for
5: Find the maximum among these distances
6: if the two-point disk of the corresponding points contains p1, . . . , pn

then
7: return the center and the radius of this disk
8: else
9: for each vertex of the diagram do

10: Compute its distance to one of its defining points
11: end for
12: Find the minimum among these distances
13: return the corresponding vertex of the Voronoi diagram and the

minimum distance
14: end if

Theorem 3.2. Algorithm 3.2 computes the center and the radius of the

minimal enclosing disk of the given point set P .

Proof. Let B(x̄, ⁄̄) be the minimal enclosing disk of P . By Theorem 2.7,
S(x̄, ⁄̄)flP contains at least two points. If it contains exactly two points p1,
p2, the center x̄ belongs to the farthest-point Voronoi regions of p1 and p2
but not to any other farthest-point Voronoi region, i.e., x̄ lies on the edge of
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the diagram that belongs to p1 and p2. Taking Theorem 2.7 into account,
it follows that x̄ = (p1 + p2)/2. Hence

(3.2) Îp1 ≠ p2Î = diam(B(x̄, ⁄̄)) > Îp ≠ p

ÕÎ for all p, p

Õ œ P \ {p1, p2} .

If S(x̄, ⁄̄) fl P contains at least three points, then x̄ lies in the intersection
of at least three farthest-point Voronoi regions, i.e., x̄ is a vertex of the
diagram. In step 5, we are looking for the maximum distance of pairs of
points which determine edges of the diagram. Then, by (3.2), the two-point
disk of the corresponding points realizing this maximum is the minimal
enclosing disk of P if it contains P . If this is not the case, the center of the
minimal enclosing disk has to be a vertex of the diagram. Clearly, each disk,
which is centered at a vertex of the diagram and contains the (at least three)
points that determine the farthest-point Voronoi regions to which the vertex
belongs, contains P . Thus it su�ces to find the smallest disk belonging, in
the sense just explained, to a vertex, see step 12. ⇤

4. Conclusion

In the present paper, two algorithms for solving the minimal enclosing
disk problem are investigated. Here the planar Euclidean setting is being
replaced by strictly convex norms on R2. Further research in this direction
might include the generalization arbitrary norms or even to gauges. (These
are distance functions whose unit balls are still convex compact sets having
the origin as interior point but no longer have to be centered at the origin.)
For non-strictly convex norms, bisectors might have interior points which
requires a careful definition of Voronoi cells. Moreover, there is a fourth
triangle type (doubly right triangles) in those planes: It has to be checked
whether the incorporation of this triangle class into a Elzinga–Hearn-type al-
gorithm is possible. For gauges, the shape of bisectors and Voronoi diagrams
is known [13], but the analogous theory for [1, 2] is completely missing.

References

1. J. Alonso, H. Martini, and M. Spirova, Minimal enclosing discs, circumcircles, and
circumcenters in normed planes (Part I), Comput. Geom. 45 (2012), no. 5–6, 258–274.

2. , Minimal enclosing discs, circumcircles, and circumcenters in normed planes
(Part II), Comput. Geom. 45 (2012), no. 7, 350–369.

3. D. Amir and Z. Ziegler, Relative Chebyshev centers in normed linear spaces, Part I,
J. Approx. Theory 29 (1980), no. 3, 235–252.

4. B. Chazelle and H. Edelsbrunner, An improved algorithm for constructing kth-order
Voronoi diagrams, IEEE Trans. Comput. C-36 (1987), no. 11, 1349–1354.

5. L.P. Chew and R.L.S. Drysdale, Voronoi diagrams based on convex distance functions,
SCG ’85: Proceedings of the First Annual Symposium on Computational Geometry
(J. O’Rourke, ed.), ACM, 1985, pp. 235–244.

6. G. Chrystal, On the problem to construct the minimum circle enclosing n given points
in a plane, Proc. Edinburgh Math. Soc. 3 (1885), 30–33.

7. Z. Drezner and S. Shelah, On the complexity of the Elzinga–Hearn algorithm for the
1-center problem, Math. Oper. Res. 12 (1987), no. 2, 255–261.



ALGORITHMS FOR MINIMAL ENCLOSING DISKS 13

8. J. Elzinga and D.W. Hearn, Geometrical solutions for some minimax location prob-
lems, Transportation Sci. 6 (1972), no. 4, 379–394.

9. P. Gritzmann and V. Klee, Inner and outer j-radii of convex bodies in finite-
dimensional normed spaces, Discrete Comput. Geom. 7 (1992), no. 1, 255–280.

10. Á.G. Horváth, On the bisectors for a Minkowski normed spaces, Acta Math. Hung. 89
(2000), no. 3, 417–424.

11. D.T. Lee, Two-dimensional Voronoi diagrams in the Lp-metric, J. Assoc. Comput.
Mach. 27 (1980), no. 4, 604–618.

12. , On k-nearest neighbor Voronoi diagrams in the plane, IEEE Trans. Comput.
31 (1982), no. 6, 478–487.

13. L. Ma, Bisectors and Voronoi diagrams for convex distance functions, Ph.D. thesis,
Fernuniversität Hagen, 2000.

14. H. Martini, K.J. Swanepoel, and G. Weiß, The geometry of Minkowski spaces – a
survey, Part I, Expo. Math. 19 (2001), no. 2, 97–142.

15. N. Megiddo, Linear-time algorithms for linear programming in R3 and related prob-
lems, SIAM J. Comput. 12 (1983), no. 4, 759–776.

16. H. Rademacher and O. Toeplitz, The enjoyment of math, 7th ed., Princeton University
Press, Princeton, 1994.

17. M.I. Shamos and D. Hoey, Closest-point problems, 16th Annual Symposium on Foun-
dations of Computer Science (Berkeley, Calif.), IEEE Comput. Soc., 1975, pp. 151–
162.

18. J.J. Sylvester, A question in the geometry of situation, Q. J. Math. 1 (1857), 79.
19. J. Väisälä, Slopes of bisectors in normed planes, Beitr. Algebra Geom. 54 (2013),

225–235.
20. E. Welzl, New results and new trends in computer science, Lecture Notes in Computer

Science, vol. 555, ch. Smallest enclosing discs (balls and ellipsoids), pp. 359–370,
Springer, Berlin, 1991.

Faculty of Mathematics, Technische Universität Chemnitz, 09107

Chemnitz,Germany

E-mail address: thomas.jahn@mathematik.tu-chemnitz.de


	1. Introduction
	2. Strictly convex norms, triangles, and Voronoi diagrams
	3. The algorithms
	4. Conclusion
	References

