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ANTICHAINS AND COUNTERPOINT DICHOTOMIES

OCTAVIO A. AGUSTÍN-AQUINO

Abstract. We construct a special type of antichain (i.e., a family of
subsets of a set, such that no subset is contained in another) using group-
theoretical considerations, and obtain an upper bound on the cardinality
of such an antichain. We apply the result to bound the number of strong
counterpoint dichotomies up to affine isomorphisms.

1. Introduction

Sperner systems, antichains or clutters (families of subsets of an n-set such
that no one is contained in another) have been important combinatorial
objects since the foundational theorem of Sperner was published, which
states that they cannot contain more than

(
n
bn/2c

)
elements. Concerning

their size, it is possible to establish upper bounds on their cardinality using
elegant elementary methods and any additional properties they may have.
Sometimes it is even possible to exhibit maximal antichains that attain such
bounds.

In particular, some antichains can be studied from the standpoint of group
theory as in [3], to obtain bounds (in the spirit of the Erdős-Ko-Rado the-
orem) that rely on the isotropy groups of the members of the antichain.
However, particular types of antichains that are of interest for mathemati-
cal musicology (namely, pairwise non-isomorphic counterpoint dichotomies)
are not encompassed in such an approach, for the isotropy group of their
members is trivial.

In Section 2 we define such antichains in a slightly more general setting
than the original formulation given in [5, Part VII], and we obtain a some-
what crude upper bound for their cardinality. Then, in Section 3, we apply
the result to bound the number of non-isomorphic counterpoint dichotomies.

2. Strong antichains

Let G be a subgroup of the symmetric group of S. The group G acts
obviously on S; it also acts on the powerset 2S of S, with an action defined
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by

· : G× 2S → 2S ,

(g,A) 7→ gA := {ga : a ∈ A}.

Two sets A,B ∈ 2S are said to be isomorphic if there exists g ∈ G such that
A = gB. In this paper we will always consider a set S of even cardinality
and the subset (

S

|S|/2

)
:= {A ⊆ S : |A| = |S|/2},

of its power set, whose elements will be called dichotomies.

Definition 2.1. The dichotomy D ∈
(

S
|S|/2

)
is:

(1) G-rigid when gD = D for g ∈ G implies that g = e,
(2) G-autocomplementary if there exists a p ∈ G (called autocomplemen-

tarity function) such that

pD = {D := S \D,
(3) G-strong if it is G-rigid and G-autocomplementary.

Remark 2.2.

(1) If a dichotomy D ∈
(

S
|S|/2

)
is G-strong and p ∈ G is such that

pD = {D, then p is unique. We call it the polarity of D. For any
g ∈ G, the set gD is also G-strong (with polarity gpg−1).

(2) Since S is finite, any polarity is an involution that does not fix points
of S, i.e., it is an involutive derangement.

Definition 2.3. An involutive derangement q ∈ G is called a quasipolarity.

Since any quasipolarity q decomposes only in 2-cycles, we can construct
a dichotomy Uq ∈

(
S
|S|/2

)
that contains exactly one element from each cycle.

It is clear that Uq is autocomplementary and qUq = {Uq.
Consider now the set of dichotomies whose autocomplementarity function

is q, which is

Mq =

{
D ∈

(
S

|S|/2

)
: qD = S \D

}
= {A ∪B : A ⊆ Uq, B = (S \ Uq) \ qA},

where the last equality follows from

qA = (S \ Uq) \A and q((S \ Uq) \ qA) = Uq \A.

We see that |Mq| = 2|Uq | = 2|S|/2.

Lemma 2.4. If g ∈ Gq, then gMq = Mq.

Proof. Since g ∈ Gq is equivalent to gq = qg, we have

q(gD) = g(qD) = g(S \D) = S \ gD,
which means that gD ∈Mq, for |gD| = S/2. �
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Lemma 2.5. If h ∈ G, then Mhqh−1 = hMq.

Proof. First, we have

hMq = {hD : qD = S \D}.

Now take any hD ∈ hMq, then

hqh−1hD = hqD = h(S \D) = S \ hD,

thus hD ∈ Mhqh−1 and hMq ⊆ Mhqh−1 . Since both sets in the inclusion
have the same cardinality, the lemma follows. �

Let T be a traversal of
(

S
|S|/2

)
/G (i.e., a set consisting of exactly one

element from each G-orbit on
(

S
|S|/2

)
/G) and RG ⊆ T a subset such that

all of its members are G-strong. For any D1, D2 ∈ T , it is impossible that
D1 ⊆ D2, for then D1 = D2 and they would represent the same orbit. Thus
T and RG are antichains. In particular, RG is a complement-free antichain,
since D ∈ RG implies that {D /∈ RG. Indeed, if D1∩D2 = ∅, it would imply
that D1 = {D2 = pD2 for some p ∈ G, hence D1 would be in the orbit of
D2.

Definition 2.6. Let G be a subgroup of the symmetric group of a finite set
S, with |S| even. A G-strong antichain is a subset RG of a traversal T of

the orbit set
(

S
|S|/2

)
/G, such that all its members are G-strong.

It is obvious that the cardinality of a G-strong antichain RG is not greater
than the number of (|S|/2)-subsets of S, so

|RG| ≤
(
|S|
|S|/2

)
.

Being RG a complement-free antichain, a theorem by Purdy [2, p. 139] tells
us that

|RG| ≤
(

|S|
|S|/2− 1

)
,

and using the Erdős-Ko-Rado theorem [4, Theorem 1], we can improve this
slightly:

|RG| ≤
(
|S| − 1

|S|/2− 1

)
.

These upper bounds, however, do not make full use of the structure of RG
derived from the action of G on S. In order to exploit it, note first that
G-strong dichotomies have orbits of maximum cardinality, namely |G|.

Let Gq be the isotropy group of a quasipolarity q ∈ G under the conju-
gation action. The number of non-isomorphic Gq-strong dichotomies for a
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given quasipolarity q is bounded by

(1) |RGq | ≤
|Mq|
|Gq|

=
2|S|/2

|Gq|
,

since, by Lemmas 2.4 and 2.5, the set Mq of dichotomies whose autocom-
plementary function is q coincide with Mq′ , for any conjugate q′ of q.

Every G-strong dichotomy is a Gq-strong dichotomy because Gq is a sub-
group of G, hence |RG| ≤

∑
[q]∈Q |RGq |, where Q is the set of conjugacy

classes of the quasipolarities of G. Now summing (1) over Q, we prove the
following result.

Theorem 2.7. Let G be a subgroup of the symmetric group of the set S
(where |S| is an even number) and RG be a G-strong antichain. Then

(2) |RG| ≤
∑

[q]∈Q

2|S|/2

|Gq|
,

where Q is the set of conjugacy classes of quasipolarities of G.

Remark 2.8. Observe that if we have better estimations of the number of
quasipolarities of G and of the sizes of their isotropy groups, we can improve
the bound of Theorem 2.7. But even with those refinements, (2) might be
far from optimal.

Example 2.9. If |S| = 2k > 2 and G = Sym(S) (the symmetric group),
then there are no Sym(S)-strong dichotomies. Considering that the number
of conjugacy classes of quasipolarities in this case is 1, and the cardinality
of the isotropy group of any quasipolarity q satisfies

|Sym(S)q| = 2k · k!,

we conclude using (2) that

|RSym(S)| ≤
2k

2k · k!
=

1

k!
,

which is a nice confirmation.

Example 2.10. If |S| = 2k and G = D2k is the dihedral group of order
4k, there are k + 1 quasipolarities: k reflections and one rotation. The
reflections constitute a whole conjugacy class, each having isotropy groups
of cardinality 2, whilst the rotation has D2k as its isotropy group. This,
together with (2), gives us

|RD2k
| ≤ 2k

2
+

2k

4k
= 2k−1 +

2k−2

k
.
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3. The case of counterpoint dichotomies

As we stated in the introduction, strong G-antichains are of great interest
for the mathematical theory of counterpoint, for they represent alternative
ways of understanding consonances and dissonances (see [1] and [5], for
example). In that context, we take S = Z2k and G is the semidirect product

G =
−→
GL(Z2k) := Z2k n Z×2k

where Z×2k is the set of units of Z2k. The elements of G can be seen as the
affine functions

euv : Z2k → Z2k,

x 7→ vx+ u,

the element u is the affine part and v is the linear part. Note that

|
−→
GL(Z2k)| = 2kϕ(2k)

where ϕ is the Euler totient function.

Our aim now is to characterize the quasipolarities of
−→
GL(Z2k) in terms of

the involutions of Z×2k. We will use this information to obtain a bound on

the number of strong
−→
GL(Z2k)-dichotomies (which we will call counterpoint

dichotomies) up to isomorphism.
In order to state the characterization, for v ∈ Z×2k define

σ2k(v) := gcd(ν − 1, 2k),

τ2k(v) := gcd(ν + 1, 2k),

where ν is taken as the minimum non-negative element in the residue class
of v.

Theorem 3.1. The function euv ∈
−→
GL(Z2k) is a quasipolarity if, and only

if

(i) v is an involution,

(ii) 2
2k

τ2k(v)
= σ2k(v), and

(iii) u = σ2k(v)q +
2k

τ2k(v)
for some integer q.

If k is odd, the second condition can be omitted.

Before proving the theorem, let us make a series of remarks. Let g =

euv ∈
−→
GL(Z2k). The function g is an affine involution if, and only if,

v2 = 1,(3)

u(v + 1) = 0.(4)

For g to be a derangement, it is necessary and sufficient that the equation

(v − 1)x = −u(5)
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has no solutions. It is easy to see that the only values of u that satisfy (4)
are the multiples of

u0 =
2k

τ2k(v)
.

Lemma 3.2. Let v ∈ Z×2k be an involution. Then

u0 =
2k

τ2k(v)
divides σ2k(v).

Proof. By Bezout’s identity, there are integers a, b, c, d such that

σ2k(v) = a(ν − 1) + 2kb, τ2k(v) = c(ν + 1) + 2kd.

We have the product

σ2k(v)τ2k(v) = ac(ν2 − 1) + 2k(ν(bc+ ad) + bc− ad+ 2kbd).

Since v2 − 1 = 0, there exists an integer m such that ν2 − 1 = 2km, hence

σ2k(v)τ2k(v) = 2k(acm+ ν(bc+ ad) + bc− ad+ 2kbd)

and the result is immediate. �

Equation (5) does not hold if, and only if, σ2k(v) = gcd(ν−1, n) does not
divide −u (or, equivalently, it does not divide u). By the division algorithm,
u must be a multiple of u0 of the form

(6) u = σ2k(v)q + r, 0 < r < σ2k(v), q ∈ Z

From this and Lemma 3.2 we deduce that r must also be a multiple of u0.
It is clear that u0 ≤ σ2k(v).

Proposition 3.3. If u0 = 2k
τ2k(v) = σ2k(v), there are no quasipolarities with

v as its linear part.

Proof. For if u0 = σ2k(v), then σ2k(v) divides u. �

Proof of Theorem 3.1. Suppose euv is a quasipolarity. Then equations (3)
and (4) hold, and (5) has no solutions. Consequently, u is a multiple of u0.
The integer u guarantees that (5) has no solutions if, and only if,

u = σ2k(v)q + r

for some integer q and 0 < r < σ2k(v). This happens if, and only if,
u0 < σ2k(v). The inequality is sufficient because u0 divides σ2k(v) and
Proposition 3.3; it is necessary because u0 divides r and u0 ≤ r < σ2k(v).

For the converse, let v be an involution, let u0 = 2k
τ2k(v) , and let u be given

by (6) with r = u0. Thus u is a multiple of u0, hence it is a solution of (4).
It also ensures that (5) has no solutions since u0 < σ2k(ν).

In particular, u0 < σ2k(v) is always true when k is odd. Keeping in mind
that ν is odd because v is an involution, let λ and µ be such that

(7) ν − 1 = 2λ, ν + 1 = 2µ.



ANTICHAINS AND COUNTERPOINT DICHOTOMIES 103

Note that λ and µ are coprime because

µ− λ =
ν + 1

2
− ν − 1

2
= 1.

We have

2km = ν2 − 1 = 4λµ.

and thus

km = 2λµ,

and therefore 2 divides m. It follows that λµ is a multiple of k. Using this
we can show that k

gcd(µ,k) = gcd(λ, k), which follows from the examination

of the product

gcd(λ, k) gcd(µ, k) = gcd(λµ, k)

= gcd
(
k
m

2
, k
)

= k gcd
(m

2
, 1
)

= k.

Now

(8) σ2k(v) = 2 gcd(λ, k) = 2
k

gcd(µ, k)
= 2

2k

τ2k(v)
= 2u0.

It remains to prove that σ2k(v) = 2u0 when k is even and 2k
τ2k(v) < σ2k(v).

The number k
gcd(λ,k) gcd(µ,k) is a non-zero integer and, by hypothesis,

k

gcd(λ, k) gcd(µ, k)
=

4k

(2 gcd(λ, k))(2 gcd(µ, k))
= 2

2k

σ2k(v)τ2k(v)
< 2,

which implies that k
gcd(λ,k) gcd(µ,k) = 1 and (8) is true again. �

Proposition 3.4. The isotropy group of an affine quasipolarity q = euv ∈−→
GL(Z2k) under the conjugation action has cardinality

|
−→
GL(Z2k)g| = σ2k(v)ϕ(2k).

Equivalently, there are 2k
σ2k(v) elements in the orbit of g under the conjugation

action.

Proof. Let h = ets ∈
−→
GL(Z2k). We have

(9) g′ = hgh−1 = (ets)(euv)(e−s
−1ts−1) = et(1−v)+suv.

The members of the stabilizer of g are those whose parameters satisfy

t(1− v) = u(1− s).

This equation has a solution for each s ∈ GL(Z2k) since σ2k(v) = gcd(1 −
ν, 2k) divides u(1−s) since 1−s is even. In particular, the equation above has
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exactly σ2k(v) different solutions. Since this occurs for each s ∈ GL(Z2k),
the cardinality of the stabilizer of g is

|
−→
GL(Z2k)g| = σ2k(v)ϕ(2k).

This means that each orbit has

|
−→
GL(Z2k)|

σ2k(v)ϕ(2k)
=

2k

σ2k(v)

elements. �

Corollary 3.5. The group
−→
GL(Z2k) acts transitively on the set of all affine

quasipolarities with fixed linear part.

For a
−→
GL(Z2k)-strong antichain, we have by Proposition 3.4

|
−→
GL(Z2k)g| = σ2k(v)ϕ(2k) ≥ 2ϕ(2k)

using the involution v = −1. The number of conjugacy classes of quasipo-
larities is bounded by ϕ(2k), thus Theorem 2.7 gives us

|R−→
GL(Z2k)

| ≤ ϕ(2k)
2k

2ϕ(2k)
= 2k−1.

This estimate can be improved further with a better bound on the number
of involutions of GL(Z2k).
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