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FROBENIUS PARTITION THEORETIC

INTERPRETATIONS OF SOME BASIC SERIES

IDENTITIES

G. SOOD AND A. K. AGARWAL

Abstract. Using generalized Frobenius partitions we interpret five ba-
sic series identities of Rogers combinatorially. This extends the recent
work of Goyal and Agarwal and yields five new 3-way combinatorial
identities.

1. Introduction, Definitions and the Main Results

The following two “sum-product” basic series identities are known as the
Rogers–Ramanujan Identities:

∞∑
n=0

qn
2

(q; q)n
=
∞∏
n=1

(1− q5n−1)−1(1− q5n−4)−1,(1)

∞∑
n=0

qn
2+n

(q; q)n
=
∞∏
n=1

(1− q5n−2)−1(1− q5n−3)−1,(2)

where (q; q)n is a rising q-factorial which in general is defined as follows:

(a; q)n =
∞∏
i=0

(1− aqi)
(1− aqn+i)

where a is any constant. If n is any positive integer, then obviously

(a; q)n = (1− a)(1− aq)...(1− aqn−1),

and

(a; q)∞ = (1− a)(1− aq)(1− aq2) . . . .
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They were first discovered by Rogers [14] and rediscovered by Ramanujan
who published them in his paper [13]. MacMahon [12] gave the following
combinatorial interpretations of (1) and (2), respectively:

Theorem 1. The number of partitions of n into parts with minimal differ-
ence 2 equals the number of partitions of n into parts which are congruent
to ±1(mod 5).

Theorem 2. The number of partitions of n with minimal part 2 and min-
imal difference 2 equals the number of partitions of n into parts which are
congruent to ±2(mod 5).

Many more identities like (1) and (2) such as given in Slater’s compendium
[16] have been interpreted combinatorially using ordinary partitions by sev-
eral authors (for example, see Connor [11], Subbarao [17], Subbarao and
Agarwal [8] and Agarwal and Andrews [5]). In the early nineteen eighties
Agarwal and Andrews introduced a new class of partitions called “(n + t)-
color partitions” or partitions with “(n + t) copies of n”. Using these new
partitions many more basic series identities (also called q-identities) have
been interpreted combinatorially in [1, 2, 3, 4, 6]. In a recent paper [7]
Goyal and Agarwal gave an n-color partition theoretic interpretations of the
following q-identities of Rogers [14].

∞∑
n=0

q3n
2

(q; q2)n(q4; q4)n
=

(−q3,−q5,−q7; q10)∞
(q4, q6; q10)∞

,(3)

∞∑
n=0

q3n
2−2n

(q; q2)n(q4; q4)n
=

(−q,−q5,−q9; q10)∞
(q2, q8; q10)∞

,(4)

∞∑
n=0

q2n
2

(q; q2)n(q4; q4)n
=

(−q3,−q7,−q11; q14)∞
(q2, q6, q8, q12; q14)∞

,(5)

∞∑
n=0

q2n(n+1)

(q; q2)n(q4; q4)n
=

(−q5,−q7,−q9; q14)∞
(q4, q6, q8, q10; q14)∞

,(6)

∞∑
n=0

q2n(n+1)

(q; q2)n+1(q4; q4)n
=

(−q,−q7,−q13; q14)∞
(q2, q4, q10, q12; q14)∞

,(7)

where (a1, a2, ...at; z)∞ is defined as

(a1, a2, ...at; z)∞ =

t∏
j=1

(aj ; z)∞.

We remark that identities (3) and (4) were also derived by Bailey [10] and
appear in [16]. Identities (5), (6), and (7) are also referred as to Rogers-
Selberg identities (see [14, 15, 16]).



56 G. SOOD AND A. K. AGARWAL

In this paper we give new combinatorial interpretations of (3)–(7) in terms
of F -partitions. We shall prove bijectively five new combinatorial identities
involving certain F -partition functions and n-color partition functions. This
results in five new 3-way combinatorial identities. Before we state our main
results we recall the following definitions.

Definition 1. A partition with “(n+ t) copies of n”, (also called an (n+ t)-
color partition), t ≥ 0, is a partition in which a part of size n, n ≥ 0, can
occur in (n+ t) different colors denoted by subscripts n1, n2, ..., nn+t.

For example, the partitions of 2 with “(n+ 1) copies of n” are

21, 21 + 01, 11 + 11, 11 + 11 + 01,

22, 22 + 01, 12 + 11, 12 + 11 + 01,

23, 23 + 01, 12 + 12, 12 + 12 + 01.

Note that zeros are permitted if and only if t ≥ 1.

Definition 2. The weighted difference of two elements mi and nj , m ≥ n,
is defined by m− n− i− j and is denoted by ((mi − nj)).

Definition 3 ([9]). A two-rowed array of non-negative integers(
a1 a2 · · · ar

b1 b2 · · · br

)
with each row aligned in non-increasing order is called a generalized Frobe-
nius partition or more simply an F -partition of ν if

ν = r +
r∑
i=1

ai +
r∑
i=1

bi.

In [7] the following colored partition theoretic interpretations of (3)–(7)
were proved:

Theorem 3. Let A1(ν) denote the number of n-color partitions of ν such
that even parts appear with even subscripts and odd parts with odd subscripts,
and all subscripts are greater than 2. If mi is either the smallest part or the
only part in the partition, then m ≡ i(mod 4), and the weighted difference
of any two consecutive parts is non-negative, and is congruent to 0(mod 4).
Let

B1(ν) =

ν∑
k=0

C1(ν − k)D1(k),

where C1(ν) is the number of partitions of ν into parts of size congruent to
±4(mod 10), and D1(ν) denotes the number of partitions of ν into distinct
parts of size congruent to ±3, 5(mod 10). Then

A1(ν) = B1(ν), for all ν.
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Theorem 4. Let A2(ν) denote the number of n-color partitions of ν such
that even parts appear with even subscripts and odd parts with odd subscripts.
If mi is either the smallest part or the only part in the partition, then m ≡
i(mod 4), and the weighted difference of any two consecutive parts is at least
4 and is congruent to 0(mod 4). Let

B2(ν) =

ν∑
k=0

C2(ν − k)D2(k),

where C2(ν) is the number of partitions of ν into parts of size congruent to
±2(mod 10), and D2(ν) denotes the number of partitions of ν into distinct
parts of size congruent to ±1, 5(mod 10). Then

A2(ν) = B2(ν), for all ν.

Theorem 5. Let A3(ν) denote the number of n-color partitions of ν such
that even parts appear with even subscripts and odd parts with odd subscripts
that are greater than 1. If mi is either the smallest part or the only part
in the partition, then m ≡ i(mod4), and the weighted difference of any two
consecutive parts is non-negative and is congruent to 0(mod 4). Let

B3(ν) =
ν∑
k=0

C3(ν − k)D3(k),

where C3(ν) is the number of partitions of ν into parts of size congruent
to ±2,±6(mod 14), and D3(ν) denotes the number of partitions of ν into
distinct parts of size congruent to ±3, 7(mod 14). Then

A3(ν) = B3(ν), for all ν.

Theorem 6. Let A4(ν) denote the number of n-color partitions of ν such
that even parts appear with even subscripts and odd parts with odd subscripts,
and all subscripts are greater than 3. If mi is either the smallest part or the
only part in the partition, then m ≡ i(mod 4) and the weighted difference of
any two consecutive parts is at least −4 and is congruent to 0(mod 4). Let

B4(ν) =
ν∑
k=0

C4(ν − k)D4(k),

where C4(ν) is the number of partitions of ν into parts of size congruent
to ±4,±6(mod 14), and D4(ν) denotes the number of partitions of ν into
distinct parts of size congruent to ±5, 7(mod 14). Then

A4(ν) = B4(ν), for all ν.

Theorem 7. Let A5(ν) denote the number of partitions of ν with “(n+ 2)-
copies of n” such that even parts appear with even subscripts and odd parts
with odd subscripts, all subscripts are greater than 1, for some i, ii+2 is a
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part, and the weighted difference of any two consecutive parts is non-negative
and is congruent to 0(mod 4). Let

B5(ν) =
ν∑
k=0

C5(ν − k)D5(k),

where C5(ν) is the number of partitions of ν into parts of size congruent
to ±2,±4(mod 14), and D5(ν) denotes the number of partitions of ν into
distinct parts of size congruent to ±1, 7(mod 14). Then

A5(ν) = B5(ν), for all ν.

In our next section, we shall prove the following combinatorial identities:

Theorem 8. Let E1(ν) denote the number of F -partitions of ν such that

(8.a) ai ≥ bi + 2,
(8.b) br ≡ 0(mod 2),
(8.c) bi ≡ ai+1 + 1(mod 2) and bi ≥ ai+1 + 1,

and let A1(ν) denote the number of n-color partitions of ν such that

(8.d) even parts appear with even subscripts and odd parts with odd sub-
scripts, and all subscripts are greater than 2,

(8.e) if mi is either the smallest part or the only part in the partition, then
m ≡ i(mod 4), and

(8.f) the weighted difference of any two consecutive parts is non-negative,
and is congruent to 0(mod 4).

Then

E1(ν) = A1(ν), for all ν.

Example 1. E1(17) = 7, since the relevant F -partitions are:(
10

6

)
,

(
12

4

)
,

(
14

2

)
,

(
16

0

)
,

(
8 2

5 0

)
,

(
10 2

3 0

)
,

(
8 3

4 0

)
.

Also, A1(17) = 7, since the relevant partitions are:

175, 179, 1713, 1717, 144 + 33, 148 + 33, 135 + 44,

Theorem 9. Let E2(ν) denote the number of F -partitions of ν such that

(9.a) ai ≥ bi,
(9.b) br ≡ 0(mod 2),
(9.c) bi ≡ ai+1 + 1(mod 2) and bi ≥ ai+1 + 3,

and let A2(ν) denote the number of n-color partitions of ν such that

(9.d) even parts appear with even subscripts and odd parts with odd sub-
scripts,

(9.e) if mi is either the smallest part or the only part in the partition, then
m ≡ i(mod 4), and

(9.f) the weighted difference of any two consecutive parts is at least 4, and
is congruent to 0(mod 4).
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Then

E2(ν) = A2(ν), for all ν.

Theorem 10. Let E3(ν) denote the number of F -partitions of ν such that

(10.a) ai > bi,
(10.b) br ≡ 0(mod 2),
(10.c) bi ≡ ai+1 + 1(mod 2) and bi ≥ ai+1 + 1,

and let A3(ν) denote the number of n-color partitions of ν such that

(10.d) even parts appear with even subscripts and odd parts with odd sub-
scripts that are greater than 1,

(10.e) if mi is either the smallest part or the only part in the partition, then
m ≡ i(mod 4), and

(10.f) the weighted difference of any two consecutive parts is non-negative,
and is congruent to 0(mod 4). Then

E3(ν) = A3(ν), for all ν.

Theorem 11. Let E4(ν) denote the number of F -partitions of ν such that

(11.a) ai ≥ bi + 3,
(11.b) br ≡ 0(mod 2),
(11.c) bi ≡ ai+1 + 1(mod 2) and bi ≥ ai+1 − 1,

and let A4(ν) denote the number of n-color partitions of ν such that

(11.d) even parts appear with even subscripts and odd parts with odd sub-
scripts, and all subscripts are greater than 3,

(11.e) if mi is either the smallest part or the only part in the partition, then
m ≡ i(mod 4), and

(11.f) the weighted difference of any two consecutive parts is at least −4,
and congruent to 0(mod 4).

Then

E4(ν) = A4(ν), for all ν.

Theorem 12. Let E5(ν) denote the number of F -partitions of ν such that

(12.a) ar ≡ 0(mod 2),
(12.b) ai ≤ bi + 1,
(12.c) ai ≡ bi+1 + 3(mod 2) and ai ≥ bi+1 + 3,

and let A5(ν) denote the number of partitions of ν with “(n + 2)-copies of
n” such that

(12.d) even parts appear with even subscripts and odd parts with odd sub-
scripts, and all subscripts are greater that 1,

(12.e) the weighted difference of any two consecutive parts is non-negative
and is congruent to 0(mod 4), and

(12.f) for some i, ii+2 is a part.

Then

E5(ν) = A5(ν), for all ν.
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2. Proofs

Proof of Theorem 8. We establish a one-one correspondence between the F -
partitions enumerated by E1(ν) and n-color partitions enumerated by A1(ν).
We do this by mapping each column(

a

b

)
of Frobenius symbol to a single part mi of n-color partition. The mapping
φ is given by

(8) φ :

(
a

b

)
→ (a+ b+ 1)(a−b+1), where a ≥ b+ 2.

The inverse mapping φ−1 is given by

(9) φ−1 : mi →

(
(m+ i− 2)/2

(m− i)/2

)
.

Clearly (a+ b+ 1) and (a− b+ 1) have same parity. Therefore, (8) implies
(8.d). Now for any two adjacent columns(

a c

b d

)
in the Frobenius symbol with

φ

(
a

b

)
= mi and φ

(
c

d

)
= nj ,

we have

((mi − nj)) = (a+ b+ 1)− (a− b+ 1)− (c+ d+ 1)− (c− d+ 1)

= 2b− 2c− 2.(10)

Clearly (10) and (8.c) imply (8.f). Since the last column(
ar

br

)
corresponds to the smallest part of the n-color partition , we see that (8.b)
and (8) imply (8.e). To see the inverse implication, we see that

φ−1 : mi =

(
(m+ i− 2)/2

(m− i)/2

)
=

(
a

b

)

φ−1 : nj =

(
(n+ j − 2)/2

(n− j)/2

)
=

(
c

d

)
.
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Thus

a =
m+ i− 2

2
,

b =
m− i

2
,

c =
n+ j − 2

2
,

d =
n− j

2
.

So

a− b = i− 1,(11)

c− d = j − 1,(12)

b− c =
1

2
((mi − nj)) + 1.(13)

Clearly (11) and (12) imply (8.a). (8.f) and (13) imply (8.c). (8.b) is implied
by (9) and (8.e). This completes the proof of Theorem 8. �

To illustrate the bijection we have constructed, we give an example for
ν = 17 shown in Table 1.

Frobenius partitions Images under φ

enumerated by E1(ν)(
10

6

)
175(

12

4

)
179(

14

2

)
1713(

16

0

)
1717(

8 2

5 0

)
144 + 33(

8 3

4 0

)
135 + 44(

10 2

3 0

)
148 + 33

Table 1

Thus E1(17) = A1(17) = 7.
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The proofs of Theorems 9–11 are almost similar to the proof of Theorem
8 and hence are omitted .

Proof of Theorem 12. As in the proof of Theorem 8, here also we establish a
one-one correspondence between the F -partitions enumerated by E5(ν) and
the (n + 2)-color partitions enumerated by A5(ν) . We do it by mapping
each column (

a

b

)
of F -partition to a single part mi of an (n + 2)-color partition enumerated
by A5(ν). The mapping φ is given by

(14) φ :

(
a

b

)
→ (a+ b+ 1)(b−a+3),

and the inverse mapping φ−1 is given by

(15) φ−1 : mi →

(
(m− i+ 2)/2

(m+ i− 4)/2

)
.

Clearly (a+ b+ 1) and (b− a+ 3) have same parity, (14) and (12.b) imply
(12.d). Now suppose that we have two adjacent columns(

a

b

)
and

(
c

d

)
in an F -partition enumerated by E5(ν) with

φ

(
a

b

)
= mi and φ

(
c

d

)
= nj .

Then since (a+ b+ 1)(b−a+3) = mi and (c+ d+ 1)(d−c+3) = nj , we have

((mi − nj)) = m− n− i− j
= (a+ b+ 1)− (b− a+ 3)− (c+ d+ 1)− (d− c+ 3)

= 2(a− d)− 6(16)

Clearly (16) and (12.c) imply (12.e). Now if ar = 0, then

φ

(
ar

br

)
= (br + 1)br+3

which is of the form ii+2, and if ar is a nonzero even then

φ

(
ar

br

)
= (ar + br + 1)br−ar+3.
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In this case we consider a “phantom” column(
0

−1

)
as the last column. Since

φ

(
0

−1

)
= 02,

we see that (12.f) holds and the parts (ar + br + 1)(br−ar+3) and 02 satisfy
(12.e). It is worthwhile to mention here that the “phantom” column is
dropped from the full Frobenius symbol.

To see the reverse implication, we consider the inverse images of two
consecutive parts mi, nj of (n + 2)-color partition enumerated by A5(ν),
viz.,

φ−1 : mi =

(
(m− i+ 2)/2

(m+ i− 4)/2

)
=

(
a

b

)
,

φ−1 : nj =

(
(n− j + 2)/2

(n+ j − 4)/2

)
=

(
c

d

)
,

that is,

a =
m− i+ 2

2
,

b =
m+ i− 4

2
,

c =
n− j + 2

2
,

d =
n+ j − 4

2
.

And so,

b− a = i− 3,(17)

d− c = j − 3,(18)

a− d =
1

2
((mi − nj)) + 3.(19)

Clearly (19) and (12.e) imply (12.c), (17) and (18) imply (12.b). (12.f)
implies that there is a column of the form(

0

i− 1

)
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which has to be the last column in the F -partition, and ii+2 must be the
smallest part of its partition, since if ii+2 > nj , then

((ii+2 − nj)) = −2− n− j < 0.

Also 02 is allowed to be a part in an (n+ 2)-color partition enumerated by
A5(ν). 02 corresponds to a “phantom” columns(

0

−1

)
,

which is dropped from the corresponding F -partition. This in view of (12.e)
implies that ar is nonzero and even. Otherwise, if ii+2 (i 6= 0) is the last
part in the (n+2)-color partition, then using (9), we see that it corresponds
to a column (

0

i− 1

)
which implies ar = 0. This completes the proof of the Theorem 12. �

To illustrate the bijection we have constructed, we close this section with
the example for ν = 11, shown in Table 2.

Frobenius partitions Images under φ

enumerated by E1(ν)(
0

10

)
1113(

4 0

6 −1

)
=

(
4

6

)
115 + 02(

2 0

8 −1

)
=

(
2

8

)
119 + 02(

5 0

4 0

)
102 + 13(

3 0

6 0

)
106 + 13(

4 0

4 1

)
93 + 24

Table 2
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3. Conclusion

Theorems 3 through 12 lead to the following five 3-way combinatorial
identities:

(20) Ak(ν) = Bk(ν) = Ek(ν), 1 ≤ k ≤ 5,

while the identities Ak(ν) = Bk(ν) are Theorems 3 through 7 given above
and were found in [7], the other identities viz , Ak(ν) = Ek(ν) and Bk(ν) =
Ek(ν) are new.
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