

Volume 8, Number 1, Pages 31–37 ISSN 1715-0868

QUASI-HERMITIAN VARIETIES IN $PG(r,q^2)$, q EVEN

ANGELA AGUGLIA

ABSTRACT. In this paper a new example of quasi-Hermitian variety \mathcal{V} in $PG(r, q^2)$ is provided, where q is an odd power of 2. In higherdimensional spaces, \mathcal{V} can be viewed as a generalization of the Buekenhout-Tits unital in the desarguesian projective plane; see [9].

1. INTRODUCTION

In the r-dimensional projective space $PG(r, q^2)$ over a finite field $GF(q^2)$ of order q^2 , a quasi-Hermitian variety is a set of points which has the same intersection numbers with hyperplanes as a (non-degenerate) Hermitian variety does. Therefore quasi-Hermitian varieties are two-character sets with respect to hyperplanes, where the characters, that is the intersection numbers, are

$$\frac{(q^r + (-1)^{r-1})(q^{r-1} - (-1)^{r-1})}{q^2 - 1},$$

and

$$\frac{(q^r + (-1)^{r-1})(q^{r-1} - (-1)^{r-1})}{q^2 - 1} + (-1)^{r-1}q^{r-1}$$

Quasi-Hermitian varieties other than Hermitian varieties are known to exist; see [1] and [6]. The interest for quasi-Hermitian varieties arose from coding theory. Delsarte [8] proved indeed that a two-character set gives rise to a projective linear two weights code and a strongly regular graph. Recent papers on this subject are [4, 5, 7].

We construct a new family of non-trivial quasi-Hermitian varieties \mathcal{V} in $PG(r,q^2)$ with $q = 2^e$ and e odd, using a procedure similar to that developed in [1]. The essential idea is to keep a Hermitian variety $\mathcal{H} = \mathcal{H}(r,q^2)$ invariant but modify the ambient space $PG(r,q^2)$ by a birational transformation so that \mathcal{H} becomes a quasi-Hermitian variety of the r-dimensional projective space $PG(r,q^2)$ represented by a (non-standard) model Π of $PG(r,q^2)$ where

Received by the editors July 1, 2011, and in revised form July 5, 2012.

²⁰¹⁰ Mathematics Subject Classification. 51E30, 05B25.

Key words and phrases. Hermitian variety; hypersurface.

ANGELA AGUGLIA

- (i) points of Π are those of $PG(r, q^2)$;
- (ii) hyperplanes of Π are certain hyperplanes and hypersurfaces of $PG(r, q^2)$.

We give the equations of these hypersurfaces later in Section 2 where we also extend some results obtained in [2] from r = 2 to any r > 2. Interestingly, some planar sections of \mathcal{V} are Buekenhout-Tits unitals, in particular \mathcal{V} is a Buekenhout-Tits unital for r = 2.

For generalities on Hermitian varieties and unitals in projective spaces, the reader is referred to [14, 11, 13, 10, 3]. Basic facts on rational transformations of projective spaces are found in [12, Section 3.3].

2. A non-standard model of $PG(r, q^2)$

Fix a projective frame in $PG(r, q^2)$, where q is an odd power of 2. Let (X_0, X_1, \ldots, X_r) denote homogeneous coordinates, and consider the affine plane $AG(r, q^2)$ whose infinite hyperplane Σ_{∞} has equation $X_0 = 0$. Then $AG(r, q^2)$ has affine coordinates (x_1, x_2, \ldots, x_r) where $x_i = X_i/X_0$ for $i \in \{1, \ldots, r\}$.

Take $\varepsilon \in \operatorname{GF}(q^2) \setminus \operatorname{GF}(q)$ such that $\varepsilon^2 + \varepsilon + \delta = 0$ for some $\delta \in \operatorname{GF}(q) \setminus \{1\}$ with $\operatorname{Tr}(\delta) = 1$. Here, Tr stands for the trace function $\operatorname{GF}(q) \to \operatorname{GF}(2)$. Then $\varepsilon^{2q} + \varepsilon^q + \delta = 0$. Therefore, $(\varepsilon^q + \varepsilon)^2 + (\varepsilon^q + \varepsilon) = 0$, whence $\varepsilon^q + \varepsilon + 1 = 0$. Moreover, if $q = 2^e$, with e an odd integer, then

$$\sigma: x \mapsto x^{2^{(e+1)/2}}$$

is an automorphism of GF(q). Set

$$\Delta_{\varepsilon}(x) = \varepsilon^{\sigma+2} x^{q(\sigma+2)} + (\varepsilon^{\sigma} + \varepsilon^{\sigma+2}) x^{q\sigma+2} + x^{\sigma} + (1+\varepsilon) x^2.$$

For any $m = (m_1, \ldots, m_{r-1}, d) \in GF(q^2)^r$, let $\mathcal{D}(m)$ denote the algebraic hypersurface

(2.1)
$$x_r = \Delta_{\varepsilon}(x_1) + \dots + \Delta_{\varepsilon}(x_{r-1}) + m_1 x_1 + \dots + m_{r-1} x_{r-1} + d.$$

Consider the incidence structure $\Pi_{\varepsilon} = (\mathcal{P}, \Sigma)$ whose points are the points of $\operatorname{AG}(r, q^2)$ and whose hyperplanes are the hyperplanes through the point at infinity $P_{\infty}(0, 0, \ldots, 0, 1)$ together with the hypersurfaces $\mathcal{D}(m)$, where m ranges over $\operatorname{GF}(q^2)^r$.

Lemma 2.1. The incidence structure $\Pi_{\varepsilon} = (\mathcal{P}, \Sigma)$ is an affine space isomorphic to AG (r, q^2) .

Proof. The birational transformation φ given by

(2.2) $\varphi: (x_1, \ldots, x_{r-1}, x_r) \mapsto (x_1, \ldots, x_{r-1}, x_r + \Delta_{\varepsilon}(x_1) + \cdots + \Delta_{\varepsilon}(x_{r-1})),$

transforms the hyperplanes through $P_{\infty}(0, 0, \ldots, 0, 1)$ into themselves, whereas the hyperplane of equation $x_r = m_1 x_1 + \cdots + m_{r-1} x_{r-1} + d$ is mapped into the hypersurface $\mathcal{D}(m)$. Therefore, φ determines an isomorphism

$$\Pi_{\varepsilon} \simeq \mathrm{AG}(r, q^2),$$

32

and the assertion is proven.

Completing Π_{ε} with its points at infinity in the usual way gives a projective space isomorphic to $PG(r, q^2)$.

3. MAIN RESULT

Let \mathcal{H} be the Hermitian variety of $PG(r, q^2)$. \mathcal{H} is assumed to be in an affine canonical form

(3.1)
$$x_r^q + x_r = x_1^{q+1} + \dots + x_{r-1}^{q+1}$$

The set of the infinity points of \mathcal{H} is

(3.2)
$$\mathcal{F} = \{(0, x_1, \dots, x_r) \mid x_1^{q+1} + \dots + x_{r-1}^{q+1} = 0\}$$

and it can be viewed as a Hermitian cone of $PG(r-1,q^2)$ projecting a Hermitian variety of $PG(r-2,q^2)$. Set

$$\Gamma_{\varepsilon}(x) = [x + (x^q + x)\varepsilon]^{\sigma+2} + (x^q + x)^{\sigma} + (x^{2q} + x^2)\varepsilon + x^{q+1} + x^2.$$

Theorem 3.1. The affine algebraic variety of equation

(3.3)
$$x_r^q + x_r = \Gamma_{\varepsilon}(x_1) + \dots + \Gamma_{\varepsilon}(x_{r-1}),$$

together with the infinity points (3.2) of \mathcal{H} is a quasi-Hermitian variety \mathcal{V} of $PG(r, q^2)$.

Proof. Let $P = (\xi_1, \ldots, \xi_r)$ be an affine point in Π_{ε} . This point, viewed as an element of AG (r, q^2) , has coordinates $x_i = \xi_i$, for $i = 1, \ldots, r - 1$, and $x_r = \xi_r + \Delta_{\varepsilon}(\xi_1) + \cdots + \Delta_{\varepsilon}(\xi_{r-1})$. Therefore, \mathcal{H} and \mathcal{V} coincide in the projective closure of Π_{ε} thus, we just have to prove the following lemma. Let $\mathcal{D}(m)$ be the hypersurface with equation (2.1).

Lemma 3.2. The hypersurface $\mathcal{D}(m)$ and \mathcal{H} have either

$$N_1 = \frac{(q^r + (-1)^{r-1})(q^{r-1} - (-1)^{r-1})}{q^2 - 1} - \left| \mathcal{H}(r-2, q^2) \right|$$

or

$$N_2 = \frac{(q^r + (-1)^{r-1})(q^{r-1} - (-1)^{r-1})}{q^2 - 1} + (-1)^{r-1}q^{r-1} - \left|\mathcal{H}(r-2,q^2)\right|$$

common points in $AG(r, q^2)$.

Proof. The intersection size of \mathcal{H} and $\mathcal{D}(m)$ in $AG(r, q^2)$ is the number of solutions $(x_1, \ldots, x_r) \in \mathrm{GF}(q^2)^r$ of the following system (3.4)

$$\begin{cases} x_r^q + x_r = x_1^{q+1} + \dots + x_{r-1}^{q+1}. \\ x_r = \Delta_{\varepsilon}(x_1) + \dots + \Delta_{\varepsilon}(x_{r-1}) + m_1 x_1 + \dots + m_{r-1} x_{r-1} + d. \end{cases}$$

Substituting the value of x_r in the first equation gives

ANGELA AGUGLIA

$$(3.5) x_1^{q+1} + \dots + x_{r-1}^{q+1} = \Delta_{\varepsilon}(x_1)^q + \dots + \Delta_{\varepsilon}(x_{r-1})^q + m_1^q x_1^q + \dots + m_{r-1}^q x_{r-1}^q + \Delta_{\varepsilon}(x_1) + \dots + \Delta_{\varepsilon}(x_{r-1}) + m_1 x_1 + \dots + m_{r-1} x_{r-1} + d^q + d.$$

Consider now $GF(q^2)$ as a vector space over GF(q). The set $\{1, \varepsilon\}$ is a basis of $GF(q^2)$, thus the elements in $GF(q^2)$ can be written as linear combinations with respect to this basis, that is, $x_i = x_i^0 + x_i^1 \varepsilon$, with $x_i^0, x_i^1 \in GF(q)$. Hence, (3.5) becomes an equation over GF(q), (3.6)

$$\overset{'}{0} = (x_1^0)^{\sigma+2} + x_1^0 x_1^1 + (x_1^1)^{\sigma} + \dots + (x_{r-1}^0)^{\sigma+2} + x_{r-1}^0 x_{r-1}^1 + (x_{r-1}^1)^{\sigma} + m_1^1 x_1^0 + (m_1^0 + m_1^1) x_1^1 + \dots + m_{r-1}^1 x_{r-1}^0 + (m_{r-1}^0 + m_1^1) x_{r-1}^1 + d^1.$$

The solutions $(x_1^0, x_1^1, \ldots, x_{r-1}^0, x_{r-1}^1)$ of (3.6) may be regarded as points of the affine space $\operatorname{AG}(2(r-1), q)$ over $\operatorname{GF}(q)$. In fact, (3.6) turns out to be the equation of a (possibly degenerate) affine hypersurface \mathcal{S} of $\operatorname{AG}(2(r-1), q)$. The number N of points in $\operatorname{AG}(2(r-1), q)$ which lie on \mathcal{S} is the number of points in $\operatorname{AG}(r, q^2)$ on $\mathcal{H} \cap \mathcal{D}(m)$. We will show that N is either N_1 or N_2 by induction on r.

First, suppose r = 2. In this case S can be viewed as an affine planar section of the Tits ovoid O of affine equation $(x_1^1)^{\sigma} + x_1^0 x_1^1 + (x_1^0)^{\sigma+2} = z$. Here (x_1^0, x_1^1, z) denote affine coordinates for points in the affine 3-space in which AG(2, q) is embedded as a hyperplane. Therefore, S consists of 1 or q+1 points according as our plane of equation $z = m_1^1 x_1^0 + (m_1^0 + m_1^1) x_1^1 + d^1$ is tangent to O or not, and the assertion follows.

Now suppose r > 2. Fix a 2(r-2)-tuple $(\bar{x}_2^0, \bar{x}_2^1, \dots, \bar{x}_{r-1}^0, \bar{x}_{r-1}^1)$ of elements in GF(q). For each such tuple, the number of 2(r-1)-tuples

$$(\alpha, \beta, \bar{x}_2^0, \bar{x}_2^1, \dots, \bar{x}_{r-1}^0, \bar{x}_{r-1}^1)$$

satisfying (3.6) is 1 or q + 1 according to whether

$$(3.7) 0 = (\bar{x}_2^0)^{\sigma+2} + \bar{x}_2^0 \bar{x}_2^1 + (\bar{x}_2^1)^{\sigma} + \dots + (\bar{x}_{r-1}^0)^{\sigma+2} + \bar{x}_{r-1}^0 \bar{x}_{r-1}^1 + (\bar{x}_{r-1}^1)^{\sigma} + m_2^1 \bar{x}_2^0 + (m_2^0 + m_2^1) \bar{x}_2^1 + \dots + m_{r-1}^1 \bar{x}_{r-1}^0 + (m_{r-1}^0 + m_1^1) \bar{x}_{r-1}^1 + (m_1^1)^{\sigma+2} + (m_1^0 + m_1^1) m_1^1 + (m_1^0 + m_1^1)^{\sigma} + d^1$$

or not. The induction hypothesis applied to r-1 yields that (3.7) has either

$$n_1 = \frac{(q^{r-1} + (-1)^{r-2})(q^{r-2} - (-1)^{r-2})}{q^2 - 1} - \left|\mathcal{H}(r-3, q^2)\right|$$

or

$$n_2 = \frac{(q^{r-1} + (-1)^{r-2})(q^{r-2} - (-1)^{r-2})}{q^2 - 1} + (-1)^{r-2}q^{r-2} - \left|\mathcal{H}(r-3,q^2)\right|$$

34

solutions. This implies that the number of solutions of (3.6) is either

$$a = n_1 + (q^{2(r-2)} - n_1)(q+1)$$

or

$$b = n_2 + (q^{2(r-2)} - n_2)(q+1).$$

A direct computation shows that $a = N_1$ and $b = N_2$ and our lemma follows

Since the points at infinity of a hyperplane of $AG(r, q^2)$ are also the points at infinity of the corresponding hyperplane in the projective closure of Π_{ε} , the assertion is proven.

Theorem 3.3. The quasi-Hermitian variety \mathcal{V} defined in Theorem (3.1) is not projectively equivalent to the Hermitian variety \mathcal{H} of $PG(r, q^2)$.

Proof. First assume r = 2. In this case \mathcal{V} consists of the infinity point (0,0,1) together with the points (1, x, y) such that

$$y^{q} + y = [x + (x^{q} + x)\varepsilon]^{\sigma+2} + (x^{q} + x)^{\sigma} + (x^{2q} + x^{2})\varepsilon + x^{q+1} + x^{2}\varepsilon^{2}$$

Setting $x^q + x = t$, and $x + (x^q + x)\varepsilon = s$, we have

$$x = s + t\varepsilon,$$

and

$$y^q + y = s^{\sigma+2} + t^\sigma + ts,$$

that is,

$$y = (s^{\sigma+2} + t^{\sigma} + t\sigma)\varepsilon + r_{z}$$

where $r \in GF(q)$. Therefore,

$$\mathcal{V} = \left\{ (1, s + t\varepsilon, (s^{\sigma+2} + t^{\sigma} + t\sigma)\varepsilon + r) \,|\, r, s, t \in GF(q) \right\} \cup \{(0, 0, 1)\},$$

namely, \mathcal{V} coincides with a Buekenhout-Tits unital which is not projectively equivalent to the hermitian curve of PG(2, q^2); see [2, 9].

In the case r > 2 let π be the plane of affine equations $x_2 = \cdots = x_{r-1} = 0$, and let \mathcal{U} denote the intersection of \mathcal{V} and π . We can choose homogeneous coordinates in π in such a way that \mathcal{U} is the set of points

$$\left\{ (1, s + t\varepsilon, (s^{\sigma+2} + t^{\sigma} + t\sigma)\varepsilon + r) \,|\, r, s, t \in GF(q) \right\} \cup \{(0, 0, 1)\}$$

that is, a Buekenhout-Tits unital of π , and thus the assertion is proven. \Box

ANGELA AGUGLIA

Remark. For each $\gamma = (\gamma_1, \ldots, \gamma_r) \in GF(q)^r$, let ψ_{γ} be the collineation of $PG(r, q^2)$ induced by the non-singular matrix

$\begin{pmatrix} 1\\ 0 \end{pmatrix}$	$\gamma_1 \varepsilon \ 1$	$\gamma_2 \varepsilon \\ 0$	 	$ \begin{matrix} \gamma_{r-1}\varepsilon \\ 0 \end{matrix} $	$\gamma_r + (\gamma_1 + \dots + \gamma_{r-1})^{\sigma} \varepsilon) \\ \gamma_1 + \gamma_1 \varepsilon$	
0	0 :	1 :		0 :	$\gamma_2 + \gamma_2 arepsilon$:	
	•	•		•	•	
$\begin{pmatrix} 0\\ 0 \end{pmatrix}$	$\begin{array}{c} 0\\ 0\end{array}$	0	· · · ·	$1 \\ 0$	$\gamma_{r-1} + \gamma_{r-1}\varepsilon$ 1	

Let G denote the following collineation group of order q^r ,

$$G = \{\psi_{\gamma} \mid \gamma \in GF(q)^r\}$$

Straightforward computations show that G is an abelian group which leaves \mathcal{V} invariant; in particular, it fixes P_{∞} and has q^{r-1} orbits of size q^r on $\mathcal{V} \setminus \mathcal{F}$. Furthermore, for r = 2, it coincides with the stabilizer in $PGL(3, q^2)$ of \mathcal{V} ; see [9].

References

- A. Aguglia, A. Cossidente, and G. Korchmáros, On quasi-Hermitian varieties, J. Combin. Des. 20 (2012), no. 10, 433–447.
- A. Aguglia, L. Giuzzi, and G. Korchmáros, Constructions of unitals in Desarguesian projective plane, Discrete Math. 310 (2010), 3162–3167.
- S. G. Barwick and G. L. Ebert, Unitals in projective planes, Springer Monographs in Mathematics, Springer, New York, 2008.
- R. Calderbank and W. M. Kantor, The geometry of two-weight codes, Bull. London Math. Soc 18 (1986), 97–122.
- A. Cossidente and O. H. King, Some two-character sets, Des. Codes Cryptogr. 56 (2010), 105–113.
- S. De Winter and J. Schillewaert, A note on quasi-Hermitian varieties and singular quasi-quadrics, Bull. Belg. Math. Soc. Simon Stevin 17 (2010), 911–918.
- A. De Wispelaere and H. Van Maldeghem, Some new two-character sets in PG(5,q²) and a distance-2 ovoid in the generalized hexagon H(4), Discrete Math. 308 (2008), 2976–2983.
- P. Delsarte, Weights of linear codes and strongly regular normed spaces, Discrete Math. 3 (1972), 47–64.
- 9. G. L. Ebert, Buekenhout-Tits unitals, J. Algebraic Combin. 6 (1997), 133-140.
- 10. _____, *Hermitian arcs*, Rend. Circ. Mat. Palermo (2) Suppl (1998), no. 51, 87–105.
- 11. J. W. P. Hirschfeld, *Projective geometries over finite fields*, 2 ed., Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 1998.
- 12. J. W. P. Hirschfeld, G. Korchmáros, and F. Torres, *Algebraic curves over a finite field*, Princeton Series in Applied Mathematics, Princeton University Press, Princeton, 2008.
- J. A. Thas J. W. P. Hirschfeld, *General Galois geometries*, Oxford University Press, 1992.
- B. Segre, Forme e geometrie Hermitiane con particolare riguardo al caso finito, Ann. Mat. Pura Appl. 70 (1965).

36

DIPARTIMENTO DI MECCANICA, MATEMATICA E MANAGEMENT, POLITECNICO DI BARI, VIA ORABONA, 4 I-70126 BARI *E-mail address:* aguglia@poliba.it