Contributions to Discrete Mathematics

Volume 8, Number 1, Pages 31-37 ISSN 1715-0868

QUASI-HERMITIAN VARIETIES IN $P G\left(r, q^{2}\right), q$ EVEN

ANGELA AGUGLIA

Abstract

In this paper a new example of quasi-Hermitian variety \mathcal{V} in $P G\left(r, q^{2}\right)$ is provided, where q is an odd power of 2 . In higherdimensional spaces, \mathcal{V} can be viewed as a generalization of the Buekenhout-Tits unital in the desarguesian projective plane; see [9].

1. Introduction

In the r-dimensional projective space $P G\left(r, q^{2}\right)$ over a finite field $G F\left(q^{2}\right)$ of order q^{2}, a quasi-Hermitian variety is a set of points which has the same intersection numbers with hyperplanes as a (non-degenerate) Hermitian variety does. Therefore quasi-Hermitian varieties are two-character sets with respect to hyperplanes, where the characters, that is the intersection numbers, are

$$
\frac{\left(q^{r}+(-1)^{r-1}\right)\left(q^{r-1}-(-1)^{r-1}\right)}{q^{2}-1},
$$

and

$$
\frac{\left(q^{r}+(-1)^{r-1}\right)\left(q^{r-1}-(-1)^{r-1}\right)}{q^{2}-1}+(-1)^{r-1} q^{r-1} .
$$

Quasi-Hermitian varieties other than Hermitian varieties are known to exist; see [1] and [6]. The interest for quasi-Hermitian varieties arose from coding theory. Delsarte [8] proved indeed that a two-character set gives rise to a projective linear two weights code and a strongly regular graph. Recent papers on this subject are $[4,5,7]$.

We construct a new family of non-trivial quasi-Hermitian varieties \mathcal{V} in $P G\left(r, q^{2}\right)$ with $q=2^{e}$ and e odd, using a procedure similar to that developed in [1]. The essential idea is to keep a Hermitian variety $\mathcal{H}=\mathcal{H}\left(r, q^{2}\right)$ invariant but modify the ambient space $\mathrm{PG}\left(r, q^{2}\right)$ by a birational transformation so that \mathcal{H} becomes a quasi-Hermitian variety of the r-dimensional projective space $P G\left(r, q^{2}\right)$ represented by a (non-standard) model Π of $P G\left(r, q^{2}\right)$ where

Received by the editors July 1, 2011, and in revised form July 5, 2012.
2010 Mathematics Subject Classification. 51E30, 05B25.
Key words and phrases. Hermitian variety; hypersurface.
(i) points of Π are those of $\operatorname{PG}\left(r, q^{2}\right)$;
(ii) hyperplanes of Π are certain hyperplanes and hypersurfaces of $\operatorname{PG}\left(r, q^{2}\right)$.
We give the equations of these hypersurfaces later in Section 2 where we also extend some results obtained in [2] from $r=2$ to any $r>2$. Interestingly, some planar sections of \mathcal{V} are Buekenhout-Tits unitals, in particular \mathcal{V} is a Buekenhout-Tits unital for $r=2$.

For generalities on Hermitian varieties and unitals in projective spaces, the reader is referred to $[14,11,13,10,3]$. Basic facts on rational transformations of projective spaces are found in [12, Section 3.3].

2. A NON-StANDARD MODEL OF $\operatorname{PG}\left(r, q^{2}\right)$

Fix a projective frame in $\operatorname{PG}\left(r, q^{2}\right)$, where q is an odd power of 2. Let $\left(X_{0}, X_{1}, \ldots, X_{r}\right)$ denote homogeneous coordinates, and consider the affine plane $\mathrm{AG}\left(r, q^{2}\right)$ whose infinite hyperplane Σ_{∞} has equation $X_{0}=0$. Then $\operatorname{AG}\left(r, q^{2}\right)$ has affine coordinates $\left(x_{1}, x_{2}, \ldots, x_{r}\right)$ where $x_{i}=X_{i} / X_{0}$ for $i \in$ $\{1, \ldots, r\}$.

Take $\varepsilon \in \mathrm{GF}\left(q^{2}\right) \backslash \mathrm{GF}(q)$ such that $\varepsilon^{2}+\varepsilon+\delta=0$ for some $\delta \in \mathrm{GF}(q) \backslash\{1\}$ with $\operatorname{Tr}(\delta)=1$. Here, Tr stands for the trace function $\operatorname{GF}(q) \rightarrow \operatorname{GF}(2)$. Then $\varepsilon^{2 q}+\varepsilon^{q}+\delta=0$. Therefore, $\left(\varepsilon^{q}+\varepsilon\right)^{2}+\left(\varepsilon^{q}+\varepsilon\right)=0$, whence $\varepsilon^{q}+\varepsilon+1=0$. Moreover, if $q=2^{e}$, with e an odd integer, then

$$
\sigma: x \mapsto x^{2^{(e+1) / 2}}
$$

is an automorphism of $\operatorname{GF}(q)$. Set

$$
\Delta_{\varepsilon}(x)=\varepsilon^{\sigma+2} x^{q(\sigma+2)}+\left(\varepsilon^{\sigma}+\varepsilon^{\sigma+2}\right) x^{q \sigma+2}+x^{\sigma}+(1+\varepsilon) x^{2}
$$

For any $m=\left(m_{1}, \ldots, m_{r-1}, d\right) \in G F\left(q^{2}\right)^{r}$, let $\mathcal{D}(m)$ denote the algebraic hypersurface

$$
\begin{equation*}
x_{r}=\Delta_{\varepsilon}\left(x_{1}\right)+\cdots+\Delta_{\varepsilon}\left(x_{r-1}\right)+m_{1} x_{1}+\cdots+m_{r-1} x_{r-1}+d \tag{2.1}
\end{equation*}
$$

Consider the incidence structure $\Pi_{\varepsilon}=(\mathcal{P}, \Sigma)$ whose points are the points of $\mathrm{AG}\left(r, q^{2}\right)$ and whose hyperplanes are the hyperplanes through the point at infinity $P_{\infty}(0,0, \ldots, 0,1)$ together with the hypersurfaces $\mathcal{D}(m)$, where m ranges over $\operatorname{GF}\left(q^{2}\right)^{r}$.

Lemma 2.1. The incidence structure $\Pi_{\varepsilon}=(\mathcal{P}, \Sigma)$ is an affine space isomorphic to $\mathrm{AG}\left(r, q^{2}\right)$.

Proof. The birational transformation φ given by

$$
\begin{equation*}
\varphi:\left(x_{1}, \ldots, x_{r-1}, x_{r}\right) \mapsto\left(x_{1}, \ldots, x_{r-1}, x_{r}+\Delta_{\varepsilon}\left(x_{1}\right)+\cdots+\Delta_{\varepsilon}\left(x_{r-1}\right)\right) \tag{2.2}
\end{equation*}
$$

transforms the hyperplanes through $P_{\infty}(0,0, \ldots, 0,1)$ into themselves, whereas the hyperplane of equation $x_{r}=m_{1} x_{1}+\cdots+m_{r-1} x_{r-1}+d$ is mapped into the hypersurface $\mathcal{D}(m)$. Therefore, φ determines an isomorphism

$$
\Pi_{\varepsilon} \simeq \mathrm{AG}\left(r, q^{2}\right)
$$

and the assertion is proven.
Completing Π_{ε} with its points at infinity in the usual way gives a projective space isomorphic to $\operatorname{PG}\left(r, q^{2}\right)$.

3. Main Result

Let \mathcal{H} be the Hermitian variety of $P G\left(r, q^{2}\right)$. \mathcal{H} is assumed to be in an affine canonical form

$$
\begin{equation*}
x_{r}^{q}+x_{r}=x_{1}^{q+1}+\cdots+x_{r-1}^{q+1} \tag{3.1}
\end{equation*}
$$

The set of the infinity points of \mathcal{H} is

$$
\begin{equation*}
\mathcal{F}=\left\{\left(0, x_{1}, \ldots, x_{r}\right) \mid x_{1}^{q+1}+\cdots+x_{r-1}^{q+1}=0\right\} \tag{3.2}
\end{equation*}
$$

and it can be viewed as a Hermitian cone of $P G\left(r-1, q^{2}\right)$ projecting a Hermitian variety of $P G\left(r-2, q^{2}\right)$. Set

$$
\Gamma_{\varepsilon}(x)=\left[x+\left(x^{q}+x\right) \varepsilon\right]^{\sigma+2}+\left(x^{q}+x\right)^{\sigma}+\left(x^{2 q}+x^{2}\right) \varepsilon+x^{q+1}+x^{2}
$$

Theorem 3.1. The affine algebraic variety of equation

$$
\begin{equation*}
x_{r}^{q}+x_{r}=\Gamma_{\varepsilon}\left(x_{1}\right)+\cdots+\Gamma_{\varepsilon}\left(x_{r-1}\right), \tag{3.3}
\end{equation*}
$$

together with the infinity points (3.2) of \mathcal{H} is a quasi-Hermitian variety \mathcal{V} of $\mathrm{PG}\left(r, q^{2}\right)$.

Proof. Let $P=\left(\xi_{1}, \ldots, \xi_{r}\right)$ be an affine point in Π_{ε}. This point, viewed as an element of $\mathrm{AG}\left(r, q^{2}\right)$, has coordinates $x_{i}=\xi_{i}$, for $i=1, \ldots, r-1$, and $x_{r}=\xi_{r}+\Delta_{\varepsilon}\left(\xi_{1}\right)+\cdots+\Delta_{\varepsilon}\left(\xi_{r-1}\right)$. Therefore, \mathcal{H} and \mathcal{V} coincide in the projective closure of Π_{ε} thus, we just have to prove the following lemma. Let $\mathcal{D}(m)$ be the hypersurface with equation (2.1).

Lemma 3.2. The hypersurface $\mathcal{D}(m)$ and \mathcal{H} have either

$$
N_{1}=\frac{\left(q^{r}+(-1)^{r-1}\right)\left(q^{r-1}-(-1)^{r-1}\right)}{q^{2}-1}-\left|\mathcal{H}\left(r-2, q^{2}\right)\right|
$$

or

$$
N_{2}=\frac{\left(q^{r}+(-1)^{r-1}\right)\left(q^{r-1}-(-1)^{r-1}\right)}{q^{2}-1}+(-1)^{r-1} q^{r-1}-\left|\mathcal{H}\left(r-2, q^{2}\right)\right|
$$

common points in $\mathrm{AG}\left(r, q^{2}\right)$.
Proof. The intersection size of \mathcal{H} and $\mathcal{D}(m)$ in $A G\left(r, q^{2}\right)$ is the number of solutions $\left(x_{1}, \ldots, x_{r}\right) \in \operatorname{GF}\left(q^{2}\right)^{r}$ of the following system

$$
\left\{\begin{align*}
x_{r}^{q}+x_{r} & =x_{1}^{q+1}+\cdots+x_{r-1}^{q+1} \tag{3.4}\\
x_{r} & =\Delta_{\varepsilon}\left(x_{1}\right)+\cdots+\Delta_{\varepsilon}\left(x_{r-1}\right)+m_{1} x_{1}+\cdots+m_{r-1} x_{r-1}+d
\end{align*}\right.
$$

Substituting the value of x_{r} in the first equation gives

$$
\begin{align*}
x_{1}^{q+1}+\cdots+x_{r-1}^{q+1}= & \Delta_{\varepsilon}\left(x_{1}\right)^{q}+\cdots+\Delta_{\varepsilon}\left(x_{r-1}\right)^{q}+m_{1}^{q} x_{1}^{q}+\cdots+m_{r-1}^{q} x_{r-1}^{q}+ \tag{3.5}\\
& \Delta_{\varepsilon}\left(x_{1}\right)+\cdots+\Delta_{\varepsilon}\left(x_{r-1}\right)+m_{1} x_{1}+\cdots+m_{r-1} x_{r-1}+ \\
& d^{q}+d .
\end{align*}
$$

Consider now $\mathrm{GF}\left(q^{2}\right)$ as a vector space over $\operatorname{GF}(q)$. The set $\{1, \varepsilon\}$ is a basis of $G F\left(q^{2}\right)$, thus the elements in $\operatorname{GF}\left(q^{2}\right)$ can be written as linear combinations with respect to this basis, that is, $x_{i}=x_{i}^{0}+x_{i}^{1} \varepsilon$, with $x_{i}^{0}, x_{i}^{1} \in \operatorname{GF}(q)$. Hence, (3.5) becomes an equation over $\operatorname{GF}(q)$,

$$
\begin{align*}
0= & \left(x_{1}^{0}\right)^{\sigma+2}+x_{1}^{0} x_{1}^{1}+\left(x_{1}^{1}\right)^{\sigma}+\cdots+\left(x_{r-1}^{0}\right)^{\sigma+2}+x_{r-1}^{0} x_{r-1}^{1}+\left(x_{r-1}^{1}\right)^{\sigma}+ \tag{3.6}\\
& m_{1}^{1} x_{1}^{0}+\left(m_{1}^{0}+m_{1}^{1}\right) x_{1}^{1}+\cdots+m_{r-1}^{1} x_{r-1}^{0}+\left(m_{r-1}^{0}+m_{1}^{1}\right) x_{r-1}^{1}+d^{1} .
\end{align*}
$$

The solutions $\left(x_{1}^{0}, x_{1}^{1}, \ldots, x_{r-1}^{0}, x_{r-1}^{1}\right)$ of (3.6) may be regarded as points of the affine space $\mathrm{AG}(2(r-1), q)$ over $\mathrm{GF}(q)$. In fact, (3.6) turns out to be the equation of a (possibly degenerate) affine hypersurface \mathcal{S} of $\mathrm{AG}(2(r-1), q)$. The number N of points in $\operatorname{AG}(2(r-1), q)$ which lie on \mathcal{S} is the number of points in $\operatorname{AG}\left(r, q^{2}\right)$ on $\mathcal{H} \cap \mathcal{D}(m)$. We will show that N is either N_{1} or N_{2} by induction on r.

First, suppose $r=2$. In this case \mathcal{S} can be viewed as an affine planar section of the Tits ovoid O of affine equation $\left(x_{1}^{1}\right)^{\sigma}+x_{1}^{0} x_{1}^{1}+\left(x_{1}^{0}\right)^{\sigma+2}=z$. Here $\left(x_{1}^{0}, x_{1}^{1}, z\right)$ denote affine coordinates for points in the affine 3 -space in which $\mathrm{AG}(2, q)$ is embedded as a hyperplane. Therefore, \mathcal{S} consists of 1 or $q+1$ points according as our plane of equation $z=m_{1}^{1} x_{1}^{0}+\left(m_{1}^{0}+m_{1}^{1}\right) x_{1}^{1}+d^{1}$ is tangent to O or not, and the assertion follows.

Now suppose $r>2$. Fix a $2(r-2)$-tuple $\left(\bar{x}_{2}^{0}, \bar{x}_{2}^{1}, \ldots, \bar{x}_{r-1}^{0}, \bar{x}_{r-1}^{1}\right)$ of elements in $G F(q)$. For each such tuple, the number of $2(r-1)$-tuples

$$
\left(\alpha, \beta, \bar{x}_{2}^{0}, \bar{x}_{2}^{1}, \ldots, \bar{x}_{r-1}^{0}, \bar{x}_{r-1}^{1}\right)
$$

satisfying (3.6) is 1 or $q+1$ according to whether

$$
\begin{align*}
0= & \left(\bar{x}_{2}^{0}\right)^{\sigma+2}+\bar{x}_{2}^{0} \bar{x}_{2}^{1}+\left(\bar{x}_{2}^{1}\right)^{\sigma}+\cdots+\left(\bar{x}_{r-1}^{0}\right)^{\sigma+2}+\bar{x}_{r-1}^{0} \bar{x}_{r-1}^{1}+\left(\bar{x}_{r-1}^{1}\right)^{\sigma}+ \tag{3.7}\\
& m_{2}^{1} \bar{x}_{2}^{0}+\left(m_{2}^{0}+m_{2}^{1}\right) \bar{x}_{2}^{1}+\cdots+m_{r-1}^{1} \bar{x}_{r-1}^{0}+\left(m_{r-1}^{0}+m_{1}^{1}\right) \bar{x}_{r-1}^{1}+ \\
& \left(m_{1}^{1}\right)^{\sigma+2}+\left(m_{1}^{0}+m_{1}^{1}\right) m_{1}^{1}+\left(m_{1}^{0}+m_{1}^{1}\right)^{\sigma}+d^{1}
\end{align*}
$$

or not. The induction hypothesis applied to $r-1$ yields that (3.7) has either

$$
n_{1}=\frac{\left(q^{r-1}+(-1)^{r-2}\right)\left(q^{r-2}-(-1)^{r-2}\right)}{q^{2}-1}-\left|\mathcal{H}\left(r-3, q^{2}\right)\right|
$$

or

$$
n_{2}=\frac{\left(q^{r-1}+(-1)^{r-2}\right)\left(q^{r-2}-(-1)^{r-2}\right)}{q^{2}-1}+(-1)^{r-2} q^{r-2}-\left|\mathcal{H}\left(r-3, q^{2}\right)\right|
$$

solutions. This implies that the number of solutions of (3.6) is either

$$
a=n_{1}+\left(q^{2(r-2)}-n_{1}\right)(q+1)
$$

or

$$
b=n_{2}+\left(q^{2(r-2)}-n_{2}\right)(q+1)
$$

A direct computation shows that $a=N_{1}$ and $b=N_{2}$ and our lemma follows

Since the points at infinity of a hyperplane of $\operatorname{AG}\left(r, q^{2}\right)$ are also the points at infinity of the corresponding hyperplane in the projective closure of Π_{ε}, the assertion is proven.

Theorem 3.3. The quasi-Hermitian variety \mathcal{V} defined in Theorem (3.1) is not projectively equivalent to the Hermitian variety \mathcal{H} of $\mathrm{PG}\left(r, q^{2}\right)$.

Proof. First assume $r=2$. In this case \mathcal{V} consists of the infinity point $(0,0,1)$ together with the points $(1, x, y)$ such that

$$
y^{q}+y=\left[x+\left(x^{q}+x\right) \varepsilon\right]^{\sigma+2}+\left(x^{q}+x\right)^{\sigma}+\left(x^{2 q}+x^{2}\right) \varepsilon+x^{q+1}+x^{2} .
$$

Setting $x^{q}+x=t$, and $x+\left(x^{q}+x\right) \varepsilon=s$, we have

$$
x=s+t \varepsilon,
$$

and

$$
y^{q}+y=s^{\sigma+2}+t^{\sigma}+t s
$$

that is,

$$
y=\left(s^{\sigma+2}+t^{\sigma}+t \sigma\right) \varepsilon+r,
$$

where $r \in G F(q)$. Therefore,

$$
\mathcal{V}=\left\{\left(1, s+t \varepsilon,\left(s^{\sigma+2}+t^{\sigma}+t \sigma\right) \varepsilon+r\right) \mid r, s, t \in G F(q)\right\} \cup\{(0,0,1)\},
$$

namely, \mathcal{V} coincides with a Buekenhout-Tits unital which is not projectively equivalent to the hermitian curve of $\operatorname{PG}\left(2, q^{2}\right)$; see $[2,9]$.

In the case $r>2$ let π be the plane of affine equations $x_{2}=\cdots=x_{r-1}=0$, and let \mathcal{U} denote the intersection of \mathcal{V} and π. We can choose homogeneous coordinates in π in such a way that \mathcal{U} is the set of points

$$
\left\{\left(1, s+t \varepsilon,\left(s^{\sigma+2}+t^{\sigma}+t \sigma\right) \varepsilon+r\right) \mid r, s, t \in G F(q)\right\} \cup\{(0,0,1)\}
$$

that is, a Buekenhout-Tits unital of π, and thus the assertion is proven.

Remark. For each $\gamma=\left(\gamma_{1}, \ldots, \gamma_{r}\right) \in G F(q)^{r}$, let ψ_{γ} be the collineation of $\mathrm{PG}\left(r, q^{2}\right)$ induced by the non-singular matrix

$$
\left(\begin{array}{cccccc}
1 & \gamma_{1} \varepsilon & \gamma_{2} \varepsilon & \ldots & \gamma_{r-1} \varepsilon & \left.\gamma_{r}+\left(\gamma_{1}+\cdots+\gamma_{r-1}\right)^{\sigma} \varepsilon\right) \\
0 & 1 & 0 & \ldots & 0 & \gamma_{1}+\gamma_{1} \varepsilon \\
0 & 0 & 1 & \ldots & 0 & \gamma_{2}+\gamma_{2} \varepsilon \\
\vdots & \vdots & \vdots & & \vdots & \vdots \\
& & & & & \\
0 & 0 & 0 & \ldots & 1 & \gamma_{r-1}+\gamma_{r-1} \varepsilon \\
0 & 0 & 0 & \ldots & 0 & 1
\end{array}\right)
$$

Let G denote the following collineation group of order q^{r},

$$
G=\left\{\psi_{\gamma} \mid \gamma \in G F(q)^{r}\right\} .
$$

Straightforward computations show that G is an abelian group which leaves \mathcal{V} invariant; in particular, it fixes P_{∞} and has q^{r-1} orbits of size q^{r} on $\mathcal{V} \backslash \mathcal{F}$. Furthermore, for $r=2$, it coincides with the stabilizer in $\operatorname{PGL}\left(3, q^{2}\right)$ of \mathcal{V}; see [9].

References

1. A. Aguglia, A. Cossidente, and G. Korchmáros, On quasi-Hermitian varieties, J. Combin. Des. 20 (2012), no. 10, 433-447.
2. A. Aguglia, L. Giuzzi, and G. Korchmáros, Constructions of unitals in Desarguesian projective plane, Discrete Math. 310 (2010), 3162-3167.
3. S. G. Barwick and G. L. Ebert, Unitals in projective planes, Springer Monographs in Mathematics, Springer, New York, 2008.
4. R. Calderbank and W. M. Kantor, The geometry of two-weight codes, Bull. London Math. Soc 18 (1986), 97-122.
5. A. Cossidente and O. H. King, Some two-character sets, Des. Codes Cryptogr. 56 (2010), 105-113.
6. S. De Winter and J. Schillewaert, A note on quasi-Hermitian varieties and singular quasi-quadrics, Bull. Belg. Math. Soc. Simon Stevin 17 (2010), 911-918.
7. A. De Wispelaere and H. Van Maldeghem, Some new two-character sets in PG($5, q^{2}$) and a distance-2 ovoid in the generalized hexagon $\mathrm{H}(4)$, Discrete Math. 308 (2008), 2976-2983.
8. P. Delsarte, Weights of linear codes and strongly regular normed spaces, Discrete Math. 3 (1972), 47-64.
9. G. L. Ebert, Buekenhout-Tits unitals, J. Algebraic Combin. 6 (1997), 133-140.
10. \qquad , Hermitian arcs, Rend. Circ. Mat. Palermo (2) Suppl (1998), no. 51, 87-105.
11. J. W. P. Hirschfeld, Projective geometries over finite fields, 2 ed., Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 1998.
12. J. W. P. Hirschfeld, G. Korchmáros, and F. Torres, Algebraic curves over a finite field, Princeton Series in Applied Mathematics, Princeton University Press, Princeton, 2008.
13. J. A. Thas J. W. P. Hirschfeld, General Galois geometries, Oxford University Press, 1992.
14. B. Segre, Forme e geometrie Hermitiane con particolare riguardo al caso finito, Ann. Mat. Pura Appl. 70 (1965).

Dipartimento di Meccanica, Matematica e Management, Politecnico di Bari, Via Orabona, 4 I-70126 Bari

E-mail address: aguglia@poliba.it

