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DETERMINATION OF THE PRIME BOUND OF A GRAPH

ABDERRAHIM BOUSSAÏRI AND PIERRE ILLE

Abstract. Given a graph G, a subset M of V (G) is a module of G
if for each v ∈ V (G) ∖M , v is adjacent to all the elements of M or
adjacent to none of them. For instance, V (G), ∅ and {v} (v ∈ V (G))
are modules of G called trivial. Given a graph G, ωM(G) (respectively
αM(G)) denotes the largest integer m such that there is a module M
of G which is a clique (respectively a stable) set in G with ∣M ∣ = m.
A graph G is prime if ∣V (G)∣ ≥ 4 and if all its modules are trivial.
The prime bound of G is the smallest integer p(G) such that there
is a prime graph H with V (H) ⊇ V (G), H[V (G)] = G and ∣V (H) ∖

V (G)∣ = p(G). We establish the following. For every graph G such
that max(αM(G), ωM(G)) ≥ 2 and log2(max(αM(G), ωM(G))) is not
an integer, p(G) = ⌈log2(max(αM(G), ωM(G)))⌉. Then, we prove that

for every graph G such that max(αM(G), ωM(G)) = 2k where k ≥ 1,
p(G) = k or k+1. Moreover p(G) = k+1 if and only ifG or its complement

admits exactly 2k isolated vertices. Lastly, we show that p(G) = 1 for
every non prime graph G such that ∣V (G)∣ ≥ 4 and αM(G) = ωM(G) = 1.

1. Introduction

A graph G = (V (G),E(G)) is constituted by a finite vertex set V (G)
and an edge set E(G) ⊆ (V (G)

2
). Given a set finite S, KS = (S, (S2)) is the

complete graph on S whereas (S,∅) is the empty graph. Let G be a graph.

With each W ⊆ V (G) associate the subgraph G[W ] = (W, (W2 ) ∩ E(G)) of
G induced by W . Given W ⊆ V (G), G[V (G) ∖ W ] is also denoted by
G − W and by G − w if W = {w}. A graph H is an extension of G if
V (H) ⊇ V (G) and H[V (G)] = G. Given p ≥ 0, a p-extension of G is an
extension H of G such that ∣V (H) ∖ V (G)∣ = p. The complement of G is

the graph G = (V (G), (V (G)

2
) ∖ E(G)). A subset W of V (G) is a clique

(respectively a stable set) in G if G[W ] is complete (respectively empty).
The largest cardinality of a clique (respectively a stable set) in G is the
clique number (respectively the stability number) of G, denoted by ω(G)
(respectively α(G)). Given v ∈ V (G), the neighbourhood NG(v) of v in G
is the family {w ∈ V (G) ∶ {v,w} ∈ E(G)}. We consider NG as the function
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from V (G) to 2V (G) defined by v ↦ NG(v) for each v ∈ V (G). A vertex v of
G is isolated if NG(v) = ∅. The number of isolated vertices of G is denoted
by ι(G).

We use the following notation. Let G be a graph. For v ≠ w ∈ V (G),

(v,w)G =
⎧⎪⎪⎨⎪⎪⎩

0, if {v,w} /∈ E(G),
1, if {v,w} ∈ E(G).

Given W ⊊ V (G), v ∈ V (G)∖W and i ∈ {0,1}, (v,W )G = i means (v,w)G = i
for every w ∈ W . Given W,W ′ ⊊ V (G), with W ∩W ′ = ∅, and i ∈ {0,1},
(W,W ′)G = i means (w,W ′)G = i for every w ∈ W . Given W ⊊ V (G) and
v ∈ V (G)∖W , v ←→G W means that there is i ∈ {0,1} such that (v,W )G = i.
The negation is denoted by v /←→G W .

Given a graph G, a subset M of V (G) is a module of G if for each
v ∈ V (G)∖M , we have v ←→G M . For instance, V (G), ∅ and {v} (v ∈ V (G))
are modules of G called trivial. Clearly, if ∣V (G)∣ ≤ 2, then all the modules of
G are trivial. On the other hand, if ∣V (G)∣ = 3, then G admits a nontrivial
module. A graph G is then said to be prime if ∣V (G)∣ ≥ 4 and if all its
modules are trivial. For instance, given n ≥ 4, the path ({1, . . . , n},{{p, q} ∶
∣p − q∣ = 1}) is prime. Given a graph G, G and G share the same modules.
Thus G is prime if and only if G is.

Given a set S with ∣S∣ ≥ 2, KS admits a prime ⌈log2(∣S∣ + 1)⌉-extension
(see Sumner [8, Theorem 2.45] or Lemma 3.2 below). This is extended to
any graph in [3, Theorem 3.7] and [2, Theorem 3.2] as follows.

Theorem 1.1. A graph G, with ∣V (G)∣ ≥ 2, admits a prime ⌈log2(∣V (G)∣ +
1)⌉-extension.

We now introduce the notion of prime bound. Let G be a graph. The
prime bound of G is the smallest integer p(G) such that G admits a prime
p(G)-extension. Observe that p(G) = p(G) for every graph G. By Theo-
rem 1.1, p(G) ≤ ⌈log2(∣V (G)∣ + 1)⌉. By considering the clique number and
the stability number, Brignall [3, Conjecture 3.8] conjectured the following.

Conjecture 1.2. For a graph G with ∣V (G)∣ ≥ 2,

p(G) ≤ ⌈log2(max(α(G), ω(G)) + 1)⌉.
We answer the conjecture positively by refining the notions of clique num-

ber and of stability number as follows. Given a graph G, the modular clique
number ωM(G) of G is the largest cardinality of a clique in G which is also
a module of G. The modular stability number of G is αM(G) = ωM(G). The
following lower bound is simply obtained.

Lemma 1.3. For every graph G such that max(αM(G), ωM(G)) ≥ 2,

p(G) ≥ ⌈log2(max(αM(G), ωM(G)))⌉.
Theorem 3.2 of [2] is proved by induction on the number of vertices. Using

the main arguments of this proof, we improve Theorem 1.1 as follows.
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Theorem 1.4. For every graph G such that max(αM(G), ωM(G)) ≥ 2,

p(G) ≤ ⌈log2(max(αM(G), ωM(G)) + 1)⌉.
Theorem 1.4 is proved using an induction argument as well. A direct

construction of a suitable extension is provided in [1, Theorem 2]. The
following is an immediate consequence of Lemma 1.3 and Theorem 1.4.

Corollary 1.5. For every graph G such that max(αM(G), ωM(G)) ≥ 2,

⌈log2(max(αM(G), ωM(G)))⌉ ≤ p(G) ≤ ⌈log2(max(αM(G), ωM(G)) + 1)⌉.
Let G be graph such that max(αM(G), ωM(G)) ≥ 2. On the one hand, it

follows from Corollary 1.5 that

p(G) = ⌈log2(max(αM(G), ωM(G)))⌉
when

max(αM(G), ωM(G)) /∈ {2k ∶ k ≥ 1}.
On the other, if max(αM(G), ωM(G)) = 2k, where k ≥ 1, then p(G) = k or
k + 1. The next theorem allows us to determine this.

Theorem 1.6. For every graph G such that max(αM(G), ωM(G)) = 2k

where k ≥ 1,

p(G) = k + 1 if and only if ι(G) = 2k or ι(G) = 2k.

Lastly, we show that p(G) = 1 for every non prime graph G such that
∣V (G)∣ ≥ 4 and αM(G) = ωM(G) = 1 (see Proposition 5.2).

2. Preliminaries

Given a graph G, the family of the modules of G is denoted by M(G).
Furthermore set M≥2(G) = {M ∈ M(G) ∶ ∣M ∣ ≥ 2}. We begin with the
well known properties of the modules of a graph (for example, see [4, The-
orem 3.2, Lemma 3.9]).

Proposition 2.1. Let G be a graph.

(1) Given W ⊆ V (G), {M ∩W ∶M ∈ M(G)} ⊆M(G[W ]).
(2) Given a module M ∈ M(G), M(G[M]) = {N ∈ M(G) ∶ N ⊆M}.
(3) Given M,N ∈ M(G) with M ∩N = ∅, there is i ∈ {0,1} such that

(M,N)G = i.
Given a graph G, a partition P of V (G) is a modular partition of G if

P ⊆M(G). Let P be such a partition. Given M ≠ N ∈ P , there is i ∈ {0,1}
such that (M,N)G = i by (3) of Proposition 2.1. This justifies the following
definition: The quotient of G by P is the graph G/P defined on V (G/P ) = P
by (M,N)G/P = (M,N)G for M ≠ N ∈ P . We use the following properties
of the quotient (for example, see [4, Theorems 4.1–4.3, Lemma 4.1]).

Proposition 2.2. Given a graph G, consider a modular partition P of G.

(1) Given W ⊆ V (G), if ∣W ∩X ∣ = 1 for each X ∈ P , then G[W ] and
G/P are isomorphic.
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(2) For every M ∈ M(G), {X ∈ P ∶M ∩X ≠ ∅} ∈M(G/P ).
(3) For every Q ∈ M(G/P ), ⋃Q ∈ M(G).

The following strengthening of the notion of module is introduced to
present the modular decomposition theorem (see Theorem 2.4 below). Given
a graph G, a module M of G is said to be strong provided that for every
N ∈ M(G), if M ∩N ≠ ∅, then M ⊆ N or N ⊆M . The family of the strong
modules of G is denoted by S(G). Furthermore set

S≥2(G) = {M ∈ S(G) ∶ ∣M ∣ ≥ 2}.
We recall the following well known properties of the strong modules of a
graph (for example, see [4, Theorem 3.3]).

Proposition 2.3. Let G be a graph. For every M ∈ M(G),

S(G[M]) = {N ∈ S(G) ∶ N ⊊M} ∪ {M}.
With each graph G, we associate the family Π(G) of the maximal proper

and nonempty strong modules of G under inclusion. For convenience set

Π1(G) = {M ∈ Π(G) ∶ ∣M ∣ = 1} and Π≥2(G) = {M ∈ Π(G) ∶ ∣M ∣ ≥ 2}.
The modular decomposition theorem is stated as follows.

Theorem 2.4 (Gallai [5, 6]). For a graph G with ∣V (G)∣ ≥ 2, the fam-
ily Π(G) realizes a modular partition of G. Moreover, the corresponding
quotient G/Π(G) is complete, empty or prime.

Let G be a graph with ∣V (G)∣ ≥ 2. As a direct consequence of the defi-
nition of a strong module, we obtain that the family S(G) ∖ {∅} endowed
with inclusion is a tree called the modular decomposition tree [7] of G. Given
M ∈ S≥2(G), it follows from Proposition 2.3 that Π(G[M]) ⊆ S(G). Fur-
thermore, given W ⊆ V (G), the family {M ∈ S(G) ∶M ⊇W} endowed with

inclusion is a total order. Its smallest element is denoted by Ŵ .
Let G be a graph with ∣V (G)∣ ≥ 2. Using Theorem 2.4, we label S≥2(G)

by the function λG defined as follows. For each M ∈ S≥2(G),

λG(M) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

 if G[M]/Π(G[M]) is complete,

# if G[M]/Π(G[M]) is empty,

< if G[M]/Π(G[M]) is prime.

3. Some prime extensions

Lemma 3.1. Let S and S′ be disjoint and finite sets such that ∣S∣ ≥ 2 and
∣S′∣ = ⌈log2(∣S∣ +1)⌉. There exists a prime graph G defined on V (G) = S ∪S′
such that S and S′ are stable sets in G.

Proof. If ∣S∣ = 2, then ∣S′∣ = 2 and we can choose a path on 4 vertices for

G. Assume that ∣S∣ ≥ 3. As ∣S′∣ = ⌈log2(∣S∣ + 1)⌉, 2∣S′∣−1 ≤ ∣S∣ and hence
∣S′∣ ≤ ∣S∣. Thus there exists a bijection ψS′ from S′ onto S′′ ⊆ S. Consider

the injection fS′′ ∶ S′′ Ð→ 2S
′∖{∅} defined by s′′ ↦ S′∖{(ψS′)−1(s′′)}. Since
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∣S′∣ = ⌈log2(∣S∣ + 1)⌉, ∣S∣ < 2∣S′∣ and there exists an injection fS from S into

2S
′ ∖ {∅} such that (fS)↾S′′ = fS′′ . Lastly, consider the graph G defined on

V (G) = S ∪S′ such that S and S′ are stable sets in G and (NG)↾S = fS . We
prove that G is prime. If ∣S∣ = 3, then ∣S′∣ = 2 and G is a path on 5 vertices
which is prime. Assume that ∣S∣ ≥ 4 and hence ∣S′∣ ≥ 3. Let M ∈ M≥2(G).

First, if M ⊆ S, then we would have fS(u) = fS(v) for any u ≠ v ∈ M .
Thus M ∩ S′ ≠ ∅.

Second, suppose that M ⊆ S′. Recall that for each s ∈ S, either M ∩
NG(s) = ∅ or M ⊆ NG(s). Given u ∈ M , consider the function f ∶ S Ð→
2(S′∖M)∪{u} ∖ {∅} defined by

f(s) =
⎧⎪⎪⎨⎪⎪⎩

NG(s), if M ∩NG(s) = ∅,
(NG(s) ∖M) ∪ {u}, if M ⊆ NG(s),

for every s ∈ S. Since (NG)↾S is injective, f is also and we would obtain

that ∣S∣ < 2∣S′∣−1. It follows that M ∩ S ≠ ∅.
Third, suppose that S′ ∖M ≠ ∅. We have (S ∩M,S′ ∖M)G = (S′ ∩

M,S′ ∖M)G = 0. Given s′ ∈ S′ ∩M , NG(ψS′(s′)) = S′ ∖ {s′}. In particular
S′∖M ⊆ NG(ψS′(s′)) and hence ψS′(s′) ∈ S∖M . Furthermore (ψS′(s′), S′∩
M)G = (ψS′(s′), S ∩M)G = 0. Therefore S′ ∩M = {s′}. Similarly, we prove
that ∣S′ ∖M ∣ = 1 which would imply that ∣S′∣ = 2. It follows that S′ ⊆M .

Lastly, suppose that S ∖M ≠ ∅. For each s ∈ S ∖M ≠ ∅, we would have
(s, S′)G = (s, S ∩M)G = 0 and hence NG(s) = ∅. It follows that S ⊆M and
M = S ∪ S′. �

Lemma 3.2. Let C and S′ be disjoint and finite sets such that ∣C ∣ ≥ 2 and
∣S′∣ = ⌈log2(∣C ∣+1)⌉. There exists a prime graph G defined on V (G) = C ∪S′
such that C is a clique and S′ is a stable set in G.

Proof. There exists a bijection ψS′ from S′ onto S′′ ⊆ C. Consider the
injection fS′′ ∶ S′′ Ð→ 2S

′ ∖ {S′} defined by s′′ ↦ {(ψS′)−1(s′′)}. Let fC
be any injection from C into 2S

′ ∖ {S′} such that (fC)↾S′′ = fS′′ . Lastly,
consider the graph G defined on V (G) = C ∪ S′ such that C is a clique in
G, S′ is a stable set in G and NG(c) ∩ S′ = fC(c) for each c ∈ C. We prove
that G is prime. Let M ∈ M≥2(G). As in the proof of Lemma 3.1, we have
M ∩C ≠ ∅ and M ∩ S′ ≠ ∅.

Now, suppose that S′ ∖M ≠ ∅. We have (C ∩M,S′ ∖M)G = (S′ ∩
M,S′ ∖M)G = 0. Given t′ ∈ S′ ∖M , NG(ψS′(t′)) ∩ S′ = {t′}. Thus ψS′(t′) ∈
C ∖M . But (ψS′(t′), S′ ∩M)G = (ψS′(t′),C ∩M)G = 1 which contradicts
NG(ψS′(t′)) ∩ S′ = {t′}. It follows that S′ ⊆M .

Lastly, suppose that C ∖M ≠ ∅. For each c ∈ C ∖M ≠ ∅, we have
(c, S′)G = (c,C ∩M)G = 1 and hence NG(c) ∩S′ = S′. It follows that C ⊆M
and M = C ∪ S′. �

The question of prime extensions of a prime graph is not detailed enough
in [2]. For instance, the number of prime 1-extensions of a prime graph
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given in [2] is not correct. Moreover, Corollary 3.4 below is used without a
precise proof.

Lemma 3.3. Let G be a prime graph. Given a /∈ V (G), there exist exactly

2∣V (G)∣ − 2∣V (G)∣ − 2

distinct prime extensions of G to V (G) ∪ {a}.

Proof. Consider any graph H defined on V (H) = V (G) ∪ {a} such that
H[V (G)] = G. We prove that H is not prime if and only if

NH(a) ∈ {∅, V (G)} ∪ {NG(v) ∶ v ∈ V (G)} ∪ {NG(v) ∪ {v} ∶ v ∈ V (G)}.

To begin, assume that NH(a) ∈ {∅, V (G)}∪{NG(v) ∶ v ∈ V (G)}∪{NG(v)∪
{v} ∶ v ∈ V (G)}. If NH(a) = ∅ or V (G), then V (G) is a nontrivial module
of H. If there is v ∈ V (G) such that NH(a) ∖ {v} = NG(v), then {a, v} is a
nontrivial module of H.

Conversely, assume that H admits a nontrivial module M . By Proposi-
tion 2.1.(1), M ∖ {a} ∈M(G). As G is prime, M ∖ {a} ≠ ∅ and M ⊊ V (H),
either ∣M ∖ {a}∣ = 1 or M = V (G). In the second instance, NH(a) = ∅
or V (G). In the first, there is v ∈ V (G) such that M = {a, v}. Thus
NH(a) = NG(v) or NG(v) ∪ {v}. To conclude, observe that

∣{∅, V (G)} ∪ {NG(v) ∶ v ∈ V (G)} ∪ {NG(v) ∪ {v} ∶ v ∈ V (G)}∣ = 2 + 2∣V (G)∣

because G is prime. �

Corollary 3.4. Let G be a prime graph. For any a ≠ b /∈ V (G), there exists
a prime extension H of G to V (G) ∪ {a, b} such that (a, b)H = 0.

Proof. Since ∣V (G)∣ ≥ 4, 2∣V (G)∣ − 2∣V (G)∣ − 2 ≥ 2. Consequently there is an
extension H of G to V (G) ∪ {a, b} such that (a, b)H = 0, NH(a) ≠ NH(b)
and

NH(a),NH(b) /∈ {∅, V (G)}∪{NG(v) ∶ v ∈ V (G)}∪{NG(v)∪{v} ∶ v ∈ V (G)}.

By the proof of Lemma 3.3, H − a and H − b are prime. We show that H is
prime also. Let M ∈ M≥2(H). By Proposition 2.1.(1), M ∖{a} ∈M(H −a).
As H − a is prime and M ∖ {a} ≠ ∅, either ∣M ∖ {a}∣ = 1 or M ∖ {a} =
V (H) ∖ {a}. In the first, there is v ∈ V (G) ∪ {b} such that M = {a, v}. If
v = b, then NH(a) = NH(b). If v ∈ V (G), then {a, v} would be a nontrivial
module of H − b. Consequently M ∖{a} = V (H)∖{a}. Since H − b is prime,
a /←→H V (G) and hence a ∈M . Thus M = V (H). �

4. Proof of Theorem 1.4

Let G be a graph with ∣V (G)∣ ≥ 2. By [2, Theorem 3.2], there exists a
prime extension H of G such that

2 ≤ ∣V (H) ∖ V (G)∣ ≤ ⌈log2(∣V (G)∣ + 1)⌉
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and V (H)∖V (G) is a stable set in H. We can consider the smallest integer
q(G) such that q(G) ≥ 2 and G admits a prime q(G)-extension H such that
V (H) ∖ V (G) is a stable set in H.

The results below, from Proposition 4.1 to Corollary 4.4, are suggested
by the proof of [2, Theorem 3.2].

We introduce a basic construction. Consider a graph G and a modular
partition P of G such that P ⊆ S(G) and P∩S≥2(G) ≠ ∅. Let X ∈ P∩S≥2(G)
such that

q(G[X]) = max({q(G[Y ]) ∶ Y ∈ P ∩ S≥2(G)}).
Consider a set S such that S ∩ V (G) = ∅ and ∣S∣ = q(G[X]). There exists a
prime q(G[X])-extension HX of G[X] to X∪S such that S is a stable set in
HX . Since X is not a module of HX , there is sX ∈ S such that sX /←→HX

X.
Furthermore, if there is v ∈ S such that (v,X)HX

= 0, then V (HX) ∖ {v}
would be a nontrivial module of HX . Thus {v ∈ S ∶ v ←→HX

X} = {v ∈
S ∶ (v,X)HX

= 1}. As S is a stable set in HX , {v ∈ S ∶ (v,X)HX
= 1} is a

module of HX . It follows that

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

{v ∈ S ∶ v ←→HX
X} = {v ∈ S ∶ (v,X)HX

= 1},
∣{v ∈ S ∶ v ←→HX

X}∣ ≤ 1,

sX ∈ S ∖ {v ∈ S ∶ v ←→HX
X}.

Now, for each Y ∈ (P ∩ S≥2(G)) ∖ {X}, there is a prime q(G[Y ])-extension
HY of G[Y ] to Y ∪ SY such that {v ∈ S ∶ v ←→HX

X} ⊆ SY ⊆ S and SY is
a stable set in HY . Consider the extension H of G and of HX to V (G) ∪ S
satisfying

● for each Y ∈ (P ∩ S≥2(G)) ∖ {X}, H[Y ∪ SY ] =HY ;
● for each v ∈ V (G) such that {v} ∈ P , (v,S ∖ {sX})H = 0 and

(v, sX)H = 1.

Proposition 4.1. Given a graph G, consider a modular partition P of G
such that P ⊆ S(G) and P ∩S≥2(G) ≠ ∅. If the corresponding extension H is
not prime, then all the nontrivial modules of H are included in {v ∈ V (G) ∶
{v} ∈ P}.

Proof. Let M be a nontrivial module of H. By Proposition 2.1.(1), M ∩
(X ∪ S) ∈ M(H[X ∪ S]). Since H[X ∪ S] is prime, we have M ⊇ X ∪ S,
∣M ∩ (X ∪ S)∣ = 1 or M ∩ (X ∪ S) = ∅.

For a first contradiction, suppose that M ⊇ X ∪ S. Given v ∈ V (G), if
{v} ∈ P , then v /←→H S so that v ∈M . Thus {v ∈ V (G) ∶ {v} ∈ P} ⊆M . Let
Y ∈ P ∩ S≥2(G). By Proposition 2.1.(1), M ∩ (Y ∪ SY ) ∈ M(H[Y ∪ SY ]).
Since H[Y ∪ SY ] is prime and since SY ⊆M ∩ (Y ∪ SY ), Y ⊆M . Therefore

⋃(P ∩ S≥2(G)) ⊆M and we would have M = V (H).
For a second contradiction, suppose that ∣M ∩ (X ∪ S)∣ = 1. Consider

v ∈ S ∪ X such that M ∩ (X ∪ S) = {v}. Suppose that v ∈ X. We have
M ⊆ V (G) and M ∈ M(G) by Proposition 2.1.(1). As X ∈ S(G) and
v ∈X∩M , X ⊆M or M ⊆X. In both cases, we would have ∣M ∩(X∪S)∣ ≥ 2.
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Suppose that v ∈ S. There is Y ∈ P∖{X} such that Y ∩M ≠ ∅. Let y ∈ Y ∩M .
Since y ←→G X, v ←→HX

X and hence v ≠ sX . If Y ∈ P ∩S≥2(G), then v ∈ SY
and M ∩ (Y ∪ SY ) would be a nontrivial module of H[Y ∪ SY ]. If Y = {y},
then (y, sX)H = 1. Thus (v, sX)H = 1 and S would not be a stable set in H.

It follows that M ∩ (X ∪ S) = ∅. By Proposition 2.1.(1), M ∈ M(G).
Suppose for a contradiction that there is Y ∈ (P ∩ S≥2(G)) ∖ {X} such that
Y ∩M ≠ ∅. As Y ∈ S(G), Y ⊆M or M ⊆ Y . In both cases, M ∩ (Y ∪ SY )
would be a nontrivial module of H[Y ∪ SY ]. It follows that Y ∩M = ∅.
Therefore M ⊆ {v ∈ V (G) ∶ {v} ∈ P}. �

Corollary 4.2. Given a graph G such that G/Π(G) is prime, we have

q(G) ≤
⎧⎪⎪⎨⎪⎪⎩

2, if Π≥2(G) = ∅,
max({q(G[X]) ∶X ∈ Π≥2(G)}), if Π≥2(G) ≠ ∅.

Proof. If G is prime, then q(G) = 2 by Corollary 3.4. Assume that G is not
prime, that is, Π≥2(G) ≠ ∅. Let H be the extension of G associated with
Π(G). Suppose that H admits a nontrivial module M . By Proposition 4.1,
{{u} ∶ u ∈ M} ⊆ Π1(G). Thus M ∈ M(G) by Proposition 2.1.(1). By
Proposition 2.2.(2), {{u} ∶ u ∈M} would be a nontrivial module of G/Π(G).

�

Proposition 4.3. Given a graph G such that G/Π(G) is complete or empty,
we have

q(G) ≤ max(2, ⌈log2(∣Π1(G)∣ + 1)⌉),

or

q(G) ≤ max({q(G[X]) ∶X ∈ Π≥2(G)}).

Proof. Assume that G/Π(G) is empty. If Π(G) = Π1(G), then G is empty
by Proposition 2.2.(1), and it suffices to apply Lemma 3.1. Assume that
Π≥2(G) ≠ ∅ and set

W2 = ⋃Π≥2(G).
Let H be the extension of G associated with Π(G). Recall that V (H) =
V (G) ∪ S, V (G) ∩ S = ∅ and ∣S∣ = q(G[X]) where X ∈ Π≥2(G) such that
q(G[X]) = max({q(G[Y ]) ∶ Y ∈ Π≥2(G)}). Moreover H[X ∪ S] is prime.

If ∣Π1(G)∣ ≤ 1, then H is prime by Proposition 4.1 so that q(G) ≤ max
({q(G[Y ]) ∶ Y ∈ Π≥2(G)}). Assume that ∣Π1(G)∣ ≥ 2 and set

W1 = V (G) ∖W2.

By Lemma 3.1, there exists a prime extension H1 of G[W1] to W1 ∪ S1

such that ∣S1∣ = ⌈log2(∣W1∣ + 1)⌉ and S1 is stable in H1. As G/Π(G) is
empty, Π≥2(G) ∈ M(G/Π(G)). By Proposition 2.2.(3), W2 ∈ M(G). Thus
Π≥2(G) ⊆ S(G[W2]) by Proposition 2.3. It follows from Proposition 4.1
that H[W2 ∪ S] is prime. We construct suitable extensions of G according
to whether ∣S1∣ ≤ ∣S∣ or not.
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To begin, suppose ∣S1∣ ≤ ∣S∣. We can assume that

{v ∈ S ∶ v ←→H[X∪S] X} ⊆ S1 ⊆ S

and consider an extension H ′ of H1 and H[W2 ∪ S] to V (G) ∪ S. We show
that H ′ is prime. Let M ∈ M≥2(H ′). By Proposition 2.1.(1), M ∩(W2∪S) ∈
M(H[W2∪S]). SinceH[W2∪S] is prime, M∩(W2∪S) = ∅, ∣M∩(W2∪S)∣ = 1
or M ⊇ (W2 ∪ S).

● Suppose for a contradiction that M ∩ (W2 ∪ S) = ∅. By Proposi-
tion 2.1.(1), M would be a nontrivial module of H1.

● Suppose for a contradiction that ∣M ∩ (W2 ∪ S)∣ = 1 and consider
w ∈W2∪S such that M ∩(W2∪S) = {w}. First, suppose that w ∈W2

and consider Y ∈ Π≥2(G) such that w ∈ Y . By Proposition 2.1.(1),
M ∈ M(G). As Y ∈ S(G) and w ∈ X ∩M , X ⊆ M or M ⊆ X. In
both cases, we would have ∣M ∩ (W2 ∪S)∣ ≥ 2. Second, suppose that
w ∈ S and consider v ∈ W1 ∩M . Since v ←→G X, w ←→H[W2∪S] X
and hence w ∈ S1. It follows from Proposition 2.1.(1) that M would
be a nontrivial module of H1.

Consequently M ⊇ (W2∪S). By Proposition 2.1.(1), M∩(W1∪S1) ∈ M(H1).
As H1 is prime and M ∩ (W1 ∪S1) ⊇ S1, M ∩ (W1 ∪S1) = (W1 ∪S1) so that
M = V (H ′).

Now, assume that ∣S1∣ > ∣S∣. We can assume that S ⊊ S1 and we consider
the unique extension H ′′ of H1 and H[W2 ∪ S] to V (G) ∪ S1 such that

(4.1) (W2, S1 ∖ S)H′′ = 0.

We show thatH ′′ is prime. LetM ∈ M≥2(H ′′). We obtainM∩(W1∪S1) = ∅,
∣M ∩ (W1 ∪S1)∣ = 1 or M ⊇ (W1 ∪S1). If M ∩ (W1 ∪S1) = ∅, then M would
be a nontrivial module of H[W2 ∪ S].

Suppose for a contradiction that ∣M ∩ (W1 ∪ S)1∣ = 1 and consider w ∈
W1∪S1 such that M∩(W1∪S1) = {w}. There is v ∈W2∩M . Let Y ∈ Π≥2(G)
such that v ∈ Y .

● Suppose that w ∈ W1. By Proposition 2.1.(1), M ∈ M(G). Since
Y ∈ S(G) and since Y ∩M ≠ ∅ and w ∈ M ∖ Y , Y ⊆ M . It follows
from Proposition 2.1.(1) that M ∩ (W2 ∪ S) would be a nontrivial
module of H[W2 ∪ S].

● Suppose that w ∈ S1. By Proposition 2.1.(1), M ∩ (W2 ∪ S) ∈
M(H[W2∪S]). As H[W2∪S] is prime, v ∈M∩W2 and M∩S ⊆ {w},
M ∩ (W2 ∪ S) = {v} hence w ∈ S1 ∖ S. For every u ∈ W2 ∖ {v}, we
have (u, v)G = (u,w)H′′ = 0 by (4.1). Since (v,W1)G = 0, we would
have NG(v) = ∅ and hence {v} ∈ Π1(G).

It follows that M ⊇ (W1 ∪ S1). By Proposition 2.1.(1), M ∩ (W2 ∪ S) ∈
M(H[W2∪S]). As H[W2∪S] is prime and M∩(W2∪S) ⊇ S, M∩(W2∪S) =
(W2 ∪ S) so that M = V (H ′′).

Finally, observe that when G/Π(G) is complete, we can proceed as pre-
viously by replacing (4.1) by (W2, S1 ∖ S)H′′ = 1. �
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The next result follows from Corollary 4.2 and Proposition 4.3 by induc-
tion on the number of vertices.

Corollary 4.4. Given a graph G with ∣V (G)∣ ≥ 2,

● q(G) = 2 if for every X ∈ S≥2(G) such that λG(X) ∈ {#, }, we have
∣Π1(G[X])∣ ≤ 1;

● q(G) ≤ max({⌈log2(∣Π1(G[Y ])∣ + 1)⌉ ∶ Y ∈ S≥2(G), λG(Y ) ∈ {#, }})
if there is X ∈ S≥2(G) such that λG(X) ∈ {#, } and ∣Π1(G[X])∣ ≥ 2.

Given the second assertion of Corollary 4.4, Theorem 1.4 follows from the
next transcription in terms of the modular decomposition tree. Let G be
a graph. Denote by M(G) the family of the maximal elements of M≥2(G)
under inclusion which are cliques or stable sets in G.

Proposition 4.5. Let G be a graph. Given M ⊆ V (G), we have M ∈M(G)
if and only if M ∈ M≥2(G), λG(M̂) ∈ {#, } and M = {v ∈ M̂ ∶ {v} ∈
Π(G[M̂])}.

Proof. To begin, consider M ∈ M(G) and assume that M is a stable set in

G. By Proposition 2.1.(1), M ∈ M(G[M̂]). Set

Q = {X ∈ Π(G[M̂]) ∶X ∩M ≠ ∅}.
By definition of M̂ , ∣Q∣ ≥ 2 and hence M = ⋃Q because Q ⊆ S(G[M̂]).
Furthermore, Q ⊆ S(G[M]) by Proposition 2.3. As all the strong modules
of an empty graph are trivial, we obtain ∣X ∣ = 1 for each X ∈ Q, that is,

M ⊆ {v ∈ M̂ ∶ {v} ∈ Π(G[M̂])}.
By Proposition 2.2.(2), Q ∈ M(G[M̂]/Π(G[M̂])). For a contradiction, sup-

pose that λG(M̂) =<. Since Q ∈ M≥2(G[M̂]/Π(G[M̂])), Q = Π(G[M̂])
and hence M = M̂ . As ∣X ∣ = 1 for each X ∈ Q, G[M̂]/Π(G[M̂]) and

G[M̂] are isomorphic by Proposition 2.2.(1). It would follow that G[M]
is prime. Consequently λG(M̂) ∈ {#, }. Given v ≠ w ∈ M , we have
({v},{w})G[M̂]/Π(G[M̂])

= (v,w)G = 0. Thus

λG(M̂) = #.
Since λG(M̂) = #, we have Π1(G[M̂]) ∈ M(G[M̂]/Π(G[M̂])). By Proposi-

tion 2.2.(3), ⋃Π1(G[M̂]) ∈ M(G[M̂]) and hence ⋃Π1(G[M̂]) ∈ M(G) by

Proposition 2.1.(2). Given v ≠ w ∈ ⋃Π1(G[M̂]), we have

(v,w)G = ({v},{w})G[M̂]/Π(G[M̂])
= 0.

Therefore ⋃Π1(G[M̂]) is a stable set of G. As M ⊆ ⋃Π1(G[M̂]), M =
⋃Π1(G[M̂]) by maximality of M . It follows that

M = {v ∈ M̂ ∶ {v} ∈ Π(G[M̂])}.
Conversely, consider M ∈ M≥2(G) such that λG(M̂) = # and M = {v ∈

M̂ ∶ {v} ∈ Π(G[M̂])}. As λG(M̂) = #, Π1(G[M̂]) ∈ M(G[M̂]/Π(G[M̂])).
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By Proposition 2.2.(3), M = ⋃Π1(G[M̂]) ∈ M(G[M̂]) and hence M ∈
M(G) by Proposition 2.1.(2). Since (v,w)G = ({v},{w})G[M̂]/Π(G[M̂])

= 0

for all v ≠ w ∈ M , M is a stable set in G. There is N ∈ M(G) such that
N ⊇ M . As M is a stable set in G, N is as well. By what precedes, N =
{v ∈ N̂ ∶ {v} ∈ Π(G[N̂])}. We have M̂ ⊆ N̂ because M ⊆ N . Furthermore

M̂ ∈ S(G[N̂]) by Proposition 2.3. Given v ∈ M , we obtain {v} ⊊ M̂ ⊆ N̂ .

Since {v} ∈ Π(G[N̂]), M̂ = N̂ . Therefore M = N because M = {v ∈ M̂ ∶
{v} ∈ Π(G[M̂])} and N = {v ∈ N̂ ∶ {v} ∈ Π(G[N̂])}. �

Let G be a graph such that max(αM(G), ωM(G)) ≥ 2. Consider M ∈
M(G). By Proposition 4.5, λG(M̂) ∈ {#, } and ∣Π1(G[M̂])∣ = ∣M ∣ ≥ 2. By
Corollary 4.4,

p(G) ≤ q(G) ≤ max({⌈log2(∣Π1(G[Y ])∣+1)⌉ ∶ Y ∈ S≥2(G), λG(Y ) ∈ {#, }}).

By Proposition 4.5,

max({⌈log2(∣Π1(G[Y ])∣ + 1)⌉ ∶ Y ∈ S≥2(G), λG(Y ) ∈ {#, }})

equals

max({⌈log2(∣M ∣ + 1)⌉ ∶M ∈M(G)}).

Clearly

max({⌈log2(∣M ∣ + 1)⌉ ∶M ∈M(G)}) = ⌈log2(max(αM(G), ωM(G)) + 1)⌉

and consequently we recover Theorem 1.4,

p(G) ≤ ⌈log2(max(αM(G), ωM(G)) + 1)⌉.
To obtain Corollary 1.5, we prove Lemma 1.3.

Proof of Lemma 1.3. Let G be a graph such that max(αM(G), ωM(G)) ≥ 2.
There exists S ∈ M(G) such that ∣S∣ = max(αM(G), ωM(G)) and S is a
clique or a stable set in G. Given an integer p < log2(max(αM(G), ωM(G))),
consider any p-extension H of G. We must prove that H is not prime. We
have 2∣V (H)∖V (G)∣ < ∣S∣ so that the function S Ð→ 2V (H)∖V (G), defined by
s ↦ NH(s) ∩ (V (H) ∖ V (G)) is not injective. There are s ≠ t ∈ S such that
v ←→H {s, t} for every v ∈ V (H) ∖ V (G). As S is a module of G, we have
v ←→H {s, t} for every v ∈ V (G) ∖ S. Since S is a clique or a stable set in
G, {s, t} is a nontrival module of H. �

When a graph or its complement admits isolated vertices, we obtain the
following.

Lemma 4.6. Given a graph G, if ι(G) ≠ 0 or ι(G) ≠ 0, then

p(G) ≥ ⌈log2(max(ι(G), ι(G)) + 1)⌉.
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Proof. By interchanging G and G, assume that ι(G) ≥ ι(G). Given p <
⌈log2(ι(G) + 1)⌉, consider any p-extension H of G. We have 2∣V (H)∖V (G)∣ ≤
ι(G) and we verify that H is not prime.

For each x ∈ V (G) such that NG(x) = ∅, we have NH(x) ⊆ V (H)∖V (G).
Thus (NH)↾{v∈V (G)∶NG(v)=∅} is a function from {v ∈ V (G) ∶ NG(v) = ∅} to

2V (H)∖V (G). As observed in the proof of Lemma 3.1, if (NH)↾{v∈V (G)∶NG(v)=∅}

is not injective, then {x, y} is a nontrivial module of H when x ≠ y ∈ {v ∈
V (G) ∶ NG(v) = ∅} with NH(x) = NH(y). So assume that

(NH)↾{v∈V (G)∶NG(v)=∅} is injective.

As 2∣V (H)∖V (G)∣ ≤ ι(G), we obtain that (NH)↾{v∈V (G)∶NG(v)=∅} is bijective.
Thus there is x ∈ {v ∈ V (G) ∶ NG(v) = ∅} such that NH(x) = ∅. Therefore
V (H) ∖ {x} is a nontrivial module of H and H is not prime. �

The next result is a simple consequence of Proposition 4.5 which is useful
in proving Theorem 1.6.

Corollary 4.7. Given a graph G such that max(αM(G), ωM(G)) ≥ 2, the
elements of M(G) are pairwise disjoint.

Proof. Consider M,N ∈ M(G) such that M ∩ N ≠ ∅. Let v ∈ M ∩ N .

Since M̂, N̂ ∈ S(G) and v ∈ M̂ ∩ N̂ , M̂ ⊆ N̂ or N̂ ⊆ M̂ . For instance,

assume that M̂ ⊆ N̂ . By Proposition 2.3, M̂ ∈ S(G[N̂]). Furthermore

{v} ∈ Π(G[N̂]) by Proposition 4.5. As {v} ⊊ M̂ ⊆ N̂ , we obtain M̂ = N̂ .

Lastly, M = {w ∈ M̂ ∶ {w} ∈ Π(G[M̂])} and N = {w ∈ N̂ ∶ {w} ∈ Π(G[N̂])}
by Proposition 4.5. Thus M = N . �

5. Proof of Theorem 1.6

Given a graph G, denote by P(G) the family of M ∈ M(G) such that
G[M] is prime. For every M ∈ P(G), M ∈ S(G) because G[M] is prime. It
follows that the elements of P(G) are pairwise disjoint. Thus the elements
of M(G) ∪ P(G) are also by Corollary 4.7. Set

I(G) = V (G) ∖ ((⋃M(G)) ∪ (⋃P(G))).
We prove Theorem 1.6 when max(αM(G), ωM(G)) = 2.

Proposition 5.1. For every graph G such that max(αM(G), ωM(G)) = 2,

p(G) = 2 if and only if ι(G) = 2 or ι(G) = 2.

Proof. It follows from Lemma 1.3 and Theorem 1.4 that p(G) = 1 or 2. To
begin, assume that ι(G) = 2 or ι(G) = 2. By Lemma 4.6, p(G) ≥ 2 and
hence p(G) = 2. Conversely, assume that p(G) = 2. Let a /∈ V (G). As
max(αM(G), ωM(G)) = 2, ∣N ∣ = 2 for each N ∈ M(G). Let N0 ∈ M(G). For
N ∈ P(G), G[N] is prime. By Lemma 3.3, G[N] admits a prime extension
HN defined on N ∪{a}. We consider any 1-extension H of G to V (G)∪{a}
satisfying the following.
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(1) For each N ∈M(G), a /←→H N .
(2) For each N ∈ P(G), H[N ∪ {a}] =HN .
(3) Let v ∈ I(G). There is i ∈ {0,1} such that (v,N0)G = i. We require

that (v, a)H ≠ i.
To begin, we prove that S≥2(G) ∩M(H) = ∅. Given M ∈ S≥2(G), we have
to verify that a /←→H M . Let N be a minimal element under inclusion
of {N ′ ∈ S≥2(G) ∶ N ′ ⊆ M}. By Proposition 2.3, Π(G[N]) ⊆ S(G). By
minimality of N , Π(G[N]) = Π1(G[N]) so that G[N] and G[N]/Π(G[N])
are isomorphic by Proposition 2.2.(1). We distinguish the following two
cases.

● Assume that λG(N) =<. We obtain that G[N] is prime, that is,
N ∈ P(G). As H[N ∪ {a}] is prime, a /←→H N .

● Assume that λG(N) ∈ {#, }. By Proposition 4.5, N ∈M(G). Thus
∣N ∣ = 2 and a /←→H N by definition of H.

In both cases, a /←→H N and hence a /←→H M .
Now we prove that M≥2(G) ∩ M(H) = ∅. Let M ∈ M≥2(G). Since

S≥2(G) ∩M(H) = ∅, assume that M /∈ S≥2(G). Set Q = {X ∈ Π(G[M̂]) ∶
X ∩ M ≠ ∅}. By Proposition 2.1.(1), M ∈ M(G[M̂]). By definition

of M̂ , ∣Q∣ ≥ 2. Thus M = ⋃Q because Π(G[M̂]) ⊆ S(G[M̂]). Fur-

thermore Q ≠ Π(G[M̂]) because M /∈ S≥2(G). By Proposition 2.2.(2),

Q ∈ M(G[M̂]/Π(G[M̂])). As 2 ≤ ∣Q∣ < ∣Π(G[M̂])∣, λG(M̂) ∈ {#, }. If

there is X ∈ Q ∩ Π≥2(G[M̂]), then a /←→H X by what precedes and hence

a /←→H M . Assume that Q ⊆ Π1(G[M̂]). We obtain that M is a clique or a
stable set in G. Since max(αM(G), ωM(G)) = 2, M ∈ M(G) and a /←→H M
by definition of H.

As p(G) = 2, H admits a nontrivial module MH . We have a ∈MH because
M≥2(G) ∩M(H) = ∅.

First, we show that N ⊆MH for each N ∈ P(G). By Proposition 2.1.(1),
MH ∩ (N ∪ {a}) ∈ M(H[N ∪ {a}]). Since H[N ∪ {a}] is prime and a ∈
MH ∩ (N ∪ {a}), we obtain either (MH ∖ {a}) ∩N = ∅ or N ⊆ MH ∖ {a}.
Suppose for a contradiction that (MH∖{a})∩N = ∅. By Proposition 2.1.(1),
MH ∖ {a} ∈ M(G). There is i ∈ {0,1} such that (MH ∖ {a},N)G = i by
Proposition 2.1.(3). Therefore (a,N)H = i which contradicts the fact that
H[N ∪ {a}] is prime. It follows that N ⊆MH . Thus

(5.1) ⋃P(G) ⊆MH .

Second, we show that N∩MH ≠ ∅ for each N ∈M(G). Otherwise consider
N ∈ M(G) such that N ∩MH = ∅. There is i ∈ {0,1} such that (MH ∖
{a},N)G = i. Thus (a,N)H = i which contradicts a /←→H N . Therefore

(5.2) N ∩MH ≠ ∅ for each N ∈M(G).
Third, let v ∈ I(G). By (5.2), N0∩MH ≠ ∅. Since (v,N0∩MH)G ≠ (v, a)H ,

v ∈MH . Hence

(5.3) I(G) ⊆MH .
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By (5.1) and (5.3),

(5.4) V (G) ∖MH ⊆M(G).

To conclude, consider v ∈ V (H)∖MH . By (5.4), there is Nv ∈M(G) such
that v ∈ Nv. By interchanging G and G, assume that Nv is a stable set
in G. Since v ←→H MH and (v,Nv ∩MH)G = 0, we obtain (v,MH)H = 0.
Let N ∈ M(G) ∖ {Nv}. By Corollary 4.7, N ∩ Nv = ∅. As N ∩MH ≠ ∅
by (5.2), we have (v,N ∩MH)G = 0 and hence (v,N)G = 0. It follows
that NG(v) = ∅. Therefore (Nv, V (G) ∖ Nv)G = 0 because Nv ∈ M(G).
Since Nv is a stable set in G, we obtain Nv ⊆ {u ∈ V (G) ∶ NG(u) = ∅}.
Clearly {u ∈ V (G) ∶ NG(u) = ∅} ∈ M(G) and {u ∈ V (G) ∶ NG(u) = ∅} is
a stable set in G. Thus ι(G) ≤ max(αM(G), ωM(G)) = 2. Consequently
Nv = {u ∈ V (G) ∶ NG(u) = ∅}. �

Proof of Theorem 1.6. Consider a graph G such that

max(αM(G), ωM(G)) = 2k

where k ≥ 1. It follows from Corollary 1.5 that p(G) = k or k + 1.
To begin, assume that ι(G) = 2k or ι(G) = 2k. By Lemma 4.6, p(G) ≥ k+1

and hence p(G) = k + 1.
Conversely, assume that p(G) = k + 1. If k = 1, then it suffices to apply

Proposition 5.1. Assume that k ≥ 2. For convenience set

Mmax(G) = {N ∈M(G) ∶ ∣N ∣ = max(αM(G), ωM(G))}.

With each N ∈Mmax(G) associate wN ∈ N . Set W = {wN ∶ N ∈Mmax(G)}.
We prove that max(αM(G−W ), ωM(G−W )) = 2k−1. Let N ∈Mmax(G).

By Corollary 4.7, the elements of Mmax(G) are pairwise disjoint. Thus
N ∖W = N ∖ {wN}. Clearly N ∖ {wN} is a clique or a stable set in G −W .
Furthermore N ∖ {wN} ∈ M(G −W ). Therefore 2k − 1 = ∣N ∖ {wN}∣ ≤
max(αM(G−W ), ωM(G−W )). Now consider N ′ ∈Mmax(G−W ). We show
that N ′ ∈ M(G). We have to verify that for each N ∈ Mmax(G), wN ←→G

N ′. Let N ∈Mmax(G). First, asume that there is v ∈ (N ∖ {wN}) ∖N ′. We
have v ←→G N

′. As N is a clique or a stable set in G, {v,wN} ∈M(G[N]).
By Proposition 2.1.(2), {v,wN} ∈ M(G). Thus wN ←→G N ′. Second,
assume that N ∖ {wN} ⊆ N ′. Clearly wN ←→G N ′ when N ∖ {wN} = N ′.
Assume that N ′ ∖ (N ∖ {wN}) ≠ ∅. By interchanging G and G, assume
that N ′ is a clique in G −W . As N ∖ {wN} ⊆ N ′ and ∣N ∖ {wN}∣ ≥ 2, we
obtain that N is a clique in G. Since (N ∖ {wN},N ′ ∖N)G = 1 and since
N ∈ M(G), we have (wN ,N

′ ∖N)G = 1. Furthermore (wN ,N ∖ {wN})G = 1
because N is a clique in G. Therefore (wN ,N

′)G = 1. Consequently N ′ ∈
M(G). As N ′ is a clique in G, there is M ∈ M(G) such that M ⊇ N ′. If
M /∈ Mmax(G), then ∣N ′∣ ≤ ∣M ∣ < max(αM(G), ωM(G)). If M ∈ Mmax(G),
then N ′ ⊆M ∖ {wM} and hence ∣N ′∣ < ∣M ∣ = max(αM(G), ωM(G)). In both
cases, we have ∣N ′∣ = max(αM(G−W ), ωM(G−W )) < max(αM(G), ωM(G)).
It follows that max(αM(G −W ), ωM(G −W )) = 2k − 1.
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By Corollary 1.5, p(G−W ) = k and hence there exists a prime k-extension
H ′ of G −W . We extend H ′ to V (H ′) ∪W as follows. Let N ∈ Mmax(G).
Consider the function fN ∶ N ∖ {wN} Ð→ 2V (H′)∖V (G−W ) defined by v ↦
NH′(v) ∖ V (G −W ) for v ∈ N ∖ {wN}. Since H ′ is prime, fN is injective.

As ∣N ∖ {wN}∣ = 2k − 1 and ∣2V (H′)∖V (G−W )∣ = 2k, there is a unique XN ⊆
V (H ′)∖V (G−W ) such that fN(v) ≠XN for every v ∈ N ∖{wN}. Let H be
the extension of H ′ to V (H ′)∪W such that NH(wN)∩(V (H ′)∖V (G−W )) =
XN for each N ∈ Mmax(G). As p(G) = k + 1, H is not prime. Consider a
nontrivial module MH of H.

Observe the following. Given N ≠ N ′ ∈Mmax(G),

(5.5)
N ∩MH ≠ ∅

and
N ′ ∩MH ≠ ∅

⎫⎪⎪⎪⎬⎪⎪⎪⎭
Ô⇒MH ⊇ V (H ′).

Indeed, by Proposition 2.1.(1), MH ∩ V (G) ∈ M(G). Since N̂ , N̂ ′ ∈ S(G)
and since (MH ∩ V (G)) ∩ N̂ ≠ ∅ and (MH ∩ V (G)) ∩ N̂ ′ ≠ ∅, MH ∩ V (G)
is comparable to N̂ and N̂ ′ under inclusion. Suppose for a contradiction
that MH ∩ V (G) ⊊ N̂ and MH ∩ V (G) ⊊ N̂ ′. It follows that N ′ ∩ N̂ ≠ ∅ and

N ∩ N̂ ′ ≠ ∅. As N̂ ′ ∈ S(G), N̂ ′ ⊊ N or N ⊆ N̂ ′. In the first instance, it

follows from Proposition 2.3 that N̂ ′ would be a nontrivial strong module
of G[N] which contradicts the fact that N is a clique or a stable set in G.

Thus N ⊆ N̂ ′ and hence N̂ ⊆ N̂ ′. Similarly N ′ ⊆ N̂ and N̂ ′ ⊆ N̂ . Therefore
N̂ = N̂ ′ and it would follow from Proposition 4.5 that N = N ′. Consequently
N̂ ⊆ (MH ∩ V (G)) or N̂ ′ ⊆ (MH ∩ V (G)). For instance, assume that N̂ ⊆
(MH ∩V (G)). By Proposition 2.1.(1), MH ∩V (H ′) ∈ M(H ′). Furthermore
(MH ∩ V (H ′)) ⊇ (N ∖W ) and N ∖W = N ∖ {wN} by Corollary 4.7. Since
H ′ is prime, we have V (H ′) ⊆MH . It follows that (5.5) holds.

AsH ′ is prime andMH∩V (H ′) ∈ M(H ′), we have either ∣MH∩V (H ′)∣ ≤ 1
or MH ⊇ V (H ′). For a contradiction, suppose that ∣MH ∩ V (H ′)∣ ≤ 1.
There is N ∈ Mmax(G) such that wN ∈ MH . It follows from (5.5) that
MH ∩W = {wN}. Thus there is v ∈ V (H ′) such that MH ∩ V (H ′) = {v}.
Clearly MH = {v,wN} and we distinguish the following two cases to obtain
a contradiction.

● Suppose that v ∈ V (G − W ). By Proposition 2.1.(1), {v,wN} ∈
M(G). Therefore there is N ′ ∈ Mmax(G) such that N ′ ⊇ {v,wN}.
By Corollary 4.7, N = N ′ and we would obtain NH(wN) ∩ (V (H ′) ∖
V (G −W )) = fN(v).

● Suppose that v ∈ V (H ′) ∖ V (G − W ). There is i ∈ {0,1} such
that (wN ,N ∖ {wN})G = i. We obtain (v,N ∖ {wN})H′ = i be-
cause {v,wN} ∈ M(H). Since fN is injective, the function gN ∶
N ∖{wN} Ð→ 2((V (H′)∖V (G−W ))∖{v}), defined by gN(u) = fN(u)∖{v}
for u ∈ N ∖{wN}, is injective as well. We would obtain 2k −1 ≤ 2k−1.
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Consequently V (H ′) ⊆ MH . As MH is a nontrivial module of H, there
exists N ∈ Mmax(G) such that wN /∈ M . By interchanging G and G, as-
sume that N is a stable set in G. We have (wN ,N ∖ {wN})G = 0 and
hence (wN , V (H ′))H = 0. In particular (wN , V (G − W ))G = 0. Given
N ′ ∈Mmax(G) ∖ {N}, we obtain (wN ,N

′ ∖ {wN ′})G = 0. Since N ′ ∈ M(G),
(wN ,wN ′)G = 0. It follows that NG(wN) = ∅. As at the end of the proof of
Proposition 5.1, we conclude by N = {u ∈ V (G) ∶ NG(u) = ∅}. �

Lastly, we examine the non prime graphs G such that

αM(G) = ωM(G) = 1.

Proposition 5.2. For every non prime graph G such that ∣V (G)∣ ≥ 4 and
αM(G) = ωM(G) = 1, we have p(G) = 1.

Proof. Consider a minimal element Nmin of S≥2(G). By Proposition 2.3,
Π( G[Nmin]) ⊆ S(G). By minimality of Nmin, Π(G[Nmin]) = Π1(G[Nmin]).
Thus G[Nmin] and G[Nmin]/Π(G[Nmin]) are isomorphic by Proposi-
tion 2.2.(1). If λG( Nmin) ∈ {#, }, then Nmin is a clique or a stable set in G
and there would be N ∈M(G) such that N ⊇ Nmin. Therefore λG(Nmin) =<
and Nmin ∈ P(G).

Let a /∈ V (G). For each N ∈ P(G), G[N] is prime. By Lemma 3.3, G[N]
admits a prime 1-extension HN to N ∪ {a}. We consider the 1-extension H
of G to V (G) ∪ {a} satisfying the following.

(1) For each N ∈ P(G), H[N ∪ {a}] =HN .
(2) Let v ∈ I(G). There is i ∈ {0,1} such that (v,Nmin)G = i. We require

that (v, a)H ≠ i.
We proceed as in the proof of Proposition 5.1, to show that M≥2(G) ∩

M(H) = ∅. To begin, we prove that S≥2(G) ∩ M(H) = ∅. Given M ∈
S≥2(G), we have to verify that a /←→H M . Let N be a minimal element under
inclusion of {N ′ ∈ S≥2(G) ∶ N ′ ⊆M}. We obtain that Π(G[N]) = Π1(G[N])
so that G[N] and G[N]/Π(G[N]) are isomorphic by Proposition 2.2.(1). If
λG(N) ∈ {#, }, then N is a clique or a stable set in G and there would be
N ′ ∈ M(G) such that N ′ ⊇ N . Thus λG(N) =<. We obtain that G[N] is
prime, that is, N ∈ P(G). Since H[N ∪ {a}] is prime, a /←→H N and hence
a /←→H M .

Now we prove that M≥2(G) ∩ M(H) = ∅. Let M ∈ M≥2(G). Since

S≥2(G) ∩M(H) = ∅, assume that M /∈ S≥2(G). Set Q = {X ∈ Π(G[M̂]) ∶
X ∩M ≠ ∅}. We obtain that M = ⋃Q, ∣Q∣ ≥ 2 and λG(M̂) ∈ {#, }. If

∣Π1(G[M̂])∣ ≥ 2, then we would have {v ∈ M̂ ∶ {v} ∈ Π(G[M̂])} ∈ M(G)
by Proposition 4.5. Consequently ∣Π1(G[M̂])∣ ≤ 1 and there is X ∈ Q ∩
Π≥2(G[M̂]). By what precedes a /←→H X and hence a /←→H M .

Lastly, we establish that H is prime. Let MH ∈ M≥2(H). As previ-
ously shown, a ∈ MH . We show that N ⊆ MH for each N ∈ P(G). By
Proposition 2.1.(1), MH ∩ (N ∪ {a}) ∈ M(H[N ∪ {a}]). Since H[N ∪ {a}]
is prime and a ∈ MH ∩ (N ∪ {a}), we obtain either (MH ∖ {a}) ∩ N = ∅
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or N ⊆ MH ∖ {a}. Suppose for a contradiction that (MH ∖ {a}) ∩N = ∅.
By Proposition 2.1.(1), MH ∖ {a} ∈ M(G). There is i ∈ {0,1} such that
(MH∖{a},N)G = i by Proposition 2.1.(3). Therefore (a,N)H = i which con-
tradicts the fact that H[N ∪{a}] is prime. It follows that N ⊆MH for each
N ∈ P(G). In particular Nmin ⊆MH . Let v ∈ I(G). As (v,Nmin)G ≠ (v, a)H ,
v ∈MH . Consequently MH = V (H). �
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