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ANOTHER SHORT PROOF OF THE JONI-ROTA-GODSIL
INTEGRAL FORMULA FOR COUNTING BIPARTITE

MATCHINGS

ERIN E. EMERSON AND P. MARK KAYLL

Abstract. How many perfect matchings are contained in a given bi-
partite graph? An exercise in Godsil’s 1993 Algebraic Combinatorics
solicits proof that this question’s answer is an integral involving a cer-
tain rook polynomial. Though not widely known, this result appears
implicitly in Riordan’s 1958 An Introduction to Combinatorial Analysis.
It was stated more explicitly and proved independently by S. A. Joni
and G.-C. Rota [JCTA 29 (1980), 59–73] and C. D. Godsil [Combina-
torica 1 (1981), 257–262]. Another generation later, perhaps it’s time
both to revisit the theorem and to broaden the formula’s reach.

Introduction

This note considers the relation between the number of perfect match-
ings of a bipartite graph G and the number of matchings of various sizes
in its ‘bipartite complement’ G̃. These numbers are related by a surprising
integral formula involving the rook polynomial of G̃. Though not widely
known, this result appears implicitly in Riordan’s book [10]. It was first
stated more explicitly, using an integral, by Joni and Rota [8], although it
was Godsil [5] who cast it in the form treated here. See also [4], which
predates the later results in addressing the special case when G is a disjoint
union of complete bipartite graphs. Our purpose is twofold: to present a
simple, stand-alone proof and to broaden the formula’s reach. Our proof,
using inclusion-exclusion, is at once more direct than Godsil’s and more
transparent than the others’; the remarks following the statement of The-
orem 2 elaborate. Readers might appreciate how this proof ties together
the sign alternation in the rook polynomial’s definition with that in the
inclusion-exclusion formula.
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Notation and terminology

Given a graph G and an integer k, we denote by µG(k) the number of
matchings in G containing exactly k edges; naturally, µG(0) = 1. If k is half
the number of vertices, i.e. if µG(k) counts perfect matchings, then we write
Ξ(G) for µG(k).1 If G is a spanning subgraph of Kn,n, then the rook poly-
nomial of G is defined by ρG(t) :=

∑n
k=0(−1)kµG(k)tn−k (see [6] or [10] for

etymology), and the bipartite complement G̃ shares its vertex set with G and
has for edges all the edges of Kn,n that are not in G. Most standard graph
theory texts should furnish any omitted definitions; we generally follow [2].

Results

The formula under consideration is the conclusion of the first result.

Theorem 1 ([5, 8]). If G is a spanning subgraph of Kn,n, then

(1) Ξ(G) =
∫ ∞

0
ρ eG(t)e−t dt.

In our statement of the Principle of Inclusion-Exclusion (PIE), we remind
the reader of the shorthand [m] for {1, 2, . . . ,m} when m is a nonnegative
integer.

PIE. If {Ai}mi=1 is a family of subsets of a finite set X, then

(2)
∣∣∣X \ m⋃

i=1

Ai

∣∣∣ =
∑

I⊆[m]

(−1)|I|
∣∣∣⋂

i∈I

Ai

∣∣∣.
Any elementary combinatorics text, such as [3] (from which we borrowed
the catchy abbreviation), is likely to present a proof of PIE.

Proof of Theorem 1. To determine Ξ(G), let X denote the set of perfect
matchings of Kn,n, and suppose that G̃ has m ≥ 0 edges; say E(G̃) = [m].
For i ∈ E(G̃), let Ai = {M ∈ X : i ∈ M}. The elements of X \

⋃m
i=1Ai are

precisely the perfect matchings of G; whence Ξ(G) is given by the right side
of (2), which we proceed to simplify.

First note that when I ⊆ E(G̃) = [m] is not a matching in G̃, we have⋂
i∈I Ai = ∅, so the only sets I ⊆ [m] contributing nonzero terms to the

sum in (2) are matchings in G̃. For a fixed such I, we have
∣∣⋂

i∈I Ai

∣∣ =
(n − |I|)! because the left side counts those M ∈ X containing each i ∈ I
and so effectively counts the perfect matchings of Kn−|I|,n−|I|. Now, given
an integer k, with 0 ≤ k ≤ m, there are µ eG(k) matchings in G̃ of size k;

1We chose this notation because the Greek letter Xi (Ξ) resembles a perfect matching
in a graph of order six, and, conveniently enough, six is a perfect number.
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this is the number of nonzero terms in (2) when |I| = k. Thus, if we sum
instead over the possible sizes k of I, we obtain

Ξ(G) =
m∑

k=0

(−1)kµ eG(k)(n− k)!.

Since G̃ spans Kn,n, each µ eG(k) with k > n is zero, and since |E(G̃)| = m,
each µ eG(k) with k > m is zero. This implies that the “m” in the preceding
identity may be replaced by “n”. On introducing Euler’s gamma function
(see, e.g., [1]) to rewrite the factorials, we finally obtain

Ξ(G) =
n∑

k=0

(−1)kµ eG(k)
∫ ∞

0
tn−ke−t dt =

∫ ∞
0

( n∑
k=0

(−1)kµ eG(k)tn−k
)
e−t dt,

which is (1). �

For general (simple but not necessarily bipartite) graphs G (with n ver-
tices), Theorem 1 has an analogue in which the rook polynomial is replaced
by the matchings polynomial αG(t) :=

∑bn/2c
k=0 (−1)kµG(k)tn−2k, the bipar-

tite complement is replaced by the ordinary complement G, and the inte-
gration is with respect to a different measure.

Theorem 2 ([5]). Each graph G satisfies Ξ(G) =
1√
2π

∫ ∞
−∞

α
G

(t)e−t2/2 dt.

We mention Theorem 2 because it admits a proof closely paralleling our
proof of Theorem 1. See also [9, Exercise 5.18(a)] which takes the same
approach to a related result.

Remarks

As noted above, Riordan’s book includes Theorem 1 implicitly. The re-
sult is a consequence of a generating-function identity, also derived using
inclusion-exclusion (see [10, Theorem 2, p. 180]). Godsil’s proofs of Theo-
rems 1 and 2 (see [5, 6]) use induction leaning on the basic properties of
ρG(t) and αG(t). As suggested above, Joni and Rota [8] actually proved
a generalization of Theorem 1; they applied Möbius inversion to a related
simplicial complex.

Theorems 1 and 2 have many applications, both in combinatorics and in
the theory of orthogonal polynomials. For example, Theorem 1 “is perhaps
the fundamental tool in” [7] (the quotation being from op. cit.). We present
one combinatorial application below and cite [6] for further discussion and
references.

An application to derangements

Recall that a derangement of a set S is a permutation of S admitting
no fixed points. If |S| = n ≥ 1, then the number dn of derangements of S
can be written as dn = n!

∑n
k=0(−1)k/k! or described as the integer closest
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to n!/e. Typical derivations of these facts apply either inclusion-exclusion
or generating functions (see, e.g., [3, 11]) but Godsil [6] took the following
novel approach using Theorem 1.

Fix an integer n ≥ 1 and consider the bipartite graph G obtained from
Kn,n by removing a perfect matching M from Kn,n. Notice that the perfect
matchings of G correspond bijectively to the derangements of an n-set; thus,
dn = Ξ(G). The bipartite complement G̃, being induced by M , satisfies
µ eG(k) =

(
n
k

)
, for 0 ≤ k ≤ n, which implies that ρ eG(t) = (t − 1)n. Now

Theorem 1 shows that dn =
∫∞
0 (t−1)ne−t dt. If we separate the integral and

change variables on the first subinterval, another evaluation of the gamma
function Γ presents itself:

dn =
∫ ∞

1
(t− 1)ne−t dt +

∫ 1

0
(t− 1)ne−t dt

=
∫ ∞

0
xne−(x+1) dx +

∫ 1

0
(t− 1)ne−t dt

= e−1Γ(n+ 1) + En,(3)

where we now view the second integral as an error term En. It turns out
that En doesn’t contribute much to dn; since e−t < 1 on the interval (0, 1),
we obtain

|En| ≤
∫ 1

0

∣∣(t− 1)ne−t
∣∣ dt < ∫ 1

0
(1− t)n dt =

1
n+ 1

.

This shows that for each n ≥ 1, the error |En| < 1/2, and it follows from
(3) that dn is the integer closest to e−1Γ(n+ 1), i.e., to n!/e.
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