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CLASS NUMBER APPROXIMATION IN CUBIC

FUNCTION FIELDS

RENATE SCHEIDLER AND ANDREAS STEIN

Abstract. We develop explicitly computable bounds for the order of
the Jacobian of a cubic function field. We use approximations via trun-
cated Euler products and thus derive effective methods of computing the
order of the Jacobian of a cubic function field. Also, a detailed discussion
of the zeta function of a cubic function field extension is included.

1. Introduction and Motivation

A central problem in number theory and algebraic geometry is the de-
termination of the size of the group of rational points on the Jacobian of
an algebraic curve over a finite field. This question also has applications to
cryptography, since cryptographic systems based on algebraic curves gener-
ally require a Jacobian of non-smooth order in order to foil certain types of
attacks.

There a variety of methods for accomplishing this task; some are general,
while others are only applicable to specific types of curves. In the interest
of space, we forego citing most the large volume of literature on elliptic and
hyperelliptic curves in detail, and mention only two sources. Kedlaya’s p-
adic algorithm for hyperelliptic curves [23, 24] is particularly well-suited to
fields of small characteristic and has since been extended to Artin-Schreier
extensions [14, 26, 27], superelliptic curves [17, 28], Cab curves [15], and
more general curves [18, 13]; see also the survey by Kelaya [25]. A very
different approach was first given by Schoof for elliptic curves [37]; this
method was generalized to Abelian varieties by Pila [30, 31] and improved
by Adleman and Huang [1, 2]. The Adleman-Huang algorithm computes
the characteristic polynomial of the Frobenius endomorphism of an Abelian
variety of dimension d in projective N -space over a finite field Fq in time

O(log(q)δ) where δ depends polynomially on d and N . For plane curves
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of degree n, a randomized algorithm with running time O(log(q)n
O(1)

) was
given by Hang and Ierardi [22].

We note that none of the last five citations above provides an imple-
mentation or numerical data, so their practical effectiveness remains to be
established. In fact, the method of [2] requires a semi-algebraic descrip-
tion of the Jacobian as an algebraic variety, and while the authors illustrate
how to obtain such a description for hyperelliptic curves from the Mumford
representations of reduced divisors, this task can be complicated for more
general curves. On the other hand, methods for special types of curves have
yielded impressive results. The algorithm of [19] for genus 2 hyperelliptic
curves, for example, produced class numbers of 39 decimal digits, and the
improvements of [20] pushed this up to the cryptographically secure range
of 50 decimal digits (164 bits). In 2002, a class number of 29 digits for a
genus 3 hyperelliptic curve was computed in [39]. The method for Picard
curves given in [4] generated prime class numbers of up to 39 decimal digits
as well as a 55-digit class number with a 52-digit (173 bit) prime factor.

In this paper, we develop explicit bounds on the divisor class number
h, i.e. the order of the Jacobian of a cubic extension K of a rational func-
tion field Fq(X) of finite characteristic different from 3. More exactly, we
determine a good approximation E and an accuracy measure L such that
|h − E| < L2. In the case where the genus g of the extension is at most 2,
the Hasse-Weil bound yields good choices for E and L. If g ≥ 3, then we
find better effective choices for E and L by making use of the Euler product
representation of the L-polynomial of K/Fq(X). In essence, E is obtained
by truncating this Euler product at some suitable point, and L is given by
the tail of the truncated Euler product. Here, the cut-off point for the Euler
product needs to be chosen in a way that minimizes the time required to
find h in the open interval ]E − L2, E + L2[.

Once E and L are determined, the actual value of h can subsequently
be found by searching the open interval ]E − L2, E + L2[ using Shanks’
baby step-giant step method or Pollard’s kangaroo method. The complexity
of this search (in terms of multiplications and reductions on ideals in the
maximal order of K/Fq(X)) is determined by the square root of the length

of the interval, i.e. O(
√

2L2 − 1) = O(L), so the overall complexity of the
method is O(max{TE , L}), where TE denotes the time for computing the
approximation E. For small genus g, the Hasse-Weil bound yields running
times of O(q1/4) for g = 1 and O(q3/4) for g = 2, while for g ≥ 3, we obtain

a running time of essentially O(q(2g−1)/5) as q grows.
The above technique for finding E and L was first introduced in [41]

where it was used to bound the class number of a hyperelliptic function
field of odd characteristic and arbitrary genus. It was applied to generating
class numbers of hyperelliptic curves using an optimized baby step-giant
step search in [40] and a parallelized version of Pollard’s kangaroo method
in [39]; as mentioned earlier, the latter produced class numbers in excess of
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1028 with computer technology dating from before 2002. Given the success
in generating large numerical examples in the hyperelliptic scenario, the
method seemed a promising candidate for generalization to cubic and other
types of function fields. While the basic idea is the same for both the
hyperelliptic and the cubic case, the actual realization of the bounds is
significantly more complicated in the latter scenario. In fact, the method
can be used for any function field extension K/Fq(X), but the derivation
of explicit values for E and L becomes increasingly more complicated as
the degree of the extension — and thus the number of possibilities for the
splitting behavior in K of the places of Fq(X) — grows.

The emphasis and scope of this article is the development of precise for-
mulae for the quantities E and L for a cubic extension K/Fq(X). In the
case where the extension is purely cubic, i.e. K = Fq(X,Y ) with Y 3 ∈ Fq[X]
a cube-free polynomial, we also provide algorithms for explicitly calculat-
ing the relevant character that appears in these formulae. We defer the
implementation and the actual computation of the divisor class number h,
including the generation of numerical data, to a future paper.

We now proceed as follows. We begin by summarizing results on curves
and (cubic) function fields in Section 2. Section 3 describes the idea of the
algorithms. In Section 4, we develop results on the zeta function of a cubic
function field and prove our main theorems. In Section 5, we apply these
results to cubic function fields and discuss two choices for E and L, deriving
explicit bounds for both choices as well. This section also includes a com-
plexity analysis of our algorithms. In Section 6, we study the computation
of the dth power residue symbol that is needed in our algorithms. We finish
our paper with open problems and future research topics.

2. Curves and Function Fields

2.1. Notation and Definitions. For a general overview of function fields,
we refer to [32, 42]. Let K/k with k = Fq be an algebraic function field of
genus g where q is a prime power, and let X ∈ K be transcendental over k,
so that K/k(X) is a finite separable extension of degree m. We assume that
gcd(q,m) = 1. We can write K = k(X,Y ) with F (X,Y ) = 0 where F (X,Y )
is an absolutely irreducible polynomial of degree m in Y with coefficients in
k[X], so F (X,Y ) = 0 is an absolutely irreducible affine plane curve over k,
and K is the function field of this curve over k.

We denote by D the group of divisors of K defined over k, by D0 the
subgroup of D of divisors of degree 0 defined over k, and by P the subgroup
of D0 of principal divisors defined over k. The factor group D0/P is called
the (degree 0 divisor) class group of K and is isomorphic to the group J of
k-rational points on the Jacobian of K. Its order h = |J | is said to be the
(degree 0 divisor) class number of K.

Denote by ∞ the place at infinity of k(X) (defined by the negative degree
valuation), and let S = {∞1,∞2, . . . ,∞r} be the set of places of K lying
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above ∞. If ∞i has degree fi and ramification index ei for 1 ≤ i ≤ r, then
∑r

i=1 eifi = m. Let D(S) be the group of divisors generated by the places

in S, D0(S) = D0 ∩ D(S), and P(S) = P ∩ D(S).
The maximal order OX of K/k(X) is the integral closure of k(X) in

K. From Schmidt [36], we know that there is a one-to-one correspondence
between the prime ideals in OX and the finite places, also called prime
divisors, of K/k, which extends naturally to a one-to-one correspondence
between ideals of OX and integral (i.e. effective) divisors of K defined over k.
This correspondence preserves degrees, where the degree of a prime divisor P

of K/k is the field extension degree deg(P) = [OX/P : k], and this definition
extends naturally to integral divisors of K/k via unique prime ideal/divisor

factorization. The absolute norm of a divisor/ideal A is N(A) = qdeg(A),
where deg(A) is the degree of A.

The (OX)-ideal class group Cl(OX ) is the factor group of fractional OX -
ideals modulo principal fractional OX -ideals. Its order, hX = |Cl(OX)|, is
the ideal class number of K/k(X). We have the following exact sequences
(see Proposition 14.1, p. 243, of [32]):

(2.1) (0) → F∗
q → O∗

X → P(S) → (0),

(2.2) (0) → D0(S)/P(S) → J → Cl(OX) → Z/fZ → (0),

where F∗
q is the multiplicative group of Fq and O∗

X is the group of units of
OX . It follows from (2.1) that O∗

X is an Abelian group of rank r − 1 (the
unit rank of K/k(X)) whose torsion part is F∗

q. The exact sequence (2.2)
implies an important result originally due to Schmidt (see [36]):

(2.3) fXh = RXhX ,

where fX = gcd(f1, f2, . . . , fr) and RX = [D0(S) : P(S)] is the regulator
of K/k(X).1 If we can determine RX and hX , then (2.3) can be used
to find h, the divisor class number of K. We can derive from the Hasse-
Weil inequalities (Equation (4.3) in Section 4.1 below) that h ∼ qg, so h is
exponential in the size of the field K.

2.2. Cubic Function Fields. Arbitrary cubic extensions were first studied
in [34], while the arithmetic of purely cubic function fields was investigated
in detail in [3],[35], [33], and [29]. Consider a (possibly singular) curve of the
form Y 3 −A(X)Y +B(X) = 0 where A,B ∈ Fq[X], B 6= 0; we may assume,
without loss of generality, that for no polynomial Q ∈ Fq[X] can Q2 divide
A and Q3 divide B. Here, we assume that Fq does not have characteristic 3.
Then K = Fq(X,Y ) is a cubic function field, and if A = 0, then K/Fq(X)
is said to be purely cubic.

We first restrict ourselves to the purely cubic scenario. Since B(X)
is cube-free by our assumption, we generally write −B(X) = D(X) =

1We use Schmidt’s definition of the regulator which is slightly different from Rosen’s,
see Lemma 14.3, p. 245, of [32], for the connection between the two quantities.
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G(X)H(X)2 with G,H square-free and coprime. Our curve then becomes
Y 3 −D(X) = 0, which is singular if and only if H is non-constant, in which
case the singular points are exactly the points (a, 0) with H(a) = 0.

The splitting of the place at infinity of Fq(X) in K is determined by
q (mod 3) as well as the degree deg(D) and the leading coefficient sgn(D)
of D (see Theorem 2.1 of [35]). If deg(D) is not a multiple of 3, then ∞
is totally ramified in K, so r = fX = 1. It follows from (2.1) and (2.2)
that O∗

X = F∗
q, Cl(OX) ∼= J , RX = 1, and h = hX . We also note that

the genus g of K is g = deg(GH) − 1 in this case. If, on the other hand,
deg(D) is divisible by 3, then the genus is g = deg(GH) − 2, and we need
to distinguish according to the congruence class of q (mod 3) as follows. If
q ≡ −1 (mod 3), then ∞ splits into two places ∞1 and ∞2 of respective
degrees 1 and 2, so r = fX = 1 and h = RXhX . Here, O∗

X
∼= F∗

q×Z, and the
regulator RX is usually nontrivial; in fact, R = |v2(ε)| = |v1(ε)|/2, where
v1 and v2 are the two additive discrete valuations corresponding to ∞1 and
∞2, respectively, and ε is a fundamental unit of K/k(X), i.e. a generator of
O∗
X/F

∗
q . Here, hX is generally very small, while RX tends to be very large.

Finally, if deg(D) ≡ 0 (mod 3) and q ≡ 1 (mod 3), then Fq contains a
nontrivial cube root of unity, so by Kummer theory, K/Fq(X) is a normal
extension with Galois group Z/3Z. Here, we distinguish two more subcases.
If sgn(D) is not a cube in Fq, then ∞ is inert in K, so O∗

X = F∗
q, RX = 1,

J has index 3 in Cl(OX), and h = hX/3. If, however, sgn(D) is a cube
in Fq, then ∞ splits completely in K, so O∗

X/F
∗
q
∼= Z2 and h = RXhX . If

ε1, ε2 is a pair of fundamental units, i.e. O∗
X = F∗

q × 〈ε1, ε2〉, and v1, v2 are
discrete valuations corresponding to any two of the three places at infinity
of K, then

RX =

∣

∣

∣

∣

det

(

v1(ε1) v1(ε2)
v2(ε1) v2(ε2)

)∣

∣

∣

∣

.

We point out that whenever ∞ is ramified in K, it is totally ramified. How-
ever, partial ramification (where ∞ splits into two places with respective
ramification indices 1 and 2) does occur in arbitrary cubic extensions of
Fq(X). We now return to the arbitrary setting.

Let K = Fq(X,Y ) where Y 3 − AY + B = 0. If Fq has characteristic
at least 5, then the splitting at infinity is described in [34] as follows. Set
D = 4A3 − 27B2. If deg(D) 6= 2deg(B) — this is exactly the case if either
3 deg(A) > 2 deg(B) or 3 deg(A) = 2 deg(B) and 4 sgn(A)3 = 27 sgn(B)2 —
then the place at infinity splits into a place of degree 1 and a second divi-
sor A whose splitting behavior is determined by the hyperelliptic extension
Fq(X,Z)/Fq(X) where Z2 −D(X) = 0. That is, A splits into two degree 1
places if deg(D) is even and sgn(D) is a square in Fq, A is prime of degree
2 if deg(D) is even and sgn(D) is a non-square in Fq, and A is the square of
a prime divisor if deg(D) is odd. If on the other hand deg(D) = 2 deg(B),
then there are two cases: if 3 deg(A) < 2 deg(B), then the place at infin-
ity of K/Fq(X) splits exactly as it would in the purely cubic extension
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Fq(X,U)/Fq(X), where U 3 − D(X) = 0. If 3 deg(A) = 2 deg(B) and
4 sgn(A)3 6= 27 sgn(B)2, then K/Fq(X) is unramified, and the degrees fi of
the places at infinity ofK/Fq(X) are the degrees (with respect to the indeter-
minate t) of the irreducible factors of the equation t3−sgn(A) t+sgn(B) = 0
over Fq.

3. The Idea of the Algorithm

3.1. Approximation Method. The general idea of the approximation
method is very simple. It is based on the following algorithm for a generic
finite Abelian group G. Suppose we want to compute the group order h of
G, and we are in possession of a method that determines an approximation
of h, along with the accuracy of this approximation. Furthermore, we are
able to perform arithmetic in G. Then our method for determining h can
be described as follows:

1. Compute an approximation E of h and an integer L such that |h −
E| < L2. Thus, h lies in the open interval ]E − L2, E + L2[.

2. Use all computable extra information such as information on h mod r
for small primes r, or information on the distribution of h in the
interval ]E − L2, E + L2[.

3. Find h in the interval ]E − L2, E + L2[ by Shanks’ baby step giant

step method or Pollard’s Kangaroo method in O(
√

2L2 − 1) = O(L)
operations.

The complexity of this method is O(max{TE , L}), where TE is the time
required for computing E. Our aim is therefore to find a very good approx-
imation E of h and a sharp bound L2 on |h−E| such that TE ∼ L.

Now let K be a a finite algebraic extension of a rational function field
k(X) of finite characteristic with r places at infinity. If r ≤ 2, then we
expect that steps 2 and 3 of the method will work very similarly to the
hyperelliptic scenario as described in [41] and [39]. In fact, for cubic fields,
the explicit divisor and ideal arithmetic of [3] and [35] together with the
infrastructure analysis of [33] will guarantee this.2 As stated in Section 1,
we limit our discussion here to step 1; a detailed treatment of steps 2 and 3
as well as numerical computations will be presented in a subsequent paper.
We also mention that the above technique has never been applied to any
fields with r ≥ 3, including cubic extensions; clearly, this is a subject for
future research.

3.2. Truncated Euler Products. As explained in the previous section, we
want to find integers E and L such that |h−E| < L2, i.e. h ∈]E−L2, E+L2[.
Since the size of this interval is 2L2 − 1, it is important that L be small.
Suppose that h is given in the “truncated Euler product form,” namely

h = E′ · eB

2The sources cited here only consider purely cubic fields, but the ideas can be extended
to arbitrary cubic extensions through the work of [34].
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for some real numbers E ′ and B. Notice that B = log h − logE ′. The real
goal is to determine a sharp upper bound ψ ∈ R on |B|. We now assume
that ψ is small, i.e. noticeably smaller than one.3 Then |eB − 1| < eψ − 1
and we put4

E = round(E ′),

L =

⌈

√

E′(eψ − 1) + 1
2

⌉

.

It follows that

|h−E| ≤ |h−E ′| + |E′ −E| ≤ E′|eB − 1| + 1
2 ≤ E′(eψ − 1) + 1

2 ≤ L2.

4. The Zeta Function

4.1. Arbitrary Function Fields. For a discussion of the following results,
we refer to [32, 36, 42]. Let K/k be an algebraic function field of genus g
over the finite field k = Fq, and let X ∈ K be transcendental over k, so that
K/k(X) is a finite separable extension of degree m. The ζ-function of K is
defined by

ζ(s,K) =
∑

A

1

N(A)s
(<(s) > 1) ,

where the summation is over all integral divisors A of K and <(s) denotes
the real part of the complex variable s. It is customary to put u = q−s and
define ζ(s,K) = Z(u,K). For instance, the rational function field k(X) has
the zeta function Z(u, k(X)) = (1 − u)−1(1 − qu)−1. Naturally, there exists
an Euler product formula for Z(u,K):

Z(u,K) =
∏

P

1

1 − udeg(P)
=

∞
∏

ν=1

(1 − uν)−Bν ,

where P ranges over all prime divisors of K and Bν denotes the number of
prime divisors of K of degree ν. It is well-known that the zeta function of
K has an analytic continuation to all of C. In fact, Z(u,K) is a rational
function in u:

(4.1) Z(u,K) =

2g
∏

i=1
(1 − αiu)

(1 − u) (1 − qu)
= Z(u, k(X))L(u,K),

where the L-polynomial L(u,K) =
∏2g
i=1(1 − αiu) satisfies the functional

equation L(u,K) = qgu2gL(1/qu,K). A key fact is that h = L(1,K), and

3This is guaranteed in our application to cubic function fields over finite fields of large
characteristic.

4round(y) is the unique integer such that −1/2 < y − round(y) ≤ 1/2.
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thus

(4.2) h = L(1,K) =

2g
∏

i=1

(1 − αi) = qgL(1/q,K).

The Theorem of Hasse-Weil (see for example Theorem V.2.1, p. 169, of [42])
implies that |αi| =

√
q for i = 1, 2, . . . , 2g, and we obtain the bounds

(4.3) (
√
q − 1) 2g ≤ h ≤ (

√
q + 1) 2g .

We let Nν denote the number of prime divisors of degree one in the constant
field extension Kν := KFqν .5 Then

Nν =
∑

d|ν

dBν = qν + 1 −
2g
∑

ν=1

ανi ,

and the zeta function is given by the exponential sum

Z(u,K) = exp

(

∞
∑

ν=1

Nν
uν

ν

)

.

Due to the one-to-one correspondence between finite prime divisors (places)
of K and prime ideals in OX , we can split up the zeta function into an
infinite part and a finite part as follows.

(4.4) Z(u,K) = Z∞(u,K) · ZX(u,K),

where6

(4.5) Z∞(u,K) =
r
∏

i=1

1

(1 − ufi)

and

(4.6) ZX(u,K) =
∏

p

1

(1 − udeg(p))
=
∏

P

∏

p|P

1

(1 − udeg(p))
.

In the first product of (4.6), p ranges over all prime ideals of K with respect
to OX . In the second product, P runs through all monic irreducible poly-
nomials in k[X] and p runs through all prime ideals lying over the principal
ideal (P ) in OX .

4.2. Cubic Function Fields. Let K be a cubic function field of genus g
over the finite field k = Fq of characteristic not equal to 3. This means
[K : k(X)] = 3,

∑r
i=1 eifi = 3, and we have r ≤ 3 infinite places.

5In geometric terms, let C denote the absolutely irreducible, non-singular curve defined
over Fq associated to K. Then Nν = #C(Fqν ), i.e.the number of Fqν -rational points on
C.

6Recall that the infinite place ∞ of k(X) splits as ∞ = ∞e1

1 · · ·∞er

r and ∞i has degree
fi.
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4.2.1. Infinite Part. We first investigate Z∞(u,K) for any cubic function
field and then discuss the special case of purely cubic function fields. In
particular, we want to show that Z∞(u,K) contains the factor 1/(1−u). Let
ω3 denote a fixed primitive complex cube root of unity, i.e. ω2

3 +ω3 +1 = 0.

Theorem 4.1. Let K/Fq be a cubic function field. Then there exist x1, x2 ∈
{0, 1,−1, ω3, ω

2
3} and s1, s2 ∈ {0, 1,−1,−2} such that the infinite part of the

zeta function satisfies

Z∞(u,K) =
1

(1 − u)

1

(1 − x1u)

1

(1 − x2u)
=

1

(1 − u)

1

(1 + s1u+ s2u2)
.

In particular,

(x1, x2, s1, s2) =































(0, 0, 0, 0) if ∞ = ∞3
1,

(ω3, ω
2
3 , 1, 1) if ∞ = ∞1,

(1,−1, 0,−1) if ∞ = ∞1∞2,

(1, 0,−1, 0) if ∞ = ∞1∞2
2,

(1, 1,−2, 1) if ∞ = ∞1∞2∞3.

Proof. It is clear that the 5 cases listed above represent all possible splittings
of ∞. Applying (4.5) in each case yields the desired result. �

Note that x1 + x2 + 1 is exactly the number of degree one places of K
lying above ∞. Since ω2

3 + ω3 + 1 = 0, we have, for arbitrary n ∈ N, that
ωn3 + ω2n

3 = 2, if 3 | n, and ωn3 + ω2n
3 = −1 otherwise. We therefore obtain

Corollary 4.2. In the situation of Theorem 4.1, we have for n ∈ N:

xn1 + xn2 =



















−1 if ∞ = ∞1 and 3 - n,

0 if ∞ = ∞3
1 or if ∞ = ∞1∞2 and n odd,

1 if ∞ = ∞1∞2
2,

2 otherwise.

In particular, it follows that |xn1 + xn2 | ≤ 2 for all n ∈ N.

As an example, we demonstrate how to compute these quantities in the
special case of purely cubic function fields. Let K = Fq(X,Y ) be a purely
cubic function field of characteristic not equal to 3 where Y 3 = D = GH2

with G,H ∈ Fq[X] square-free and coprime. Using the results of Section 2.2
and [35], we derive the algorithm below that determines the splitting in K
of the infinite place of Fq(X) and outputs x1 and x2 as given in Theorem
4.1. Optionally, it could also output s1 and s2.

Algorithm. (Z∞(u,K) in purely cubic function fields)
Input: q = pl where p 6= 3 prime, and D ∈ Fq[X] cube-free such that K =

Fq(X)( 3
√
D).

Output: (x1, x2) with x1, x2 ∈ {0, 1,−1, ω3, ω
2
3} as in Theorem 4.1.

1) If 3 - deg(D), then ∞ = ∞3
1, return (x1, x2) = (0, 0).

2) If 3 | deg(D), then
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(a) If q ≡ −1 (mod 3), then ∞ = ∞1∞2, return (x1, x2) = (1,−1).
(b) If q ≡ 1 (mod 3), then

(i) If sgn(D) is not a cube in Fq, then ∞ = ∞1, return (x1, x2) =
(ω3, ω

2
3).

(ii) If sgn(D) is a cube in Fq, then ∞ = ∞1∞2∞3, return
(x1, x2) = (1, 1).

The correctness of this algorithm follows from Section 2.2, and the most
expensive step is to determine whether sgn(D) is a cube or not. This can
be accomplished by evaluating the cubic power residue symbol (sgn(D)/q)3

which equals 1 if and only if sgn(D) is a cube in Fq.
Using the results summarized at the end of Section 2.2, the algorithm

can easily be extended to arbitrary cubic function fields K = Fq(X,Y ) with
Y 3 − AY + B = 0 of characteristic at least 5. This requires the evaluation
of either the cubic or the quadratic power residue symbol of sgn(D) where
D = 4A3 − 27B2, or possibly determining the number of roots in Fq of the
equation t3 − sgn(A) t+ sgn(B) = 0.

4.2.2. Finite Part. We now investigate the finite part ZX(u,K) of the zeta
function of a cubic function field K over the finite field k = Fq, where q
is not a power of 3. For any monic irreducible polynomial P ∈ Fq[X], we
wish to determine how the principal ideal (P ) in Fq[X] splits in OX and
show that ZX(u,K) contains the factor 1/(1 − qu). Once again, there are 5
distinct splitting possibilities of (P ) in OX , so using (4.6) in each case, we
can derive the following results.

Theorem 4.4. Let K/Fq be a cubic function field. For any monic irre-
ducible polynomial P ∈ Fq[X] there exist z1(P ), z2(P ) ∈ {0, 1,−1, ω3, ω

2
3}

and a1(P ), a2(P ) ∈ {0, 1,−1,−2} such that

∏

p|P

1

(1 − udeg(p))
=

1

(1 − udeg(P ))

1

(1 − z1(P )udeg(P ))

1

(1 − z2(P )udeg(P ))

=
1

(1 − udeg(P ))

1

(1 + a1(P )udeg(P ) + a2(P )u2 deg(P ))
.

In particular,

(z1(P ), z2(P ), a1(P ), a2(P )) =































(0, 0, 0, 0) if (P ) = p3
1,

(ω3, ω
2
3 , 1, 1) if (P ) = p1,

(1,−1, 0,−1) if (P ) = p1p2,

(1, 0,−1, 0) if (P ) = p1p
2
2,

(1, 1,−2, 1) if (P ) = p1p2p3.

Note again that z1(P ) + z2(P ) + 1 is exactly the number of degree one
places of K lying above P .
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Corollary 4.5. In the situation of Theorem 4.4, we have for n ∈ N:

z1(P )n + z2(P )n =



















−1 if (P ) = p1 and 3 - n,

0 if (P ) = p3
1 or if (P ) = p1p2 and n odd,

1 if (P ) = p1p
2
2,

2 otherwise.

In particular, it follows that |z1(P )n + z2(P )n| ≤ 2 for all n ∈ N.

Putting

(4.7) f(P, u) =
1

(1 − z1(P )udeg(P ))

1

(1 − z2(P )udeg(P ))

and using the well-known formula

∏

P

1

(1 − udeg(P ))
=

∞
∏

ν=1

∏

deg(P )=ν

1

(1 − uν)
=

1

1 − qu
,

we obtain the following important corollary.

Corollary 4.6. In the situation of Theorem 4.4, we have

ZX(u,K) =
1

(1 − qu)

∏

P

f(P, u) =
1

(1 − qu)

∞
∏

ν=1

∏

deg(P )=ν

f(P, u).

As an example, we provide an algorithm for finding z1(P ) and z2(P )
(and optionally, a1(P ) and a2(P )) for any monic irreducible polynomial P ∈
Fq[X] in the case whereK/Fq(X) is a purely cubic extension of characteristic
different from 3. It uses the cubic power residue symbol [D/P ]3 as defined
in Section 6.

Algorithm. (Splitting of primes in purely cubic function fields)
Input: q = pl where p 6= 3 prime, D ∈ Fq[X] cube-free such that K =

Fq(X)( 3
√
D), and a monic irreducible polynomial P ∈ Fq[X].

Output: (z1(P ), z2(P )) with z1(P ), z2(P ) ∈ {0, 1,−1, ω3, ω
2
3} as in Theo-

rem 4.4.

1) If qdeg(P ) ≡ −1 (mod 3), then
(a) If P | GH, then (P ) = p3

1, return (z1(P ), z2(P )) = (0, 0).
(b) If P - GH, then (P ) = p1p2, return (z1(P ), z2(P )) = (1,−1).

2) If qdeg(P ) ≡ 1 (mod 3), then compute

χ(P ) =

[

D

P

]

3

.

If [D/P ]3 = 1, return (z1(P ), z2(P )) = (1, 1),
else return (z1(P ), z2(P )) = (ω3, ω

2
3).

Note that the case (P ) = p1p
2
2 does not occur for purely cubic function

fields with q 6= 3l. The correctness of the above algorithm follows from
Theorem 3.1 of [33], and the complexity is dominated by the computation
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of gcd(D,P ) in the case where qdeg(P ) ≡ −1 (mod 3) and the evaluation of

[D/P ]3 in the case where qdeg(P ) ≡ 1 (mod 3). Algorithm 6.2 in Section 6
shows that both scenarios yield essentially the same running time.

4.3. Main Theorems in Cubic Function Fields. We now establish con-
nections between the quantities x1, x2, z1(P ), z2(P ), and develop estimates
that will eventually lead to a good approximation of the class number of a
cubic function field. Let K be a cubic function fields of genus g over the
finite field k = Fq where q is not a power of 3. By (4.1), (4.4), and the
results of Theorem 4.1 and Corollary 4.6, we have

(4.8)

2g
∏

i=1

(1 − αiu) =
Z(u,K)

Z(u, k(X))
=

1

(1 − x1u)

1

(1 − x2u)

∏

P

f(P, u),

or, equivalently,
(4.9)

(1− x1u)(1 − x2u)

2g
∏

i=1

(1 − αiu) =
∞
∏

ν=1

∏

deg(P )=ν

1

(1 − z1(P )uν)

1

(1 − z2(P )uν)
.

Theorem 4.8. Let K be a cubic function field of genus g over the finite
field k = Fq of characteristic not equal to 3. Furthermore, let x1, x2, be
as in Theorem 4.1, and let z1(P ), and z2(P ) be as in Theorem 4.4 for any
monic irreducible polynomial P ∈ Fq[X]. Then we have for all n ∈ N:

∑

ν|n

ν
∑

deg(P )=ν

(z1(P )n/ν + z2(P )n/ν) = −(xn1 + xn2 ) −
2g
∑

i=1

αni ,

where α1, . . . , α2g denote the reciprocals of the roots of Z(u,K).

Proof. By taking formal logarithms on both sides of (4.9) and using the
formal identity − log(1 − z) =

∑∞
n=1 z

n/n, we obtain

∞
∑

n=1

un

n

(

−xn1 − xn2 −
2g
∑

i=1

αni

)

=

∞
∑

ν=1

∑

deg(P )=ν

∞
∑

n=1

(z1(P )n + z2(P )n)
unν

n

=

∞
∑

n=1

un

n

∑

ν|n

ν
∑

deg(P )=ν

(z1(P )n/ν + z2(P )n/ν),

where ν runs through all positive divisors of n. Comparing the coefficients
of un for any n ≥ 1 yields

−xn1 − xn2 −
2g
∑

i=1

αni =
∑

ν|n

ν
∑

deg(P )=ν

(z1(P )n/ν + z2(P )n/ν),

and the statement follows. �
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We now put

Sν(j) =
∑

deg(P )=ν

(z1(P )j + z2(P )j) (ν, j ∈ N).

Then Theorem 4.8 reads7

(4.10)
∑

ν|n

ν Sν (n/ν) = −(xn1 + xn2 ) −
2g
∑

i=1

αni (n ∈ N).

For instance, if the infinite place ∞ of k(X) totally ramifies in K, i.e. ∞ =
∞3

1, then by Corollary 4.2,

∑

ν|n

ν Sν (n/ν) = −
2g
∑

i=1

αni (n ∈ N).

Corollary 4.9. For all n ∈ N:
∣

∣

∣

∑

ν|n

ν Sν (n/ν)
∣

∣

∣
≤ |xn1 + xn2 | + 2gqn/2 ≤ 2 + 2gqn/2.

Proof. This follows from Theorem 4.8 by using |αi| =
√
q for i = 1, 2, . . . , 2g.

The second inequality can be obtained from the bound in Corollary 4.2. �

It will be essential to find good bounds on nSn(1). We will use the
following.

Corollary 4.10. For all n ∈ N:

nSn (1) = −(xn1 + xn2 ) −
2g
∑

i=1

αni −
∑

ν|n
ν 6=n

ν Sν (n/ν) .

For example, consider purely cubic function fields. If q ≡ −1 (mod 3)
and n is odd, we know much more.

Corollary 4.11. Let K be a purely cubic function field of genus g over the
finite field k = Fq of characteristic not equal to 3. If q ≡ −1 (mod 3) and n
is odd, then Sν (n/ν) = 0 for all divisors ν of n, and

2g
∑

i=1

αni = −(xn1 + xn2 ).

In particular, we have Nn = qn + 1 + xn1 + xn2 .

7In geometric terms, if C again denotes the absolutely irreducible, non-singular curve
over Fq associated to K, then the quantity νSν(n/ν) is the difference between the number
of points on C defined over Fqν but contained in no subfield thereof and the number of
elements in Fqν but contained in no subfield thereof. Thus, we have

P

ν|n νSν(n/ν) =

Nn−(xn
1 +xn

2 +1)−qn, where Nn is the number of Fqn-rational points on C and xn
1 +xn

2 +1
is the number of points at infinity on C over Fqn . Then Corollary 4.9 is simply the Hasse-
Weil bound with the information about the infinite places incorporated.
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Proof. Let ν be a divisor of n. Since n is odd, ν and n/ν are odd. Let
P ∈ Fq[X] be any monic irreducible polynomial of degree deg(P ) = ν. From
Algorithm 4.7, we see that there are only two possible cases. If P | GH,
then z1(P ) = z2(P ) = 0. If P - GH, then z1(P ) = 1 = −z2(P ). In both
cases, we have

z1(P )n/ν + z2(P )n/ν = 0.

Since P was arbitrary, Sν (n/ν) = 0 and therefore
∑

ν|n

ν Sν (n/ν) = 0.

The result now follows from (4.10). �

Similarly, we derive results on the class number h. By (4.2), (4.7) (4.8)
and (4.9), the analog of the analytic class number formula for cubic function
fields reads

h = L(1,K) = qgL(1/q,K) =
qg+2

(q − x1)(q − x2)

∏

P

f(P, 1/q)(4.11)

=
qg+2

(q − x1)(q − x2)

∞
∏

ν=1

∏

deg(P )=ν

q2ν

(qν − z1(P ))(qν − z2(P ))
.(4.12)

In order to proceed similarly to Theorem 4.8, we have to ascertain that
the power series expansion of the logarithm of (4.12) is defined.8This is easily
seen since for any monic irreducible polynomial P of degree ν and i = 1, 2,
we have

log

(

qν

qν − zi(P )

)

= − log(1 − zi(P )q−ν),

and obviously |zi(P )q−ν | < 1.

Theorem 4.12. Let K be a cubic function field of genus g over the finite
field k = Fq of characteristic not equal to 3. Then we have for all n ∈ N:

log(h) = A(K) +

∞
∑

n=1

1

nqn

∑

ν|n

ν Sν (n/ν) ,

where A(K) = (g + 2) log q − log(q2 + s1q + s2) with s1, s2 as in Theorem
4.1.

Proof. Let z1(P ), and z2(P ) be as in Theorem 4.4 for any monic irreducible
polynomial P ∈ Fq[X]. We apply the power series expansion of the logarithm

8In the proof of Theorem 4.8, we used the formal logarithm and applied the formal
identity − log(1 − z) =

P∞
n=1 zn/n. Here, we require |z| < 1.
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to (4.12). As in the proof of Theorem 4.8, we obtain

log(h) = log

(

qg+2

(q − x1)(q − x2)

)

+
∞
∑

ν=1

∑

deg(P )=ν

∞
∑

n=1

(z1(P )n + z2(P )n)
1

nqnν

= A(K) +

∞
∑

n=1

1

nqn

∑

ν|n

ν
∑

deg(P )=ν

(z1(P )n/ν + z2(P )n/ν)

= A(K) +

∞
∑

n=1

1

nqn

∑

ν|n

ν Sν (n/ν) ,

by definition of Sν (n/ν). Note that (q − x1)(q − x2) = q2 + s1q + s2. �

5. Explicit Bounds for Cubic Function Fields

We follow the main idea of Section 3.2. For g = 1 and 2, it turns out that
the Hasse-Weil bounds (4.3) are best. Therefore, we focus on cubic function
fields of genus g ≥ 3.

5.1. A First Estimate. The first approximation is an immediate conse-
quence of Theorem 4.12 and Corollary 4.9. It corresponds to the first choice
of approximation in [38, Theorem 4.1] and to similar non-computational ex-
positions in [21]. It is easier to analyze than the bound given in Section 5.2
below, but yields a slightly worse approximation.

For any λ ∈ N, we simply put

logE′
1(λ,K) := A(K) +

λ
∑

n=1

1

nqn

∑

ν|n

ν Sν

(n

ν

)

,

B1(λ,K) :=

∞
∑

n=λ+1

1

nqn

∑

ν|n

ν Sν(n/ν).

By Theorem 4.12, we have log h = B1(λ,K)+ logE ′
1(λ,K), or, equivalently,

h = E′
1(λ,K) eB1(λ,K),

as required in Section 3.2. A bound on |B1(λ,K)| is given by Corollary 4.9:

|B1(λ,K)| ≤
∞
∑

n=λ+1

1

nqn

∣

∣

∣

∑

ν|n

ν Sν(n/ν)
∣

∣

∣

≤ 2g

∞
∑

n=λ+1

1

nq
n
2

+ 2

∞
∑

n=λ+1

1

nqn
=: ψ1(λ,K).

First, note that ψ1(λ,K) can be computed by

ψ1(λ,K) = 2g

(

log

( √
q

√
q − 1

)

−
λ
∑

n=1

1

nq
n
2

)

+ 2 log

(

q

q − 1

)

− 2

λ
∑

n=1

1

nqn
.
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Furthermore, we estimate

ψ1(λ,K) ≤ 2g

λ+ 1
q−

(λ+1)
2 +

2g

λ+ 2

∞
∑

n=λ+2

1

q
n
2

+
2

λ+ 1

∞
∑

n=λ+1

1

qn

=
2g

λ+ 1
q−

(λ+1)
2 +O

( g

λ
q−

(λ+2)
2

)

.

Finally, we let E1(λ,K) := round(E ′
1(λ,K)) and

L1(λ,K) :=

⌈

√

E′
1(λ,K)(eψ1(λ,K) − 1) + 1

2

⌉

.

Then we have proved the following theorem.

Theorem 5.1. For any λ ∈ N, we have |h−E1(λ,K)| < L2
1(λ,K).

For the overall complexity of finding the class number h, we need to know
the size of E1.

Theorem 5.2. For any λ ∈ N, we have

E′
1(λ,K) <

(

qg+2

q2 + s1q + s2

)( √
q

√
q − 1

)2g ( q

q − 1

)2

.

Proof. Proceeding as above, we use the definition of E ′
1 and Corollary 4.9

to obtain

logE′
1(λ,K) ≤ A(K) + 2g

λ
∑

n=1

1

nq
n
2

+ 2

λ
∑

n=1

1

nqn

< A(K) + 2g log

( √
q

√
q − 1

)

+ 2 log

(

q

q − 1

)

.

This is the assertion since A(K) = (g + 2) log q − log(q2 + s1q + s2). �

If g is sufficiently small and q → ∞, it follows that E1(λ,K) = O(qg).

In particular, if ψ1(λ,K) < 1, then eψ1(λ,K) − 1 ∼ ψ1(λ,K), and thus

L1(λ,K) = O(qg/2−(λ+1)/4).

5.2. A Second Estimate. The second possibility is to proceed as in [41,
38]. For any λ ∈ N, we define E ′

2 = E′
2(λ,K) and B2 = B2(λ,K) by

E′
2(λ,K) :=

qg+2

(q − x1)(q − x2)

∏

P
deg(P )=ν≤λ

q2ν

(qν − z1(P ))(qν − z2(P ))
,(5.1)

B2(λ,K) := log
∏

P
deg(P )=ν>λ

q2ν

(qν − z1(P ))(qν − z2(P ))

=

∞
∑

n=λ+1

1

nqn

∑

ν|n
ν>λ

ν Sν(n/ν).(5.2)
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Note that E ′
2(λ,K) contains more information about h than E ′

1(λ,K), since
all computable information for polynomials up to degree λ is included in
E′

2(λ,K). For hyperelliptic curves, this estimate yielded faster computa-
tional results than the first estimate. We have

logE′
2(λ,K) = A(K) +

λ
∑

n=1

1

nqn

∑

ν|n

ν Sν(n/ν) +

∞
∑

n=λ+1

1

nqn

∑

ν|n
ν≤λ

ν Sν(n/ν),

and by (4.11) and Theorem 4.12, we have

h = E′
2(λ,K) eB2(λ,K).

If we put E2(λ,K) := round(E ′
2(λ,K)), then E2(λ,K) is an approximation

of h. As pointed out in Section 3.2, we need to find a sharp upper bound
on |B2(λ,K)|. From (5.2), we see that

(5.3) B2(λ,K) =
Sλ+1(1)

qλ+1
+

∞
∑

n=λ+2

1

nqn

∑

ν|n
ν>λ

ν Sν(n/ν).

The dominant term of B2(λ,K) is Sλ+1(1)/q
λ+1. In order to find sharp

upper bounds on |B2(λ,K)|, we need to investigate Sν(j), particularly Sν(1).
We denote by Iν the number of monic prime polynomials of degree ν.

Then νIν is the number of elements in Fqν but contained in no subfield
thereof, and it is well-known that

∑

ν|n νIν = qn for all n ∈ N. Also, Möbius

inversion9 implies that

(5.4) nIn =
∑

ν|n

µ(n/ν)qν = qn +
∑

ν|n
ν 6=n

µ(n/ν)qν (n ∈ N) .

Lemma 5.3. For ν, j, l ∈ N, we have

a) Sν(j + 6l) = Sν(j).

b) If 3 - j, then Sν(j) =

{

Sν(1) if j odd,

Sν(2) if j even.

c) |Sν(j)| ≤ 2Iν .

Proof. It is easy to see that zi(P )j+6l = z1(P ) for i = 1, 2, and if 3 - j,
then z1(P )j + z2(P )j = z1(P ) + z2(P ) if j is odd, and z1(P )j + z2(P )j =
z1(P )2 + z2(P )2 if j is even. Parts a) and b) now follow from the definition
of Sν(j). Furthermore, |z1(P )j + z2(P )j | ≤ 2 by Corollary 4.5, so Sν(j) ≤
∑

deg(P )=ν 2 = 2Iν . �

Since z1(P )6 = z2(P )6 = 1 if the ideal (P ) is unramified, it is clear that
Sν(6) and 2Iν agree except for the irreducible polynomials for which the

9If f is an arithmetic function and F (n) =
P

ν|n f(ν) for n ∈ N, then f(n) =
P

ν|n µ(n/ν)F (ν) where µ denotes the Möbius function.
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ideal (P ) ramifies. Next, we want to bound nSn(1). By Corollary 4.10, we
need to bound

∑

ν|n
ν 6=n

ν Sν (n/ν).

Lemma 5.4. For n ∈ N,

n|Sn(1)| ≤ 2gq
n
2 +2+

2q

(q − 1)











(q
n
2 − 1) if n even

(q
n
3 − 1) if n odd











< (2g+2)q
n
2

q

(q − 1)
.

Proof. Lemma 5.3 c) and (5.4) yield
∣

∣

∣

∑

ν|n
ν 6=n

ν Sν (n/ν)
∣

∣

∣
≤
∑

ν|n
ν 6=n

ν|Sν (n/ν) | ≤ 2
∑

ν|n
ν 6=n

νIν = 2
(

∑

ν|n

νIν − nIn

)

= 2(qn − nIn) = −2
∑

ν|n
ν 6=n

µ(n/ν)qν ≤ 2
∑

ν|n
ν 6=n

qν

≤























2

n/2
∑

ν=1

qν ≤ 2(q
n
2 − 1)q/(q − 1) if n even,

2
bn/3c
∑

ν=1
qν ≤ 2(q

n
3 − 1)q/(q − 1) if n odd.

By Corollary 4.10, we get

n|Sn(1)| ≤ |xn1 + xn2 | + 2gq
n
2 +

∣

∣

∣

∑

ν|n
ν 6=n

ν Sν (n/ν)
∣

∣

∣

since |αi| =
√
q for i = 1, 2, . . . , 2g. The first estimate then follows from the

above and Corollary 4.2. For the second inequality, we note that

2 + 2gq
n
2 + 2

(q
n
2 − 1)q

(q − 1)
< 2 + (2g + 2)q

n
2

q

(q − 1)
− 2q

(q − 1)
.

�

We will use the first bound of the lemma in implementations and the
second bound for estimating the tail of the truncated Euler product. Also
notice that another (in general less sharp) bound would be n|Sn(1)| < (2g+

4)q
n
2 .

Example 5.5. For small genus, the bound in Lemma 5.4 is relatively sharp.
For instance, let K be a purely cubic function field K = Fq(X,Y ) of char-
acteristic different from 3 where Y 3 = D, and D ∈ Fq[X] is irreducible
with deg(D) > 1. Then there are no ramified prime polynomials in Fq[x]
of degree 1. Furthermore, if we assume that q ≡ 1 (mod 3), then all monic
prime polynomials P ∈ Fq[x] of degree 1 are either inert or totally split (be-
cause K/Fq(x) is a Galois extension), so z1(P )3 = z2(P )3 = 1, and hence
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S1(3) = 2I1 = 2q. By Corollary 4.10,

3S3(1) = −x3
1 − x3

2 −
2g
∑

i=1

α3
i − S1(3) = −2 −

2g
∑

i=1

α3
i − 2q .

On the other hand, the bound of Lemma 5.4 yields

3|S3(1)| ≤ 2 + 2gq
3
2 + |S1(3)| ≤ 2 + 2gq

3
2 + 2q.

In this situation, this is the best possible bound, unless we have more infor-
mation about |∑2g

i=1 α
3
i |.

Lemma 5.6. For λ, n ∈ N with λ < n, we have
∣

∣

∣

∑

ν|n
ν>λ

ν Sν(n/ν)
∣

∣

∣
< (2g + 4)

q

(q − 1)
q

n
2 .

Proof. Note that
∑

ν|n
ν>λ

ν Sν(n/ν) = nSn(1) +
∑

ν|n
λ<ν<n

ν Sν(n/ν).

We can use the result of Lemma 5.4 and proceed as in the proof of that
Lemma to obtain

∣

∣

∣

∑

ν|n
ν>λ

ν Sν(n/ν)
∣

∣

∣
≤ 2 + 2gq

n
2 + 4

(q
n
2 − 1)q

(q − 1)
< (2g + 4)q

n
2

q

(q − 1)
.

�

We use the previous lemma to bound the second summand in (5.3).

Lemma 5.7. For λ ∈ N, we have

∣

∣

∣

∞
∑

n=λ+2

1

nqn

∑

ν|n
ν>λ

ν Sν(n/ν)
∣

∣

∣
<

(2g + 4)

(λ+ 2)

√
q

(
√
q − 1)

q

(q − 1)
q−

λ+2
2 .

Proof. We use Lemma 5.6 to obtain

∣

∣

∣

∞
∑

n=λ+2

1

nqn

∑

ν|n
ν>λ

ν Sν(n/ν)
∣

∣

∣
≤ (2g + 4)

q

(q − 1)

∞
∑

n=λ+2

1

nq
n
2

<
(2g + 4)

(λ+ 2)

q

(q − 1)

∞
∑

n=λ+2

1

q
n
2

≤ (2g + 4)

(λ+ 2)

q

(q − 1)

√
q

(
√
q − 1)

q−
λ+2
2 .

�
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We are now able to define an upper bound on B2(λ,K). For λ ∈ N, we
define

ψ2(λ,K) =
2g

λ+ 1
q−

λ+1
2 +

(2g + 4)

(λ+ 2)

√
q

(
√
q − 1)

q

(q − 1)
q−

λ+2
2 +

2

λ+ 1
q−(λ+1)

+
2

(λ+ 1)

q

(q − 1)
q−(λ+1)











(q
λ+1

2 − 1) if λ odd,

(q
λ+1

3 − 1) if λ even.

By the previous lemmas and (5.3), we derive that |B2(λ,K)| < ψ2(λ,K).
Thus, ψ2(λ,K) is the required bound on |B2(λ,K)|. Again, we put

E2(λ,K) := round(E ′
2(λ,K)),

L2(λ,K) :=

⌈

√

E′
2(λ,K)(eψ2(λ,K) − 1) + 1

2

⌉

.

Theorem 5.8. For any λ ∈ N, we have |h−E2(λ,K)| < L2
2(λ,K).

Theorem 5.9. For any λ ∈ N, we have

E′
2(λ,K) ≤

(

qg+2

q2 + s1q + s2

)( √
q

√
q − 1

)2g ( q

q − 1

)2

eψ2(λ,K).

Proof. By (5.1), we have

logE′
2(λ,K) = A(K) +

∞
∑

n=1

1

nqn

∑

ν|n

ν Sν(n/ν) −B2(λ,K).

From the proof of Theorem 5.2, it follows that

| logE′
2(λ,K)| ≤ A(K) + 2g log

( √
q

√
q − 1

)

+ 2 log

(

q

q − 1

)

+ ψ2(λ,K).

This is the statement. �

For small g and large q, we conclude that E2(λ,K) = O(qg). If ψ2(λ,K) <

1, then we have L2(λ,K) = O(qg/2−(λ+1)/4) as q → ∞.

5.3. Complexity Analysis and Optimization. The complexity analysis
is analogous to the one in Section 5.1 of [38]. We follow the idea of Sections
3.1 and 3.2. If g ≤ 2, the Hasse-Weil bound (4.3) is best. More precisely, if
g = 1 or 2 then the total running time for computing an approximation of h,
and subsequently finding h, is O(q 1/4) and O(q 3/4), respectively. For g ≥ 3,
we put E = E ′

2(λ,K) and L = L2(λ,K). Since determining E requires
the computation of O(qλ) values z1(P ), z2(P ), the estimate on L yields a
complexity of max{O(qλ), O(qg/2−(λ+1)/4)} for finding h. Thus, the optimal
choice for λ is

λ =

{

b(2g − 1)/5c if g ≡ 2 (mod 5),

round((2g − 1)/5) otherwise.
(5.5)
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This gives a total (expected) running time of

O(qround((2g−1)/5)+η ), g ≥ 3,

where

η =



















0 if g ≡ 0, 3 (mod 5),
1
4 if g ≡ 1 (mod 5),

−1
4 if g ≡ 2 (mod 5),

1
2 if g ≡ 4 (mod 5).

6. The dth Power Residue Symbol

We saw in the previous sections that in order to obtain explicit formulae
for ζX(s) as well as E and L, it is necessary to compute the relevant character
of K/Fq. We now explain how to do this in the case where this character

is the dth power residue symbol for any d ∈ N coprime to q. For d = 3, we
obtain the scenario of purely cubic function fields. We begin by reviewing
the dth power residue symbol in finite fields since it plays an important role
here.

Henceforth, let q be a prime power and d a divisor of q − 1; note that Fq
contains the dth roots of unity. Let a ∈ F∗

q. Since aq−1 = 1, a(q−1)/d is a dth

root of unity in Fq. Recall that the dth power residue symbol (in Fq) of a is
defined to be

(

a

q

)

d

= a(q−1)/d.

We also set (0/q)d = 0. Note that for any integer n and any a ∈ Fq,
(a/q)nd = (a/q)nd

d where nd ≡ n (mod d), so in order to evaluate a power of
a residue symbol, one needs to compute no powers higher than d− 1.

We now extend this notion to polynomials. As usual, write |F | = qdeg(F )

for any non-zero polynomial F ∈ Fq[X]; we note that |F | − 1 is always
divisible by d. Let P ∈ Fq[X] be an irreducible polynomial with coefficients
in Fq. Then L = Fq[X]/(P ) is a field with |P | elements, so for any F ∈ Fq[X]

that is not a multiple of P , F |P |−1 ≡ 1 (mod P ), and therefore |F |(|P |−1)/d ≡
ζd (mod P ) where ζd ∈ Fq is a dth root of unity. The dth power residue symbol
[F/P ]d is defined to be ζd if P does not divide F and 0 otherwise; in other
words,

[

F

P

]

d

= ζd where F
|P |−1

d ≡ ζd (mod P )

for any P, F ∈ Fq[X] with P irreducible. We see that [F/P ]d = 0 if and

only if P divides F ; otherwise [F/P ]d is a dth root of unity. In particular,
[F/P ]d = 1 if and only if F is a non-zero dth power modulo P .

In the usual fashion, we now define [F/PQ]d = [F/P ]d[F/Q]d for F, P,Q ∈
Fq[X] with P,Q irreducible (and not necessarily distinct). This defines the

dth power residue symbol [F/G]d for any polynomials F,G ∈ Fq[X]. We
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summarize some properties that can be found in Propositions 3.2 and 3.4 as
well as Theorem 3.5, pp. 24-27, of [32].

Lemma 6.1. Let F, F1, F2, G ∈ Fq[X] and a ∈ Fq. Set f ≡ deg(F ) (mod d)
and g ≡ deg(G) (mod d). Then the following properties hold:

1. If F1 ≡ F2 (mod G), then

[

F1

G

]

d

=

[

F2

G

]

d

.

2.

[

F1F2

G

]

d

=

[

F1

G

]

d

[

F2

G

]

d

.

3.

[

F

G1G2

]

d

=

[

F

G1

]

d

[

F

G2

]

d

.

4.

[

F

G

]

d

= 0 if and only if F and G are not coprime.

5.
[ a

G

]

d
=

(

a

q

)g

d

.

6.

[

F

G

]

d

=

(−1

q

)fg

d

(

sgn(F )

q

)g

d

(

sgn(G)

q

)−f

d

[

G

F

]

d

if F and G are co-

prime.

Property 6 is known as the reciprocity law, and property 5 is sometimes
referred to as the complementary. Properties 1, 4, 5, and 6 above give rise to
the following fast algorithm for evaluating dth power residue symbols when
q is even or (q − 1)/d is even:

Algorithm. (The dth Power Residue Symbol)
Input: F,G ∈ Fq[X], d ∈ N with gcd(d, q) = 1.

Output: e =

[

F

G

]

d

.

1) If gcd(F,G) 6= 1, then return e = 0 and STOP.
2) Set e = 1.
3) While F 6∈ F∗

q do
(a) Replace F by F (mod G).
(b) Set f ≡ deg(F ) (mod d), g ≡ deg(G) (mod d).

(c) Multiply e by

(−1

q

)fg

d

(

sgn(F )

q

)g

d

(

sgn(G)

q

)−f

d

.

(d) Swap F and G.
4) Multiply e by (F/q)gd where g ≡ deg(G) (mod d).
5) Return e.

We note that if q and d are both odd (e.g. d = 3), then (−1/q)d = 1, in

which case the factor (−1/q)fgd in step 3 (c) can be omitted.

Proposition 6.3. Algorithm 6.2 is correct and will compute [F/G]d in
O(deg(G)) loop iterations; specifically, its asymptotic running time is the
same as the running time for computing gcd(F,G).
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Proof. Step 1 certainly returns the correct result by property 4. So suppose
that F and G are coprime. Steps (a) and (d) of the while loop in step 3
constitute simply the Euclidean Algorithm for computing gcd(F,G), starting
with dividing F by G. So the while loop is executed O(deg(G)) times and
terminates with a remainder F that is a constant, since gcd(F,G) = 1.

Now step 3 (a) does not change the value of [F/G]d by property 1. The
reciprocity law (property 6) shows that the value of e is correctly modified
in each iteration of the while loop. After the loop, F ∈ F∗

q, so by property 5,

[F/G]d is obtained by multiplying the current value of e by [F/G]d = (F/q)gd
with g ≡ deg(G) (mod d). �

7. Open Problems and Future Research

7.1. Cubic Function Fields. The formulae for E and L given in Section
5 are still valid when there are more than two places at infinity. However,
in this setting, it is not obvious how to use the baby step giant step or
Pollard kangaroo methods to search for h in the interval ]E − L2, E + L2[.
The case where there is only one place at infinity, i.e. O∗

X = F∗
q, simply

requires searching in a group; that is, searching on reduced (distinguished)
representatives in the ideal class group of K/k(X). When there are two
infinite places, i.e. K/k(X) has unit rank 1, the infrastructure as described
in [33] can be utilized for the search. But for higher unit rank, it is as yet
unclear how to extend these techniques; this question definitely warrants
further study.

The analysis of purely cubic function fields of characteristic different from
3 seems to carry over with few changes to the case of arbitrary cubic function
fields; an initial investigation was already done in [34] and includes an ex-
plicit description of the splitting at infinity. The next step is to find a simple
characterization of the splitting of the finite places (work in progress), and
to extend the arithmetic and the investigation of the infrastructure given in
[33] as well as the algorithms given in this paper from the purely cubic case
to the general setting.

We also mention that cubic function fields of characteristic 3 have not
been researched at all. Their behavior is very different from that of their
counterparts of characteristic different from 3. Examples of such differences
include the possibility of wild ramification, and of course there is no analog
to the purely cubic scenario; instead, certain cubic curves give rise to Artin-
Schreier extensions in this case.

7.2. Function Fields of Higher Degree. Contrary to the situation of
algebraic number fields, it is possible to construct function field extensions
of a given unit rank and arbitrary degree, since there is much more flexibility
for the splitting at infinity. Number fields have eifi = 1 for real embeddings
and eifi = 2 for complex embeddings, whilst there is no such restriction on
the value of eifi in a function field. For example, the only number fields of
unit rank 0 are imaginary quadratic fields, whereas any function field with



130 RENATE SCHEIDLER AND ANDREAS STEIN

only one (totally inert or ramified) place at infinity has unit rank 0; the
family of superelliptic function fields K = Fq(X,Y ) with Y n = D(X) and
gcd(q, n) = gcd(deg(D), n) = 1 studied in [16] represent such examples.

There is a wealth of open problems pertaining to the arithmetic of ideals in
both algebraic number fields and algebraic function fields. Two approaches
to this topic are prevalent. General purpose methods are applicable to any
extension, but they tend to be inefficient. In order to obtain efficiency,
one may need to sacrifice generality and focus instead on special purpose
techniques. This has already shown to be very successful in the quadratic
and cubic scenarios of both number fields and function fields. No other
number fields have been studied in any detail, with the exception of quartic
fields which were investigated in a series of papers by Buchmann et al.
[5, 6, 10, 12, 8, 7, 9]. In addition, a more general treatment of number fields
of unit rank 1 (which always exhibit an infrastructure) can be found in [11].
It is worthwhile to explore these ideas for their applicability to function
fields. A description of how the analytic class number can be used to find
the ideal class number of any number field was given in [11] and has inspired
some of the ideas in this article.
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