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ABSTRACT. Let G be a graph with n vertices, m edges, average degree
d, and maximum degree A. The oriented chromatic number of G is the
maximum, taken over all orientations of GG, of the minimum number
of colours in a proper vertex colouring such that between every pair of
colour classes all edges have the same orientation. We investigate the
oriented chromatic number of graphs, such as the hypercube, for which
d > logn. We prove that every such graph has oriented chromatic num-
ber at least Q(y/n). In the case that d > (2 + €) log n, this lower bound
is improved to (y/m). Through a simple connection with harmonious
colourings, we prove a general upper bound of O(A/n) on the oriented
chromatic number. Moreover this bound is best possible for certain
graphs. These lower and upper bounds are particularly close when G
is (clogn)-regular for some constant ¢ > 2, in which case the oriented
chromatic number is between Q(y/nlogn) and O(y/nlogn).

1. INTRODUCTION

Throughout this paper, G is a finite simple undirected graph with n ver-
tices, m edges, and maximum degree A. No loops and no parallel edges
are allowed. A colouring of G is a function ¢ : V(G) — X, for some set of
‘colours’ X, such that ¢(v) # c(w) for each edge vw € E(G). The chromatic
number of G, denoted by x(G), is the minimum number of colours in a
colouring of G. An orientation of G is a directed graph D obtained from
G by giving each edge a direction. Then D is called an oriented graph. An
oriented colouring of an oriented graph D is a colouring ¢ of the underlying
undirected graph of D, such that between each pair of colour classes, all
edges have the same direction; that is, there are no arcs vw and zy in D
with ¢(v) = ¢(y) and ¢(w) = ¢(x). The oriented chromatic number of D, de-
noted by X (D), is the minimum number of colours in an oriented colouring
of D. The oriented chromatic number of an undirected graph G, denoted
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by X (G), is the maximum of X (D), taken over all orientations D of G.
The oriented chromatic number was introduced in [9] in 1994 and is now a
widely studied parameter; see 3, 4, 5, 6, 7, 9, 10, 11, 17, 19, 21, 25, 26, 27,
28, 29, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 47].

This paper is motivated by a question of André Raspaud [private com-
munication, Prague 2004], who asked for the oriented chromatic number of
the d-dimensional hypercube @Qq. This is the graph with vertex set {0, 1},
where two vertices are adjacent whenever they differ in precisely one coor-
dinate. Qg is d-regular and has 2% vertices. In this paper we prove generally
applicable bounds on ¥ (G), which in the case of the hypercube give

(1.1) 0.8007... V24 < Y(Qq) < 2dv/2¢ —1,

thus determining X (Qq) to within a factor of about (5/2)d. No non-trivial
bounds on X (Qg) were previously known, as we now describe.

An undirected graph has x(G) = n if and only if G = K, if and only if
G has diameter 1. But when does X (G) = n? This question was asked by
[21], who observed that for every oriented graph D,

(1.2) X (D) = n if and only if D has diameter 2.

Here the diameter of D is the least integer k such that every (unordered)
pair of vertices in D are connected by a directed path of at most k edges.
Klostermeyer and MacGillivray [25] call an oriented graph with diameter 2
an oclique. Note that small diameter (> 2) does not necessarily imply large
oriented chromatic number. For example, K11, has an orientation with
diameter 3 and oriented chromatic number 3. Erdés [16] proposed studying
the extremal function f(n), defined to be the minimum number of arcs in
an oriented graph with n vertices and diameter 2. Katona and Szemerédi
[24] prove that (n/2)log(n/2) < f(n) < n[logn]. Firedi et al. [21] tighten
both bounds to conclude that f(n) = (1 — o(1))nlogn. The same result is
independently obtained in [2]. These results imply that there are n-vertex
graphs with approximately the same number of edges as the hypercube (that
is, nlogn), yet have oriented chromatic number n. Thus good bounds for
X (Qq) cannot be obtained solely in terms of the number of edges.

The example of an oriented graph with diameter 2 by Fiiredi et al. [21] has
a vertex of degree n—1. Thus it is natural to consider the oriented chromatic
number of graphs with bounded degree. Sopena [42] and Kostochka et al.
[29] prove that the oriented chromatic number is bounded for graphs of
bounded degree. The best bound is due to Kostochka et al. [29], who prove
that every graph G satisfies

(1.3) X (G) < 24228,
and if G is A-regular with sufficiently many vertices then

(1.4) X(G) > 2872,
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Thus the exponential dependence on A in (1.3) is unavoidable. Observe
that for graphs such as the hypercube with A > logn, the upper bound in
(1.3) is greater than the trivial upper bound of n.

This motivates the study of the oriented chromatic number of graphs
whose average degree is at least logarithmic in the number of vertices. For
any such graph we establish a lower bound of Q(y/n) on the oriented chro-
matic number. If the average degree is at least (2 + ¢) logn then this lower
bound is improved to Q(y/m). These results are proved in Section 4. In
Section 2 we use a simple connection with harmonious colourings to prove a
general upper bound of O(A+/n) on the oriented chromatic number. More-
over this bound is best possible for certain graphs, as proved in Section 3.

2. AN UPPER BOUND

In this section we prove an elementary upper bound on the oriented chro-
matic number. A colouring of an undirected graph G is harmonious if
the endpoints of every pair of distinct edges receive at least three colours.
That is, every bichromatic subgraph has at most one edge. The harmonious
chromatic number h(G) is the minimum number of colours in a harmo-
nious colouring of G; see the survey [12] and the more recent references
8, 13, 14, 15, 22, 23, 30, 46].

The following two basic lower bounds on h(G) are well known. Since a
vertex and its neighbours all receive distinct colours in a harmonious colour-
ing,

h(G) > A+ 1.
Since G has at most (h(zG)) edges,
(2.1) h(G) > v2m.
The next bound is new. Observe that a harmonious colouring of G is an
oriented colouring for every orientation of G. Thus
(2.2) T(G) < h(G).

Many upper bounds on h(G) are known. For example, in [32] it is proved
that h(G) < 2A+/n —1. Thus (2.2) implies the following lemma, which
proves the upper bound on X (Qg) in (1.1).

Lemma 2.1. For every graph G,
X (G) < 2AvVn—1.

3. AN EXISTENTIAL LOWER BOUND

In this section we construct a graph whose oriented chromatic number is
within a constant factor of the upper bound in Lemma 2.1. To do so we
construct an n-vertex graph with diameter 2 and small maximum degree A.
Then by (1.2), the oriented chromatic number will be n. Minimising A is
a special case of the degree/diameter problem, which asks for large graphs
with given diameter and given degree; see [33] for a survey. As we far as we
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are aware, this variant of the degree/diameter problem has not been studied
previously. (Numerous papers consider the degree/diameter problem for
directed graphs with antiparallel edges.) By Moore’s bound for undirected
graphs, we have A > v/n — 1. We now prove that, up to a multiplicative
constant, this lower bound can be attained by a construction.

Lemma 3.1. For infinitely many n, there is an n-vertex A-reqular graph G

with X (G) =n and A = /8n + 1 — 3.

Proof. As illustrated in Figure 1, let G be the underlying undirected graph
of the oriented graph D with vertex set {(7,7) : 1 <i < j < p} and arcs

(a) (i,7)(i, k) whenever i < j < k,

(b) (4,4)(k,j) whenever ¢ < k < j, and

(¢) (i,75)(k,i) whenever k < i < j.
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FicURE 1. Construction of the oriented graph D.

First we compute the degree of each vertex (i, j). Observe that (7,7) has
p—j outgoing type-(a) arcs, j—i—1 outgoing type-(b) arcs, and i—1 outgoing
type-(c) arcs. Thus (4, j) has outdegree (p—j)+(j—i—1)+(i—1) =p—2.
A type-(a) incoming arc at (i, 7) is from a vertex (i, k) with ¢ < k < j; there
are j — i — 1 such arcs. A type-(b) incoming arc at (7,j) is from a vertex
(k,j) with k < i < j; there are i — 1 such arcs. A type-(c) incoming arc at
(1,7) is from a vertex (j, k) with ¢ < j < k; there are p — j such arcs. Thus
(4,7) has indegree (j —i—1)+ (i— 1)+ (p—j) = p— 2. Hence G is A-regular
with A=2(p—2)=+8n+1-3.

Suppose on the contrary that D has a directed 2-cycle C. If C has a type-
(a) arc (i,7)(i, k), then the reverse arc (i,k)(7,J) is also type-(a), implying
j < kand k < j, which is a contradiction. If C' has a type-(b) arc (i, j)(k, ),
then the reverse arc (k,j)(4,7) is also type-(b), implying k < j and j < k,
which is a contradiction. If C' has a type-(c) arc (i, j)(k,7), then the reverse
arc is (k,7)(7,7), but there are no arcs of this form. Thus D has no directed
2-cycle, and indeed D is an oriented graph.

We claim that D has diameter 2. Consider two vertices (7, ) and (k,£).
Then i < 7 and k£ < ¢, and without loss of generality, ¢ < k. If ¢ = k and
j < £, then (i,7)(i,¢) is a type-(a) arc of D. If i = k and ¢ < j, then
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(7,0)(i,7) is a type-(a) arc of D. Now assume that i < k. If i < k and j = ¢,
then (7, 7)(k, ) is a type-(b) arc of D. If i < k and j < ¢, then (4, 5) (i, £)(k, ¢)
is a type-(ab) path of D. Otherwise i < k and ¢ < j, implying i < k < ¢ < 7,
in which case (i, )(¢, j)(k, ¢) is a type-(bc) path of D. Thus D has diameter
2, implying X (D) = n by (1.2). O

It follows from Lemma 3.1 that in any upper bound of the form X (G) <
O(A%nf), we must have o 4 203 > 2. In particular with 3 = 1/2, the graph
G from Lemma 3.1 has X (G) = n > Ay/n/8. In this sense, the upper
bound in Lemma 2.1 is tight up to a constant factor.

4. A UNIVERSAL LOWER BOUND

‘We now consider universal lower bounds on the oriented chromatic num-
ber. Kostochka et al. [29] prove the following' lower bound for all G, which
implies (1.4). (Throughout this paper, all logarithms are base 2.)

(4.1) <7;G)> Fnlog (R(@) > m.

We now reformulate (4.1) for reasonably dense graphs. Say G has average
degree d := 2m/n. Let t be the solution to

(4.2) t+logt = d—logn.

Note that 0 < ¢t < d and t — d for d > logn. (We are not interested in the
case d < logn, when t becomes small.)

Lemma 4.1. For every graph G, where t is defined as in (4.2),
X(G) = Vnt.
Proof. Suppose to the contrary that X (G) < v/nt. By (4.1),

(V1) + o (v) = m.

2
Thus (nt)
nt  nlog(nt dn
- - - 7 > -
2 * 2 27
implying ¢ + logt > d — logn. This contradiction proves the claim. O

Lemma 4.2. For every graph G with average degree d > logn,
X(G) > 0.8007...\/n.

Proof. Lemma 4.1 implies the claim since Vvt > 0.8007... whenever d >
log n. (I

1For completeness we include the proof of Equation (4.1) in [29]. Let k := X (G). G
has less than k™ colourings with k colours, each of which is an oriented colouring of at
most 2(3) orientations. Thus the number of orientations, 2™, is less than k7l2(§). Thus
m < nlogk + (S)



150 DAVID R. WOOD

For the hypercube, d = logn. Thus Lemma 4.2 implies the lower bound
in (1.1). Since (4.1) is proved by a non-constructive counting argument,
it would be interesting to construct an orientation D of Qg4 with X (D) €
Q(V29); see [1, 18, 20, 31] for results on specific orientations of the hyper-
cube.

We now refine Lemma 4.1 for graphs that are more dense than hypercubes.

Lemma 4.3. For every graph G with average degree d > logn+ (1+¢€)logt
for some € > 0, where t is defined as in (4.2),

— €
> —_— — .
X (G) > 14_6(2m nlogn)

(For example, the assumption in Lemma 4.3 holds if d > (2 + €) log n.)
Proof. By the assumption, t +logt > (1 + €)logt and ¢ > elogt. Thus
(L+e€)t > e(t +logt) = e(d — logn)

and
(14 €e)tn > e(dn — nlogn) = €(2m — nlogn).
Therefore Lemma 4.1 implies that

X(G) > Vin > \/%_{_6 (2m — nlogn).

O

Lemma 4.3 says that for sufficiently dense graphs (that is, graphs with
super-logarithmic average degree) the lower bound of h(G) > Q(y/m) in
(2.1) also holds for the oriented chromatic number.

Now suppose that G is A-regular for some A > (2 + €)logn. Thus Lem-
mas 2.1 and 4.3 determine X (G) to within a factor of ©(v/A). In particular,

1+e

The bounds in (4.3) are particularly close when G is (clogn)-regular for
some constant ¢ > 2. Then ¥ (G) is between Q(y/nlogn) and O(y/nlogn).

(4.3) 2L+€An < \/ C (A-logn)n < X(G) < 2Avn — 1.
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