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A SURVEY ON SEMIOVALS

GYÖRGY KISS

Dedicated to the centenary of the birth of Ferenc Kárteszi (1907–1989).

Abstract. A semioval in a finite projective plane is a non-empty pointset
S with the property that for every point in S there exists a unique line
tP such that S ∩ tP = {P}. This line is called the tangent to S at P .

Semiovals arise in several parts of finite geometries: as absolute points
of a polarity (ovals, unitals), as special minimal blocking sets (vertex-
less triangle), in connection with cryptography (determining sets). We
survey the results on semiovals and give some new proofs.

1. The beginning, semi quadratic sets and semi-ovoids

Semiovals first appeared as special examples of semi-quadratic sets. Let
Π be a projective space and Q = (P,L) be a pair consisting of a set P of
points of Π, and a set L of lines of Π. A tangent to Q at P ∈ P is a line
` ∈ L such that P is on `, and either ` ∩ P = {P}, or ` ∈ L. Q is called
semi quadratic set (SQS), if every point on a line of L belongs to P, and for
all P ∈ P the union TP of all tangents to Q at P is either a hyperplane or
the whole space Π. A lot of attempts were made to classify all SQS, but the
problem is still open in general. For the known results about SQS we refer
to [8] and [20].

An SQS Q = (P,L) is called a semi-ovoid (or semioval if dim Π = 2), if
L = ∅ and P contains at least 2 points. The complete characterization of
semi-ovoids was given by J. Thas [32]. Using elementary double counting
arguments, he proved the following results.

Theorem 1.1.

• The only semi-ovoids of PG(3, q) are the ovoids (set of q2 +1 points,
no three of them are collinear).

• In PG(n, q), n > 3, there are no semi-ovoids.
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In the planar case the situation is much more complicated. It is easy to
see, that the following simpler definition of semiovals is equivalent to the
previously given one.

Definition 1.2. Let Πq be a projective plane of order q. A semioval in Πq

is a non-empty pointset S with the property that for every point in S there
exists a unique line tP such that S∩tP = {P}. This line is called the tangent
to S at P .

Throughout this paper Πq will denote an arbitrary projective plane of
order q, while PG(2, q) will denote the Desarguesian projective plane of
order q. S will always denote a semioval, and for a point P ∈ S, tP will
denote the tangent line to S at P.

The classical examples of semiovals arise from polarities (ovals and uni-
tals). These objects are the smallest and the largest semiovals, proved inde-
pendently by Hubaut [18] and J. Thas [32].

Theorem 1.3. Let S be a semioval in a projective plane of order q. Then

q + 1 ≤ |S| ≤ q
√

q + 1.

The two extremes are also characterized, equality holds in Theorem 1.3 if
and only if S is an oval or a unital. Each line of Πq intersects an oval in 0, 1
or 2 points, while it intersects a unital in 0, 1 or

√
q + 1 points. This extra

property leads us to the subject of the next section.

2. Regular semiovals

The notion of regular semioval was introduced by de Finis [10] in the
following way.

Definition 2.1. Let S be a semioval in Πq. If all nontangent lines intersect
S in either 0 or a constant number a of points, then S is called regular
semioval with character a.

In the same paper he calculated some possible parameters for these objects,
but he was not able to give any new examples. The investigation of regu-
lar semiovals was continued by Blokhuis and Szőnyi [7]. They proved the
following results.

Theorem 2.2. Let S be a regular semioval with character a in Πq. Then S
is an oval (thus a = 2), or a divides q − 1 and the points not on S are on 0
or on a tangents.

A consequence of this theorem is that the tangents of S form a regular
semioval on the dual plane of Πq. (This was proved by de Finis, too.)

Theorem 2.3. Let S be a regular semioval with character a in PG(2, q).
Then there are two possibilities:

(1) S is a unital (thus a =
√

q + 1);
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(2) a − 1 and q are coprimes, and the tangents at collinear points of S
are concurrent.

This theorem implies that with every a-secant there is associated a point,
namely the point of intersection of the tangents at the points of the a-secant,
and also to every tangent there is associated a point, namely the point of
the semioval. The obvious next step would be to extend this correspondence
to a polarity of PG(2, q), which then would imply that the regular semiovals
are the ovals and the unitals. Blokhuis and Szőnyi conjectured that this is
possible, but they were not able to prove it.

Let us remark, that the absoute points of a polarity always form a regular
semioval in PG(2, q), but the situation is different in translation planes.
Ganley [15] gave an example of a class of commutative semifield planes of

order q with a polarity having q5/4 absolute points. The semiovals formed
by these points are not regular ones.

The longstanding regular semioval conjecture in the Desarguesian planes
was finally proved by Gács [15].

Theorem 2.4. Let S be a regular semioval in PG(2, q). Then S is either
an oval or a unital.

Using the result of Blokhuis and Szőnyi [7], that the a-secants of a possible
counterexample form a regular semioval in the dual plane, and a Segre-type
trick due to Thas [33], he proved that the points on an a-secant form a set
projectively equivalent to the ath roots of unity. After this, one easily proves
that there are certain transformations of the projective line leaving the ath

roots of unity invariant. Since these transformations can be classified, this
gives enough information to have a contradiction.

3. Blocking semiovals

The first examples of semiovals other than ovals or unitals were the ver-
texless triangles. These objects first appeared as minimal blocking sets. A
blocking set in a projective plane is a set of points which meets every line
but does not contain any line. A blocking set is said to be minimal when
no proper subset of it is a blocking set. A semioval S is called blocking
semioval, if it is a blocking set. A blocking semioval is a minimal blocking
set, because at each point there is a tangent line. Minimal blocking sets are
one of the most studied objects in finite planes, for a survey on blocking
sets we refer to [29]. The investigation of blocking semiovals was originally
motivated by Batten [3]. She constructed a message sending scenario which
uses determining sets. Blocking semiovals are examples of determining sets
in projective planes.

The first examples of blocking semiovals other than the vertexless triangles
and unitals, were found by computer search [3]. These examples come from
subgroups of a Singer group of PG(2, q), and they have an extra property:
there are only a few intersection numbers with the lines of the plane.
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A set A of points in a plane Πq is of type (i1, i2, . . . , ik) if each line of Πq

meets A in ij points for some j, and for each ij some line meets A in exactly
ij points. The numbers ij are called the intersection numbers of A. If a
semioval has only two intersection numbers, one of these must be 1, hence
the semioval is a set of type (1, k). These sets were characterized by Tallini
Scafati [30, 31], there are only two classes, unitals and Baer subplanes. A
Baer subplane has q−√

q tangent lines at each point, so it is not a semioval.
Hence we have the following theorem.

Theorem 3.1. The only semiovals with two intersection numbers are uni-
tals.

Blocking semiovals with three intersection numbers were studied by Bat-
ten and Dover [2]. They gave arithmetic conditions on blocking semiovals of
type (1,m+1, n+1), and they also exhibited families of possible parameters.
Their main result is the following theorem.

Theorem 3.2. Let q > 4 be a square prime power, and let Πq be a projective
plane of order q. A blocking semioval of type (1,

√
q − 1 − λ,

√
q + 1) and

size (q +
√

q + 1)(
√

q − 1 − λ) is arithmetically feasible in Πq if and only if
λ(q +

√
q)/(λ + 2) is an integer with 0 ≤ λ ≤ √

q − 3.

In PG(2, q) for q ≤ 1024 they found only one blocking semioval with three
intersection numbers other than the vertexless triangle. This is a cyclic
semioval in PG(2, 7). If σ is a Singer cycle of the plane, then each point
orbit of σ3 is a blocking semioval of type (1, 3, 4).

They also proved nonexistence results. In this direction their main theo-
rem is the following.

Theorem 3.3. Let Πq be a projective plane of order q 6= 7. If q2 + q +1 = p
or q2 + q + 1 = 3p, p prime, then each blocking semioval of type (1,m, n) in
Πq is a vertexless triangle.

It is well-known, that a blocking set of a projective plane of order q
contains at least q +

√
q + 1 points. This lower bound can never be met by

a blocking semioval, because any blocking set of size q +
√

q + 1 must be a
Baer subplane. Much better lower bounds for the size of a blocking semioval
were proved by Dover [12].

Theorem 3.4. Let Πq be a projective plane of order q ≥ 7, and let S be a
blocking semioval in Πq. Then |S| ≥ 2q + 2.

If a blocking semioval contains a large collinear subset, then the following
sharper bound is valid.

Theorem 3.5. Let Πq be a projective plane of order q ≥ 3, and let S be a
blocking semioval in Πq. If S has a (q − k)-secant, 1 ≤ k ≤ q − 1, then

|S| ≥
⌈

3k + 4

k + 2
q − k

⌉

.
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On the other hand, the size of the smallest known blocking semioval in Πq

is approximately 3q. Only a few examples of small blocking semiovals have
been constructed so far. Ranson, Dover [24], [25] and Suetake [27] provide
computational results in planes of small order. The known infinite families
of small blocking semiovals are as follow:

(1) The vertexless triangle is a blocking semioval of size 3q − 3 in any
plane of order q.

(2) If q = re, r ≥ 3, r is a prime power, e ≥ 2 and 2 ≤ n ≤ r, then there
exist blocking semiovals of size 3q − n − 2 in PG(2, q).

(3) If q = re1e2 , r ≥ 3, r is a prime power, e1 6= 1, e2 6= 1 and 3 ≤ n ≤ r,
then there exist blocking semiovals of size 3q − n − 2 in PG(2, q).

(4) If q = re, r ≥ 3, r is a prime power and e ≥ 2 then there exist
blocking semiovals of size 3q − r − 2 in PG(2, q).

(5) In PG(2, q), q odd, five types of blocking semiovals can be con-
structed from the vertexless triangle by deleting some (3, 5 or 6)
points, and simultaneously adding some (3,4,5 or 7) extra points.
The sizes of these semiovals are 3q − n, where n = 2, 3, 4 or 5.

Families (2)–(4) were constructed by Suetake. For the detailed description
of (2) and (3), see [26], for (4) see [27]. A special case of (2) was also
constructed by Dover [13]. The five families of (5) were constructed by
Ranson and Dover [25].

Each member of these infinite families contains at least one large collinear
subset. This fact motivates the study of semiovals with large collinear sub-
sets.

4. Semiovals with large collinear subsets

A line `, or any proper subset of ` is not a semioval, because the number
of tangent lines at each of its point is greater than 1. A semioval S could not
contain a whole line `, because if P ∈ S \ `, then any line through P meets
`, hence there is no tangent to S at P. In PG(2, 2) and PG(2, 3) there are
semiovals containing q (that is 2 or 3, respectively) collinear points. But for
q > 3 the size of the largest collinear subset in a semioval is at most q − 1.

Theorem 4.1. Let S be a semioval in Πq, q > 3. Then for any line ` the
intersection S ∩ ` contains at most q − 1 points.

Proof. Suppose that |S ∩ `| = q. Then there is a unique point T ∈ ` \ S. If
P ∈ S \ `, then tP must meet ` in T. Hence |S \ `| ≤ q, because the tangents
at distinct points are distinct lines, there are q + 1 lines through T, but one
of them, `, could not be a tangent line. On the other hand, if R ∈ ` \ {T},
then there are q + 1 lines through R, one of them is `, one of them is tR,
but each of the remaining q − 1 contains at least one point of S \ `, thus
|S \ `| ≥ q − 1.

Suppose that |S \ `| = q − 1, and let P1 and P2 be two distinct points in
S \ ` (they exist because q > 3). If P1P2 ∩ ` = T, then there is no tangent
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line to S at P1 (and at P2). If P1P2 ∩ ` = R 6= T, then there are more than
one tangent lines at R, both of these are contradictions.

If |S \ `| = q, then let S \ ` = {P1, P2, . . . , Pq}. Now no line of type
PiPj meets ` in T, because we have already seen, that tPi

= PiT. Consider
the q(q − 1)/2 pairs of points {Pi, Pj} for all i 6= j. Each pair corresponds
to a line PiPj . Suppose, that {Pi, Pj} 6= {Pk, Pl} and PiPj ∩ PkPl = R ∈
` \ {T}. Then there would be more than one tangent line at R, hence the
lines corresponding to distinct pairs meet ` \ {T} in distinct points. This
implies

q(q − 1)

2
≤ q.

So q ≤ 3, a contradiction. �

A longer proof of the previous theorem was given by Dover [13], who first
investigated semiovals with large collinear subsets. He proved the following
properties of these semiovals.

Theorem 4.2. Let S be a semioval in a projective plane Πq of order q > 3.
Then

(1) |S ∩ `| ≤ q − 1 for any line ` of Πq.
(2) If S has a (q − 1)-secant, then |S| = 2q − 2, or 2q ≤ |S| ≤ 3q − 3.

If |S| = 2q − 2, then S consists of q − 1 points on each of two lines
which intersect in a point not in S, while if |S| = 3q − 3, then S is
a vertexless triangle.

(3) If q > 5 and S has more than one (q − 1)-secant, then S can be
obtained from a vertexless triangle by removing some subset of points
from one side.

If the largest collinear subset of S contains only all but three points of a
line, then the combinatorial arguments of the proof of Theorem 4.2 do not
work any more. Only one result is known in a very special case, see [14].

Theorem 4.3. If |S| = 2q − 1 and S has a (q − 2)-secant, then q = 7 and
S has exactly two (q − 2)-secants.

If a semioval has a large secant and its size is small, then Kiss [21] proved
that the tangents at the points of the large secant are concurrent. Hence
these semiovals in some sense similar to regular semiovals.

Theorem 4.4. Let S be a semioval in the Desarguesian plane PG(2, q).
If there exist integers 1 ≤ t and −1 ≤ k such that S has a (q − t)-secant,
|S| = 2q − t + k, 2(t + k) < q and t + 4(k + 1) < q, then the tangent lines at
the points of the (q − t)-secant are concurrent.

The proof of the theorem is algebraic, it is based on an application of the
Rédei polynomial associated to those points of S which do not lie on the
(q − t)-secant. If t = 1, then Theorem 4.4 implies the following embedding
property of small semiovals.
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Corollary 4.5. Let S be a semioval in the Desarguesian plane PG(2, q). If
|S| < 2q + (q − 9)/4 and S has a (q − 1)-secant, then S is a subset of a
vertexless triangle.

The following example shows that Theorem 4.4 could not be extended to
semiovals of size greater than approximately 3q.

Example 4.6. Suppose that q ≡ −1 (mod 4) . Let us coordinatize PG(2, q)
in the usual way. Then the point set

S = {(a, a, 1) : 0 6= a ∈ GF(q)}
∪ {(0, b, 1) : b is a square in GF∗(q)}
∪ {(c, 0, 1) : c is a non-square in GF∗(q)}
∪ {(d, 1, 0) : d 6= 0, 1, d ∈ GF(q)}

is a semioval of size 3q − 4.

The line X1 = X2 is a (q− 1)-secant of S, but the tangent to S at the point
Pa = (a, a, 1) has equation X1 = aX3 or X2 = aX3 according to whether a is
a square or a non-square element in GF∗(q). Hence the tangent lines at the
points of the (q − 1)-secant are not concurrent. But the semioval S has got
not only a (q − 1)-secant, but a (q − 2)-secant, too. The line X3 = 0 meets
S in (q − 2) points and the tangents to S at these points are concurrent.

There is only one more known infinite class of semiovals with (q − 2)-
secants: the vertexless triangle without three points which are collinear but
do not lie on the same side of the triangle. This semioval is formed by three
(q − 2)-secants and the tangent lines at collinear points are concurrent. So
it seems to be possible to characterize those semiovals which have more
than one large collinear subsets. The known examples support the following
conjecture.

Conjecture. If S is a semioval in Πq and there are at least two lines `1, `2

such that |S ∩ `i| ≥ q − 2 for i = 1, 2, then S is contained in the union of at
most four lines.

In the next section we collect the results about semiovals contained in the
union of few lines.

5. Semiovals contained in the union of three lines

It is easy to describe those semiovals which are contained in the union of
two lines. The proof of the following theorem is self-evident.

Theorem 5.1. Let S be a semioval in Πq. If S is contained in the union of
two lines `1 and `2, then |S| = 2(q − 1) and S = `1 ∪ `2 \ {`1 ∩ `2, Q1, Q2}
where Qi ∈ `i for i = 1, 2.

If S is contained in the union of three lines, then the classification is not
so simple. The problem was studied by Kiss and Ruff [22] when the three
lines form a triangle, and by Blokhuis, Kiss, Kovács, Malnič, Marušič and
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Ruff [6] when the three lines are concurrent. All of the results of the rest of
this section can be found in these two papers.

First consider the triangle case. There are much better bounds on the
size of S than the general ones.

Theorem 5.2. Let S be a semioval in a projective plane Πq. If S is con-
tained in the union of three lines then

3(q − 1)

2
≤ |S| ≤ 3(q − 1).

The upper bound is a trivial consequence of Theorem 4.2, while the lower
bound comes from a simple double counting. It is also easy to prove that
S contains at most one vertex of the triangle in which S is contained. If
S contains exactly one vertex, then we have the following classification for
Desarguesian planes.

Theorem 5.3. A semioval in PG(2, q) which is contained in the sides of a
triangle and which contains one vertex of this triangle has a (q − 2)-secant
and two (t + 1)-secants where t is a suitable integer. This type of semiovals
exists if and only if q = 4 and t = 1, q = 8 and t = 4 or q = 32 and t = 26.

The proof of this theorem is quite long. It starts with the following ele-
mentary observation: since S contains one vertex of the triangle, it must
contain a (q − 2)-secant. After choosing a suitable system of reference, one
can prove that the existence of S is equivalent to the existence of certain
cyclic difference sets in GF∗(q). Calculating the parameters of this difference
set we conclude that the diophantine equation 2r = x2 + 7 has to have a
solution. It is known that this equation has only five pairs of solution, three
of them correspond to semiovals, while the other two do not.

All of the known semiovals in nondesarguesian planes which are contained
in the sides of a triangle, do not contain any vertex of this triangle. So
Theorem 5.3 might be true in general, but to give a simple, combinatorial
proof seems to be difficult.

Now consider the case when S does not contain any vertex of the triangle.
Then there are two classes of these semiovals.

Theorem 5.4. If a semioval S in PG(2, q) is contained in the sides of a
triangle T and does not contain any vertex of T , then there are two possi-
bilities:

(1) S has two (q − 1)-secants and a k-secant. Semiovals in this class
exist for all 1 < k < q.

(2) S has three (q − 1− d)-secants where d is a suitable divisor of q − 1.

Semiovals of type (1) exist in any plane. They can be constructed by the
simple expedient of deleting some points from one side of a vertexless tri-
angle. The existence of semiovals of type (2) is nontrivial. The proof uses
coordinates, and shows that such a semioval corresponds to a subgroup of
GF∗(q).
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Now consider the case of three concurrent lines. There are only two known
examples which are not contained in the union of any two of these lines. One
of them is trivial: an irreducible conic C in PG(2, 5) has 6 points, and if B is
any interior point of it, then C is contained in the union of the three secants
passing through B. The other example is the following infinite family arising
from Baer subplanes of PG(2, s2).

Example 5.5. Let q = s2 and let `1, `2, `3 be three concurrent lines in
PG(2, q). Choose Baer sublines `1 ⊂ `1, `2 ⊂ `2, and `3 ⊂ `3 in such
a way that, for any triple of distinct i, j, k ∈ {1, 2, 3}, the Baer subplane
Bj,k = 〈`j, `k〉 meets the line `i only in the common point C. Then S =

(`1 \ `1) ∪ (`2 \ `2) ∪ (`3 \ `3) is a semioval which has 3(q − √
q) points.

These semiovals have two extra properties:

(1) Each of the three lines whose union contains S, meets S in the same
number of points.

(2) Let `1, `2 and `3 be the three concurrent lines whose union contains
S, and let C be the common point of these lines. If P is any point
of the set `1 ∪ `2 ∪ `3 \ (S ∪ {C}), then the number of 2-secants of S
passing through P is a constant.

Property 1 holds in general. One can prove the following theorem by simple
double counting of the 2-secants of S.

Theorem 5.6. If a semioval S in Πq, q > 3, is contained in the union of
three concurrent lines, `1, `2 and `3, then there exists a number a for which
|S ∩ `i| = a for i = 1, 2, 3.

Applying the result of Theorem 5.6, one can show that the semiovals of
Example 5.5 have the largest possible size.

Theorem 5.7. If a semioval S in Πq, q > 3, is contained in the union of
three concurrent lines, then |S| ≤ 3dq − √

qe.

The lower bound of Theorem 5.2 can also be slightly improved in Desargue-
sian planes in the case of concurrent lines.

Theorem 5.8. If a semioval S in PG(2, q) is contained in the union of
three concurrent lines then |S| > 3(q − 1)/2 for q > 9.

Perhaps Property 2 of semiovals in Example 5.5 also holds in general.
Neither the proof, nor any counterexample is known. This property leads
to the notion of strong semioval.

Definition 5.9. Let `1, `2 and `3 be the three concurrent lines whose union
contains S. We denote by C the common point of these three lines and by
L the union of `1, `2 and `3. And finally, we let Li = S ∩ `i (i = 1, 2, 3).
The semioval S is strong, if for any point K ∈ L\ (S ∪{C}), the number of
two-secants of S passing through K is independent of K.
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An algebraic description of strong semiovals in PG(2, q) is given in [6]. A
strong semioval corresponds to an ordered triple (S, T,R), where R,S and
T are certain subsets of GF(q), satisfying the following conditions:

|S + u ∩ −T | =

{

2a − q + 1, if u ∈ R,
k, if u /∈ R,

|T + u ∩ −R| =

{

2a − q + 1, if u ∈ S,
k, if u /∈ S,

(5.1)

|R + u ∩−S| =

{

2a − q + 1, if u ∈ T,
k, if u /∈ T,

where a is the same as in Theorem 5.6, and k is the parameter of S. This
parameter depends on q and a, as seen below.

Proposition 5.10. Let S be a strong semioval in PG(2, q) with parameter
k. If S consists of 3a points, then

k = a − a

q − a
.

The divisibility condition q−a | a implies the following non-existence result.

Corollary 5.11. There is no strong semioval in PG(2, p) if p is an odd
prime.

Combining the algebraic description (5.1) and a classical result on group
factorizations due to Rédei, a complete characterization of strong semiovals
in PG(2, p2), p an odd prime can be given.

Theorem 5.12. If S is a strong semioval in PG(2, p2), p an odd prime, and
S is contained in the union of lines `1, `2 and `3, then L\S can be described
as the point set

(5.2)
{

(−1, a, 1), (0, b, 1), (1, i, ci + f(c)) : a, b, c ∈ GF (p)
}

∪
{

C
}

,

where C = (0, 1, 0), i2 = ε for a non-square element ε of GF (p), GF (p2) is
the extension of GF (p) by i, and finally, f is a permutation of GF (p).

If a strong semioval S in PG(2, q) has less than 3(q − √
q) points, then

some divisibility conditions can be proved using group algebras and character
theory. These conditions imply some nonexistence results, see [6].

Theorem 5.13. If S is a strong semioval of cardinality |S| = 3(pm − pl),
m/2 < l < m, in PG(2, q), q = pm odd, then

(5.3) (p − 1)(p2l−m − 1)2 | (pm−l − 1).

Corollary 5.14. If S is a strong semioval in PG(2, pm), where p is an odd
prime, and

m ≤
{

(p − 1)2 if p ≡ −1 (mod 4) ,
2(p − 1)2 if p ≡ 1 (mod 4) ,

then |S| = 3(q −√
q).
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6. The spectrum of the sizes of semiovals

For planes of small order the complete spectrum of the sizes and the
number of projectively non-isomorphic semiovals are known.

6.1. q = 2. Because of Theorem 1.1, each semioval consists of three points,
and these points are not collinear, hence semiovals are ovals.

6.2. q = 3. If a semioval S is not an oval, then there is a line ` which
contains three points of S, say A,B and C. There are four lines through
each of these points, one of them is the tangent, but the others must meet
S. Hence S contains at least two points not on `. Let D,E ∈ S \ `. If F is
the fourth point of the line `, then tD ∩ ` = tE ∩ ` = F, thus DE ∩ ` 6= F.
Without loss of generality we may assume, that DE ∩ ` = A. This implies
that S must contain a sixth point G, otherwise there would be two tangents
through A. But 6 is an upper bound of the cardinality of S by Theorem 1.1.
If G = BD ∩ CE, then it is easy to check that the set {A,B,C,D,E,G}
is a semioval. These points form the vertices of a complete quadrilateral.
Hence we proved that there are two projectively non-isomorphic classes of
semiovals in PG(2, 3).

6.3. q = 4. The possible sizes of S are 5, 6, 7, 8 and 9. It follows from
Theoem 4.2, that if |S| > 5, then S has at least one (q − 1)-secant, hence
|S| 6= 2q − 1 = 7. The cases |S| = 2q − 2 = 6 and |S| = 9 = 3q − 3 are
also characterized by the same theorem, these are a triangle with its vertices
and all points on one side removed, and the vertexless triangle, respectively.
If |S| = 8, then an exhaustive computer search [13] shows that the only
semiovals of this class are vertexless triangles with one point deleted.

6.4. q > 4. For q > 4 the situation becomes more and more complicated.
Semiovals of size 2(q − 1) + k for all k ≤ q − 1 and k 6= 1 can be constructed
easily. If we delete any set of q − 1 − k points from one side of a vertexless
triangle, then the remaining points form a semioval S and |S| = 2(q−1)+k.
Hence the spectrum of sizes always contains 2q − 2 and all integers in the
interval [2q, 3q−3]. Table 1 gives the sizes of the known semiovals in PG(2, q)
for small order planes. For q ≤ 9, q odd, the complete spectrum of sizes
was determined by exhaustive computer search, while for q = 11 and 13 the
examples were found by a backtracking algorithm [14].
These results support the following conjecture.

Conjecture. If a semioval S has less than 3(q − 1)/2 points in Πq, then S
is an oval.

There is only one nonexistence result known for small semiovals. A
seminuclear set was defined by Blokhuis and Bruen [5] as a set of q + 2
points in Πq blocking (q + 2)(q + 1)/2 + (q + 2)/3 lines. (This is the mini-
mum number of lines blocked by q+2 points.) They proved that seminuclear
sets are semiovals (although they did not call them semiovals) of size q + 2.
A few years later Blokhuis [4] proved, that seminuclear sets exist in PG(2, q)
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q spectrum of sizes upper bound, bq√q + 1c
2 3 3
3 4,6 6
4 5,6,8,9 9
5 6,8,9,10,11,12 12
7 8,9,12 - 19 19
8 9,14,16 - 21 23
9 10,12 - 28 28
11 12,15,20,22 - 34 37
13 14,18,24,26 - 40 47

Table 1. Sizes of known semiovals

if and only if q = 4 or q = 7. He also characterized these sets, and proved
the following theorem.

Theorem 6.1. Let S be a semioval in PG(2, q), q odd. If |S| = q + 2, then
q = 7 and S is projectively equivalent to the set of points

{(0, 1, s), (s, 0, 1), (1, s, 0) : s is a square in GF(7)},
hence S is contained in a vertexless triangle.

His proof is based on a beautiful application of Ceva’s Theorem, but quite
long. Using results of Szőnyi [28] about the size of minimal blocking sets in
PG(2, q), a short proof of the essential part of this Theorem can be given.

Proof. Suppose that |S| = q+2 and q odd. Then each line meets S in 0, 1, 2
or 3 points, and each point of S is on a unique 3-secant. Hence there are
(q + 2)/3 3-secants and so q + 2 is divisible by 3. If P /∈ S is any point,
then the lines through P give a partition of the points of S. The cardinality
of S is odd, hence the number of lines through P which meet S in either 1
or 3 points is odd. Thus if we consider now the dual plane, then the q + 2
tangents and the (q+2)/3 3-secants form a blocking set B of size 4(q+2)/3. If
q > 9, then this blocking set is minimal, because otherwise it would contain
a point L such that each line through L would meet in B some other points,
too. By duality it would imply the existence of a line ` such that each point
in S \ ` is incident with at least 2 more lines of the set of the tangents and
3-secants of S. Hence the cardinality of this set is at least 1 + 2(q − 2). But
1 + 2(q − 2) > 4(q + 2)/3 if q > 9, so B is minimal.

For minimal blocking set of size less than 3(q + 1)/2, Szőnyi [28] proved
that if q = pe, p prime, then each line of PG(2, q) meets the minimal blocking
set in 1 modulo p points. But in our case the lines corresponding to the
points of S meet B in 2 points, because each point of S lies on exactly one
tangent to S and on exactly one 3-secant. 2 is not congruent to 1 modulo
p, this contradiction shows that q ≤ 9. We also have q ≡ 1 (mod 6) , hence
the only possibility is q = 7. �
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A possible way of constructing (not necessarily small) semiovals is to find
them in the cyclic model of PG(2, q). But cyclic semiovals are rare objects.
There are only two known examples. We have already mentioned in Section
3 the cyclic semioval of size 19 in PG(2, 7), the other one is in PG(2, 35), see
[14], its size is 511, so it is not small. The following nonexistence result was
also proved in [14].

Theorem 6.2. There is no cyclic semioval in PG(2, q) if q ≡ 2 (mod 3) .

Large semiovals in PG(2, q), q odd, were constructed by Faina, Kiss,
Marcugini and Pambianco [14]. Their construction is based on a method
developed by Hirschfeld and Szőnyi [17] and by Baker and Ebert [1] for
constructing unitals as union of conics. Let Pa be the conic with equation

Pa : X2X3 = X2
1 + aX2

3 .

Then the construction is the following.

Example 6.3. Let q ≡ 1 (mod 4). If {a1, a2, . . . , ak} ⊂ GF (q) is a subset of
k ≥ 2 elements such that ai − aj is a nonsquare for all i 6= j, then the sets

S =
k

⋃

i=1

Pai
and S1 =

k
⋃

j=1

Pai
\ {(0, 1, 0)}

are semiovals of size kq + 1 and kq, respectively.

If q = s2 and α is a nonsquare element in GF(q), then the s-element set
{αai : ai ∈ GF(s)} gives semiovals of sizes q

√
q + 1 and q

√
q, respectively.

Using the elementary observation, that if the point P ∈ S has the property,
that each line passing through P other than tP meets S in at least two
points, then S \ {P} is also a semioval, we get the following theorem.

Theorem 6.4. Let q be an odd square and m be an integer satisfying

q

√
q + 1

2
≤ m ≤ q

√
q + 1.

Then PG(2, q) contains semiovals of size m.

It also follows from the construction, that any subset of 1 ≤ k ≤ √
q conics

of the set S =
⋃

√
q

j=1
Paij

forms a semioval of size kq + 1.

If q is an odd power of an odd prime, then the sizes of the largest known
semiovals are far away from the upper bound of Theorem 1.1. The best
known example also comes from Example 6.3 (see [14]).

Theorem 6.5. Let q ≡ 1 (mod 4), and let cq be the cardinality of the largest
clique in the Paley graph Pq. Then PG(2, q) contains semiovals of size kq
and of size kq + 1 for all k = 1, 2, . . . , cq + 1.

The size of the largest clique in the Paley-graph is not known if q is a non-
square. The best known lower bound is approximately log q/(2 log 2) [9].
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Let us finish this survey with an open problem: Prove or disprove that
the size of a semioval in a plane of non-square order is less than cq log q
where c is a constant.
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