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COLOURFUL TRANSVERSAL THEOREMS

LUIS MONTEJANO AND DEBORAH OLIVEROS

Abstract. We prove colourful versions of three classical transversal
theorems: the Katchalski-Lewis Theorem “T(3) implies T-k”, the “T(3)
implies T” Theorem for well distributed sets, and the Goodmann-Pollack
Transversal Theorem for hyperplanes.

1. Introduction

Transversal properties of families of translated copies of a compact con-
vex set have been studied by a number of authors, with special attention to
Helly-type problems. For instance, B. Grünbaum [9] conjectured the follow-
ing Helly-type theorem for line transversals to a family F of pairwise disjoint
translates of a compact convex set K in the plane: if every subfamily of F
of cardinality five admits a line transversal, then the entire family admits a
line transversal, a statement that was proved later by Tverberg in [17]. In
[10] Grünbaum proved the following result:
Theorem. If the members of F are sufficiently far apart and every sub-
family of cardinality three admits a line transversal, then the entire family
admits a line transversal.
Following the same spirit, Katchalski and Lewis [14] proved the following
result:
Theorem. There is a positive integer k, depending only on K, with the prop-
erty that if every subfamily of F of cardinality three admits a line transversal,
then there is a line intersecting all but at most k members of F .

From a different perspective, Hadwiger proved in [11] that if F is an
ordered family of compact convex sets in the plane such that there is a line
meeting any three sets in a manner compatible with the order, then F admits
a line transversal. J. E. Goodman and R. Pollack [8] extended Hadwiger’s
Theorem for hyperplane transversals in the n-dimensional Euclidean space
Rn, with the ordering of the sets replaced by the “order type” and the
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condition that no two have a common point by the condition that the family
is “separated”. The result reads as follows:
Theorem. If every subfamily of cardinality n + 1 has a transversal hyper-
plane in a manner compatible with the “order type”, then there is a hyper-
plane transversal to all members of the family.

Later, R. Wenger [20] proved Hadwiger’s Theorem without the pairwise
disjointness, and R. Pollack and R. Wenger [15] were able to prove the
generalization to higher dimensions without separability. It is interesting to
remark that in these latter two cases the proof required topological methods.

In [3] Bárány described remarkable extensions of two classical theorems,
known as the “multiplied” or “colourful” versions of the Carathéodory and
Helly theorems. The colourful version of the Helly theorem was discovered
by Lovász, and the colourful version of the Carathéodory theorem by Bárány
in [3]. These theorems have many applications in discrete geometry. For
example, they play key roles in Sarkaria’s proof of Tverberg’s Theorem [16]
and in the proof of the existence of weak ε-nets for the family of convex
sets in Rn. These colourful theorems also have interesting connections with
topology, as the research of Živaljevic shows in [19] regarding the connection
among Tverberg’s Theorem, colourful theorems and algebraic topology.

Let F be a family of compact convex sets in Rn. We say that F is
υ-coloured if there is a partition of the family F into υ pairwise disjoint
classes F1, . . . , Fυ called the chromatic classes. We say that A ∈ F has
colour i, i = 1, . . . , υ, if A ∈ Fi. Also, we say that a subset G ⊂ F is
heterochromatic if no two members of G have the same colour. Furthermore,
we say that F is Ts(r)-chromatic if every subfamily of cardinality r admits
an s-flat transversal; for instance, if s = n− 1, Tn−1(r) implies a transversal
hyperplane for any r members of F . For simplicity, T (r) will denote the
existence of a line transversal to any r members of F .

If F , an (n + 1)-coloured family of convex sets in Rn with the property
that all members of any heterochromatic subfamily of cardinality n+1, have
a common point, then it is unreasonable to expect all members of F to have
a common point, but surprisingly, the colourful Helly Theorem states that
there is a colour, say i, with the property that all i-coloured members of F
have a common point.

The purpose of this paper is to prove the colourful versions of three clas-
sical transversal theorems. In Section 2, we prove the following colourful
version of the Goodman and Pollack extended Hadwiger Theorem using
separability:
Theorem. If F is a separable (n + 1)-coloured family of compact, convex
sets in Rn and F is Tn−1(n + 1)-chromatic in a manner compatible with
the order type, then there is a colour and a hyperplane transversal to all
members of the family of this colour.

In [1] Arocha, Bracho and Montejano proved the above result in dimension
2 for intersecting planar sets.
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Section 3 will be devoted to proving a colourful version of Grünbaum’s
classical transversal theorem;
Theorem. If F is a 3-coloured family of translated copies of a compact
convex set in the plane, T(3)-chromatic and well-distributed, then there is a
colour and line transversal to all members of F with this colour.

Finally, in Section 4, we prove the colourful version of the Katchalsky-
Lewis Theorem.
Theorem. Given a compact convex set K in the plane, there is a constant
k, depending only in K, such that if F is a 3-coloured, T(3)-chromatic family
of translated copies of K, then there is a colour and a line transversal to all
members of F of this colour except for k of them.

Throughout the rest of the paper, conv(X) will denote the convex hull of
X.

2. The colourful GP Transversal Theorem

Let P be a set of points in general position in Rn, P = R ∪ S and
R ∩ S = ∅. We say that a point in R is round and a point in S is square.
Assume that R and S are (n + 2)-coloured, with the partitions

R = R1 ∪ · · · ∪Rn+2 and S = S1 ∪ · · · ∪ Sn+2.

Let Pi = Ri ∪ Si be the set of points of colour i, i = 1, . . . , n + 2.

Definition 2.1. A heterochromatic Radon partition of P in Rn is an het-
erochromatic subset G ⊂ P of cardinality n + 2, with the property that the
convex hull of the round points of G intersects the convex hull of the square
points of G; that is, |G ∩ Pi| = 1 and conv(G ∩ R) ∩ conv(G ∩ S) 6= ∅ for
i = 1, . . . , n + 2.

Observation: When n = 1, the following situation holds: consider P, a set
of 3-coloured points in a line, some of them round and some square. A
heterochromatic Radon triple consists of three points of P, each one with a
different colour and with the property that either a round point is between
two square points or a square point is between two round points.

Theorem 2.2. Let |Pi|, the number of points of colour i, be even for every
i = 1, . . . , n + 2. Then the number of heterochromatic Radon partitions of P
is even.

Proof. Let I(P), the Radon index of P, be the number of heterochromatic
Radon partitions of P. Note that if R and S are separated by a hyperplane,
then I(P) = 0. Hence, we may assume that there is no such hyperplane and
I(P) = k for some k > 0.

Since the points of P are in general position and |P| is finite, we may
assume that there is a direction, say d = (0, . . . , 0, 1) in Rn, where no line
in this direction is contained in a hyperplane spanned by n points of P. We



COLOURFUL TRANSVERSAL THEOREMS 63

shall move the points of P one by one until the round points and the square
points of P became separated by the hyperplane

H = {(x1,x2, . . . , xn) | xn = 0}

without changing the Radon Index of P modulo 2. Denote by H+ and H−

the upper and lower closed half spaces determined by H respectively.
Suppose that a point s1 ∈ S1 is in H−. Move s1 in a vertical line with

respect to time t such that st
1, the point at t, consistently approaches H+ as

t increases. Let Pt = (P \ {s1}) ∪ {st
1} and suppose s0

1 = s1 and st0
1 ∈ H+.

If I(Pt) = k for every t ∈ [0, t0], then we may assume that s1 is in H+.
If I(Pt) changes at some time, say t = 1, then an heterochromatic Radon

partition has been created or a heterochromatic Radon partition has been
destroyed. In the first case, there exists A ⊂ P \ {s1} such that |A| = n + 1
and (A∪{st

1})∩R and (A∪{st
1})∩S are separated by a hyperplane for 0 ≤ t <

1 and A∪{s1
1} is a heterochromatic Radon partition, or in the second case,

A∪{st
1} is a heterochromatic Radon partition for 0 ≤ t < 1 and the sets (A∪

{s1
1})∩R and (A∪{s1

1}) are separated by a hyperplane. In either case, there
is a hyperplane H̃ that contains a subset B of P1 that is a heterochromatic
Radon partition of H̃∩P1 in the (n−1)-dimensional hyperplane H̃. Since the
points of P are in general position and the cardinality of B is n+1, then there
is a colour, say i = 2, such that none of the points of P2 = {x21, x22, . . . , x2λ}
are in H̃. Furthermore, due to the fact that no vertical line is contained in a
hyperplane determined by n points of P, we have that the relative interior
of the convex hull of the square points B intersects the relative interior of
the convex hull of the round points B.

Suppose first that x21 is a square point. If both x21 and st
1 lie on the

same side of H̃ for 0 ≤ t < 1, then (B \ {s1
1}) ∪ {st

1, x21} is not a hete-
rochromatic Radon partition, but (B \{s1

1})∪{st
1, x21} is a heterochromatic

Radon partition for t ≥ 1, if t is sufficiently close to 1, and hence the Radon
index increases by one as st

1 crosses the hyperplane H̃. Conversely, if x21

and st
1 lie on different sides of H̃, for 0 ≤ t < 1, the Radon index decreases

by one as st
1 crosses the hyperplane H̃. We repeat this process for each

x2i ∈ P2, i = 1, . . . , λ. Since λ is even, the parity of I(P) does not change.
Similarly, if x21 is a round point and both x21 and st

1 lie on the same side
of H̃, for 0 ≤ t < 1, then (B \ {s1

1}) ∪ {st
1, x21} is a heterochromatic Radon

partition, but (B \ {s1
1}) ∪ {st

1, x21} is not a heterochromatic Radon parti-
tion, for t ≥ 1, sufficiently close to 1, and hence the Radon index decreases
by one as st

1 crosses the hyperplane H̃. Conversely, if x21 is a round point
and it is separated from st

1 by H̃, 0 ≤ t < 1, then (B \ s1
1}) ∪ {x21} is not

a heterochromatic Radon partition and hence I(P1) increases by one as st
1

crosses the hyperplane H̃. Again, the parity of I(P) does not change after
considering each x2i ∈ P2.

We now repeat this operation for each si ∈ H− ∩ S1 and replace S1

by S′1 = (S1 \ {s1}) ∪ {s′1}k > 5 such that s′1 ⊂ H+, S′ = S′1, S2, . . . , Sn+2,
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P ′ = R∪S, R∪S = ∅, P ′ is a set of points in general position in Rn, I(P ′) <
I(P) and I(P ′) ≡ I(P) (mod 2). Similarly, we perform the same operation
with all the points of si ∈ H− ∩ Sj for every j = 2, . . . , n + 2 and with
all points ri ∈ H+ ∩ Sj with j = 1, . . . , n + 2 until H strictly separates the
corresponding R′ from S′ and then the corresponding Radon index I(P ′) = 0
and I(P ′) ≡ I(P) (mod 2). Thus the number of heterochromatic Radon
partitions is even. �

Definition 2.3. Let G = {A1, . . . , Am} be a family of m compact convex
sets in Rn and let X = {x1, . . . , xm} be a set of m points in general position
in Rn−1. We say that a transversal hyperplane Γ of G meets G consistently
with the order type of X if there is yi ∈ Ai ∩ Γ, i = 1, . . . ,m, such that
{y1, . . . , ym} has the same order type as {x1, . . . , xm}.

In particular, every separation of the points {y1, . . . , ym} by a hyperplane
of Γ implies the corresponding separation of the points {x1, . . . , xm} by a
hyperplane of Rn−1. For more information about the notion of order type,
see [8].

By a separated family of convex sets in Rn, we mean a family for which
no n members have a common (n − 2)-flat transversal; i.e., separation in
the plane means pairwise disjointness and separation in 3-dimensional space
means no three members have a line transversal.

The following theorem is the coloured version of the Goodman Pollack
hyperplane transversal theorem for separated families of compact convex
sets.

Theorem 2.4. Let F = {A1, . . . , Aλ} be a separated, (n+1)-coloured family
of compact convex sets in Rn and let X = {x1, . . . , xλ} be a configuration
of points in Rn−1. Suppose that every heterochromatic subfamily F ′ of F
of cardinality n + 1 has an (n − 1)-hyperplane transversal consistent with
the order type of X. Then there exists a colour, say k, and a hyperplane
transversal to all members of colour k.

For the proof of Theorem 2.4 we need the following lemma.

Lemma 2.5. Let F = {A1, . . . , An+1} be a separated family of n+1 convex
sets in Rn, let H be a hyperplane that is disjoint from the interior of each
set in F . Let Ai be in H+ and Aj be in H− for i = 1, . . . , r and j = r +
1, . . . , r+s+2. If conv{∪Ai}∩conv{∪Aj} is not empty then r+s+2 = n+2
and H supports each set in F .

Proof. Let x ∈ conv{ai | Ai ⊂ H+} ∩ conv{ai | Ai ⊂ H−}. Then clearly
x ∈ H. Assume x belongs to the relative interior of both conv{ai0 , . . . , air}
and conv{aj0 , . . . , ajs} where aik ∈ Aik ⊆ H+, k = 0, . . . , r, and a ∈ Ajλ

⊆
H− for λ = 0, . . . , s. Let Γr be the r-plane generated by {ai1 , . . . , air}. Due
to the fact that for k = 0, . . . , r, aik ∈ H+, x ∈ H and x belongs to the
relative interior of conv{ai0 , . . . , air}, we have that Γr ⊂ H. Similarly, Γs,
the s-plane generated by {aj1 , . . . , ajs} satisfies that Γs ⊂ H. Then the plane
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Γ, generated by Γr and Γs, is also in H, and is an (r + s)-plane intersecting
r + s + 2 of the convex sets of F . Then since F is separated, r + s + 2 must
be n + 1 and hence {a0, . . . , an+1} ⊂ H. �

Proof of Theorem 2.4. We begin as in [11], using the classical contraction
argument. For each i = 1, . . . , λ, fix a point ai ∈ Ai and let Ai(t) be the
contraction of Ai about ai by a factor of t, 0 ≤ t ≤ 1; Ai(0) = Ai and
Ai(1) = ai. If t1 < t2 and the hypothesis holds for the family F(t2) =
{A1(t2), . . . , Aλ(t2)}, then clearly it holds for F(t1) = {A1(t1), . . . , Aλ(t1)}
as well. Since the family is separated, by continuity there exists a maximum
τ such that the hypothesis holds for t ≤ τ and fails for t > τ . If τ = 1,
the theorem is trivial, hence we may assume without loss of generality that
τ = 0; that is, the hypothesis is satisfied for the original family of convex
sets Ai but not for any proper contraction Ai(t). It follows (see [8]) that
there is a hyperplane H and a heterochromatic subfamily F ′, say F ′ =
{B1, . . . , Bn+1}, such that every member of F ′ is tangent to H and satisfies
the following property: if yi ∈ H ∩Bi, i = 1, . . . , n + 1, then

conv{yi | Bi ⊂ H+} ∩ conv{yj | Bj ⊂ H−} 6= ∅.

First, note that X is a finite, (n + 1)-coloured subset of Rn−1, because
every point xj ∈ X is of colour i, i = 1, . . . , n + 1 if and only if the corre-
sponding convex set Aj is of colour i.

If every convex set of F of a given colour i intersects H, then the theorem
is true. Suppose then that there exists a set of colour i, Ci ∈ F , such that
Ci ∩H = ∅, i = 1, . . . , n + 1. Let us consider the family consisting of the
convex sets

{B1, . . . , Bn+1, C1, . . . , Cn+1} ⊂ F
and let

P ={b1, . . . , bn+1, c1, . . . , cn+1} ⊂ X

be the corresponding points in Rn−1, according to our hypothesis. Declare
a point bi ∈ P to be a square point if the corresponding Bi ∈ H− and bj to
be a round point if the corresponding Bj ∈ H+. Similarly, a point ci ∈ P is
a square point if the corresponding Ci ∈ H− and cj is a round point if the
corresponding Cj ∈ H+.

We can now see that {b1, . . . , bn+1} is a heterochromatic Radon partition
of P, since by hypothesis it has the order type of B ={y1, . . . , yn+1} and

conv{yi | Bi ⊂ H+} ∩ conv{yj | Bj ⊂ H−} 6= ∅.

Note that P has cardinality 2n+2 and has exactly two points of every colour.
We would like to calculate I(P), the Radon index of P. Suppose that
{d1, . . . , dn+1} ⊂ P is a heterochromatic Radon partition of P and suppose

Dj ∈ {B1, . . . , Bn+1, C1, . . . , Cn+1}
is the convex set corresponding to the point dj ∈ X, j = 1, . . . , n + 1.
By hypothesis, there is an (n − 1)-hyperplane H ′ of Rn transversal to
{D1, . . . , Dn+1} consistent with the order type of X. That is, there is
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aj ∈ Dj , j = 1, . . . , n + 1 such that {d1, . . . , dn+1} has the order type of
{a1, . . . , an+1}. Since {d1, . . . , dn+1} is a heterochromatic Radon partition
and has the order type of {a1, . . . , an+1}, we have that

conv{ai|Di ⊂ H+} ∩ conv{ai | Di ⊂ H−} 6= ∅.

By Lemma 2.5, we conclude that {a1, . . . , an+1} ⊂ H, but since ai ∈ Di∩H,
this implies that {D1, . . . , Dn+1} = {B1, . . . , Bn+1}, because Ci ∩ H = ∅,
i = 1, . . . , n+1. So {d1, . . . , dn+1} = {b1, . . . , bn+1} and I(P) = 1, which is a
contradiction to Theorem 2.2. This concludes the proof of the theorem. �

3. The colourful “T(3) implies T” Theorem

In this section we will consider a family F of translated copies of a compact
convex set in the plane and assume that these convex sets are 3-coloured by,
say green, blue and red, and suppose also that F is T(3)-chromatic; that is,
every three convex sets of F with different colour admit a transversal line.
Then our conclusion is that if the convex sets of F are sufficiently far away
from each other, then there is a colour, say red, such that all red convex sets
of F admit a transversal line.

Next we will state the formal definitions and the preliminaries for the
proof of Theorem 3.6. Given a directed line L in the plane, we will denote
by L+ and by L− the corresponding half planes to the left and to the right
of L respectively. Given a set {L1, . . . ,Lk}, of lines orthogonal to L that
intersect L in increasing order, we will divide the plane into 2(k + 1) closed
regions that will be denoted by L+

1 , . . . ,L+
k+1 and L−1 , . . . ,L−k+1 if they are

to the left or to the right of L respectively.
Let B be a convex set and let d be a direction in the plane. We will denote

by Sd(B) the supporting closed strip determined by B in the direction d
and by |Sd(B)| the width of this strip. For simplicity, if d is given by the
unit vector d = (0, 1), then we will simply denote such a strip by S(B).
Finally, if a directed line H in the orthogonal direction d⊥ of d meets Sd(B)
somewhere, then the strip will be divided into two sections, S+

d (B) and
S−d (B), depending upon whether it is to the left or to the right of H.

Definition 3.1. Let A be a convex set in the plane and let ∆(A) be the
convex hull of the union of all rectangles Sd(A)∩ Sd⊥(A) over all directions
d. Then we say that two convex sets A and B are well-distributed if

3∆(A) ∩ 3∆(B) = ∅.

A family F of convex sets in the plane is well-distributed if every two mem-
bers of F are well-distributed.

We say that two sets are (strictly) separated by a line L if they lie in
different (open) half planes determined by L.

Definition 3.2. Let A,B and C be three translated copies of a convex set in
the plane. We say that the triple {A,B, C} is in L−position if A intersects
Sd(B) and C intersects Sd⊥(B) for some direction d in the plane.
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The following two lemmas are very useful in the proof of the main theorem.

Lemma 3.3 (L-Lemma). Let A,B and C well-distributed, translates copies
of a convex set in the plane. Suppose the triple {A,B, C} is in L-position
with respect to B. Then there is no transversal line through {A,B, C}.
Proof. It will be enough to show that for each of these three convex sets,
there is a line that strictly separates it from the other two. Since A intersects
Sd(B), C intersects Sd⊥(B), and C and B are well-distributed, which implies
that there is a line in direction d that strictly separates C from A and B.
Similarly, there is a line in direction d⊥ that strictly separates A from C and
B. Without loss of generality, suppose d = (0, 1), C is above Sd(B), and A is
located to the right of Sd⊥(B). Let L′ be the line of slope− |Sd⊥(B)| / |Sd(B)|
through the upper right corner of the rectangle Sd(B)∩Sd⊥(B). Since A, B
and C are well-distributed, L′ separates B from A and C and L′∩(A∪C) =
∅. Therefore, there is a line that strictly separates B from A and C, as
required. �

Definition 3.4. Let L be a directed line in the plane and let L1 and L2

be two different lines orthogonal to L that intersect L in increasing order.
Let A,B and C be three convex sets in the plane. We say that the triple
{A,B, C} is in V -position with respect to the line L if A is contained in the
open region L+

1 , B is contained in the open region L−2 and C is contained
in the open region L+

3 . Two of the sets are allowed to be tangent to the line
L.

Lemma 3.5 (V-lemma). Suppose the triple {A,B, C} is in V -position with
respect to a line L. Then there is no transversal line through {A,B, C}.
Proof. In order to prove that there is no transversal line through {A,B, C},
it will be enough to show that for each of the convex sets in {A,B, C}, there
is a line that strictly separates it from the other two. Clearly, L1 separates
A from B and C, and C ∩ L1 = ∅. The line L2 separates A and B from
C, and A ∩ L2 = ∅. Furthermore, the line L separates B from A and C,
and one of the three convex sets does not touch the line L. Hence there are
three lines, sufficiently close to the lines L1,L2 and L, with the property
that they strictly separate one from the other two. �

Throughout the proof of Theorem 3.6, we will obtain triplets that are in
V -position with respect to the x-axis, but sometimes they will be V -position
with respect to the y-axis. If this is the case, for simplicity, we shall say that
we are using the V⊥-Lemma.

Theorem 3.6. Let F = R ∪ G ∪ B be a 3-coloured family of translated
copies of a compact convex set in R2, suppose that F is well-distributed and
T (3)-chromatic. Then there is a colour and a line transversal to each convex
set of F with this colour.

We repeat the classical contraction argument of Hadwiger [11], and assume
in this case that there is a slope zero, positive directed line L tangent to the
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heterochromatic triplet {R0, G0, B0}, where R0 ∈ R, G0 ∈ G and B0 ∈ B.
Moreover, L intersects the triplet {R0, G0, B0} in that order and R0 and B0,
say, are below L and G0 above L. See [8] for details.

The vertical strips generated by these sets and the line L divide the plane
into eight closed regions that we will denote by L+

1 ,L−1 ,L+
2 ,L−2 ,L+

3 ,L−3 and
L+

4 ,L−4 as shown in the following figures. Denote the corresponding strips
in direction L⊥ generated by R0, G0 and B0 by S(R0), S(G0) and S(B0),
respectively. Finally, denote by H1 the other line tangent to G0 parallel to
L, and by H2 the other line tangent to R0 and B0 parallel to L.

Suppose the theorem is not true. Hence we may assume that there exists
at least one member of each colour, say R1 ∈ R, B1 ∈ B, and G1 ∈ G such
that they do not meet L. In what follows, we will work with this family of
six convex sets F ′ = {R0, R1, B0, B1, G0, G1}, two of them red, two blue and
two green, with the property that any three of them with different colours
have a common transversal. Our method of proof is to analyze the possible
positions of these convex sets and conclude that our initial assumption yields
a contradiction. For this purpose, the next lemma is crucial.

Lemma 3.7 (I-lemma). The orthogonal projections of the six members of
F ′ onto the line L are not pairwise disjoint.

Proof. Assume the projection of the six convex sets is pairwise disjoint.
Choose a point in each convex set in F ′ to make up a set P = {r0, r1, b0, b1,
g0, g1}. Declare, as before, that a point is square or round if the correspond-
ing convex set is above or below the line L. By Theorem 1, P must contain
another heterochromatic Radon partition different from {r0, b0, g0}. Due to
the fact that R1, G1 and B1 do not intersect L, any other heterochromatic
Radon partition will be in V -position. The V-Lemma thus yields a contra-
diction to the T (3)-chromatic hypothesis. Then the orthogonal projection
of the six members are not pairwise disjoint. �

Now we begin studying the possible positions for the six convex sets.

Theorem 3.8. The forbidden positions for R1 (see Figure 1) are:
(a) the convex set R1 does not intersect

L−1 ∪ S−(R0) ∪ L−2 ∪ S(G0) ∪ S(B0) ∪ L+
4 ,

(b) the convex set R1 is not contained in L+
3 ∩ int(H+

1 ), and
(c) the convex set R1 is not contained in L−3 ∩ int(H−

2 ).

Proof.
(a) First of all, note that R1 does not intersect S(G0) and does not

intersect S(B0), by the L-Lemma for the triple {R1,G0, B0} . Next,
the V-Lemma for {R1, G0, B0} implies that R1 is not contained in
L−1 ∪ S−(R0) ∪ L−2 and not contained in L+

4 .
(b) The convex set R1 is not contained in L+

3 ∩H+
1 by the V⊥-Lemma

applied to the triple {B0, G0, R1}.
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(c) Completely analogous to (b).
�

Theorem 3.9. The forbidden positions for B1 (see Figure 2) are:
(a) the convex set B1 does not intersect

L−4 ∪ S−(B0) ∪ L−3 ∪ S(G0) ∪ S(R0) ∪ L+
1 ,

(b) the convex set B1 is not contained in L+
2 ∩ int(H+

1 ), and
(c) the convex set B1 is not contained in L−2 ∩ int(H−

2 ).

Proof. The proof is completely analogous to the proof of Theorem 3.8, using
the obvious symmetry between the situations of R0 and B0. �

Theorem 3.10. The forbidden positions for G1 (see Figure 3) are:
(a) the convex set G1 does not intersect

S(R0) ∪ L+
2 ∪ S+(G0) ∪ L+

3 ∪ S(B0),

(b) the convex G1 is not contained in (L−2 ∪S−(G0)∪L−3 )∩int(H−
2 ), and

(c) the convex set G1 does not intersect S(G0).
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Proof.
(a) The convex set G1 does not intersect S(R0), and does not intersect

S(B0) by the L-Lemma for the triple {G1,R0, B0}. The V-Lemma for
{R0, G1, B0} implies that G1 is not contained in L+

2 ∪S+(G0)∪L+
3 .

(b) The V-Lemma for {R0, G1, B0}, but now using the horizontal line
H1 as axis, implies that G1 is not contained in (L−2 ∪S−(G0)∪L−3 )∩
int(H−

2 ).

(c) Follows from (a) and (b), keeping in mind that G0 and G1 are well-
distributed.

�

In the following cases, we shall prove that the vertical strips generated by
the convex set {R0, R1, B0, B1, G0, G1} are pairwise disjoint, contradicting
the I-lemma.

Lemma 3.11.

(3.1) S(R1) ∩ S(B1) = ∅.

Proof. Suppose S(R1) ∩ S(B1) 6= ∅. By the L-lemma for {G0, B1, R1}, G0

does not intersect the horizontal strip generated by B1 and by R1. Moreover,
by the V⊥-Lemma for the triple {R1, G0, B1}, we know that if the horizontal
strip of G0 separates R1 and B1, then S(G0)∩ (S(R1)∪ S(B1)) 6= ∅, which
yields a contradiction to Theorems 3.8 and 3.9. Thus (R1∪B1) is contained
either in the interior of H+

1 or in the interior of L−. But this is again a
contradiction to Theorems 3.8 and 3.9. �

Lemma 3.12.

(3.2) S(G1) ∩ S(B1) = ∅.

Proof. Assume S(G1) ∩ S(B1) 6= ∅. By the L-lemma for {R0, G1, B1} with
respect to G1 and R1, G1 and R1 do not intersect the horizontal strip R0.
Moreover, by the V⊥-lemma for the triple {G1, R0, B1}, we know that if the
horizontal strip S(R0) separates G1 from B1 then S(R0)∩(S(G1)∪S(B1)) 6=
∅, which yields a contradiction to Theorems 3.9 and 3.10. Thus (G1 ∪ B1)
is contained either in the interior of L+ or in the interior of H−

2 . Then
Theorems 3.9 and 3.10 imply that the only possible positions for (G1 ∪B1)
are: i) (G1 ∪ B1) contained in the interior of L+

4 ii) (G1 ∪ B1) contained
in the interior of (L−1 ∩ H−

2 ), iii) (G1 ∪ B1) contained in the interior of
(L−2 ∩H−

2 ).
i) Assume that (G1 ∪ B1) is contained in the interior of L+

4 . By the V-
lemma for {R1, B0, G1}, the convex set R1 is not contained in the interior
of (L+

1 ∪ S+(R0) ∪ L+
2 ). Moreover, by the V-lemma for {G0, R1, B1}, the

convex set R1 is not contained in interior of L−3 , consequently Theorem
3.8 implies that R1 must be in the interior of L−4 . By the V⊥-lemma for
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triple {R1, B0, G1}, R1 must intersect H2, and for the triple {R1, G0, B1},
B1 must intersect H1. Clearly S(R1) ∩ S(G1) = ∅, otherwise the L-lemma
would yield a contradiction for {G1, R1, B0}. Next, note that R1 is not to
the right of S(G1) by the V-lemma for {B0, G1, R1}. Then S(R1) is to the
left of S(G1). However since S(B1) ∩ S(G1) 6= ∅ and S(B1) ∩ S(R1) = ∅
by (3.1), then S(R1) is to the left of S(B1) as well, which contradicts the
V-lemma for {G0, R1, B1}.

ii) Suppose now that (G1 ∪B1) is contained in the interior of (L−1 ∩H−
2 ).

By the V-lemma for {R1, B0, G1}, the convex set R1 is not contained in the
interior of L+

2 ∪ S+(R0) ∪ L+
3 . Moreover, by the V-lemma for {B1, G0, R1},

the convex set R1 is not contained in the interior of L−3 ∪ S+(B0) ∪ L−4 .
Consequently Theorem 3.8 implies that R1 must be in the interior of L+

1 ,
but this is a contradiction to the V⊥-lemma for triple {G1, B0, R1}.

iii) If (G1 ∪ B1) is contained in the interior of (L−2 ∩ H−
2 ) and since G1

and B1 are well-distributed, one of them is completely contained in

L−2 ∩ int
(
H−

2

)
,

which is a contradiction either to Theorem 3.9 or to Theorem 3.10. �

Lemma 3.13.

(3.3) S(G1) ∩ S(R1) = ∅.

Proof. The proof is completely analogous to the proof of (3.2), using the
obvious symmetry between the situations of R0 and B0. �

Lemma 3.14.

(3.4) S(R0) ∩ S(R1) = ∅.

Proof. Clearly by the well-distributed property, if R1 is above H1 then B1 is
not in L−1 , otherwise the V⊥-lemma for {R1, G0, B1} would yield a contradic-
tion. Furthermore B1 is not in L−2 either, by the V-Lemma for {R1, G0, B1}.
Then B1 is, according to Theorem 3.9, in the admissible positions but to-
tally to the right of R0 and meeting H1, by the V-lemma for {R1, G1, B1}.
Assuming the former, we note that G1 is not in L+

1 by the V-lemma applied
to the triplet {G1, R0, B1}. Similarly G1 is not in L−1 and not in L+

4 by
the V-lemma for {G1, R1, B0}. Then G1 is totally to the right of R0 below
L and meeting H2, by the V⊥-lemma for {G1, R0, B1}. Recall that S(G1)
and S(B1) are disjoint, by (3.2). Suppose then that S(B1) is to the right
of S(G1), then the V-lemma yields a contradiction for {R1, G1, B1}. Then
S(B1) is to the left of S(G1), and the V-lemma for {R0, B1, G1} yields a
contradiction. �

Lemma 3.15.

(3.5) S(B0) ∩ S(B1) = ∅.

Proof. The proof is completely analogous to the proof of (3.4), using the
obvious symmetry between the situations of R0 and B0. �
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Proof of Theorem 3.6. Observe that Theorems 3.8, 3.9 and 3.10, together
with (3.1), (3.2), (3.3), (3.4) and (3.5), imply that the six vertical strips

{S(R0), S(R1), S(G0), S(G1), S(B0), S(B1)}

are pairwise disjoint, but this is a contradiction to the I-lemma. �

4. The colourful “T(3) implies T-k” Theorem

The purpose of this section is to prove a colourful version of the Katchalski-
Lewis Theorem (B).

Theorem 4.1. Let K be a compact convex set in R2. Then there is a
positive integer k with the property that if F is any 3-coloured family of
pairwise disjoint translated copies of K, which is T (3)-chromatic, then there
is a colour and a line transversal to every convex set of F of this colour,
except possibly for k of them.

Before giving the proof of the theorem, we need the following lemma.

Lemma 4.2. Let K be a compact convex set in the plane. Then there exists
a positive integer k, depending only on K, with the following property: if F
and F ′ are two families of pairwise disjoint translated copies of K, |F ′| ≤ 5
and |F| ≥ k, then there is K0 ∈ F such that every member of F ′ is well
distributed of K0.

Proof. Let us first prove the lemma when F ′ = {K0}. Recall from the last
section that two sets K0 and K0 are well-distributed if

3∆(K0) ∩ 3∆(K0) = ∅.

Let Λ(K0) be the union of all translated copies of 3∆(K0) that intersect
3∆(K0). Note that if K0 is a translated copy of K and K0 is not contained
in Λ(K0), then K0 is well-separated from K0. Note that the area of Λ(K0)
depends only on the convex body K. Then, the lemma follows in this case
for

k >
area of Λ(K0)

area of K
,

and in general

k > 5
area of Λ(K0)

area of K
.

�

Proof of Theorem 4.1. Let k be as in the lemma for the convex set K. Note
that there are more than k translated copies of K of each colour, otherwise
the theorem follows trivially. We shall first prove that there are R0 ∈ R,
B0 ∈ B, and G0 ∈ G, with the property that the triple {R0, B0, G0} is
well-distributed. Let R0 be any element of R and since there are more than
k blue convex sets, by the lemma, there is B0 ∈ B such that B0 is well
-distributed of R0. Analogously, since there are more than k blue convex
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sets, by the lemma, there is G0 ∈ G, such that the triple {R0, B0, G0} is
well-distributed.

Note that trivially, the family F = R∪G∪B has the property that every
heterochromatic, well-distributed triple {R0, B0, G0} of F has a transversal
line. Now, choosing a point in every member of F , we may as before apply
the classical contraction argument and homothetically reduce every member
of F until the very last moment, 0 < τ ≤ 1, in which the reduced family Fτ

has the above transversal-line property. This classic argument shows that
there is a line L tangent to the triplet {Rτ

0 , Gτ
0 , B

τ
0} where, Rτ

0 , Gτ
0 and Bτ

0

are the τ -reduced copies of some R0 ∈ R, B0 ∈ B and G0 ∈ G, and where
{R0, B0, G0} is a well-distributed triple.

Without loss of generality, we may assume that L intersects them in that
order, has slope zero and Rτ

0 and Bτ
0 , say, are below L and Gτ

0 above L. For
the sake of simplicity, we will rename Rτ

0 , Bτ
0 and Gτ

0 and the whole family
Fτ simply as R0, B0, G0 and F = R ∪ G ∪ B. We would like to show that
there is a colour such that L is a transversal line to all members of this colour
except possibly k of them. Assume then that the former is false. Consider
now all red members of F in R which do not intersect L. If the number of
these red convex sets is less than k, the theorem is proved; otherwise, by
the lemma, there is R1 ∈ R which does not intersect L and is such that the
family {R0, R1,B0, G0} is well-distributed. By the same argument, there are
G1 ∈ G and B1 ∈ B which do not intersect L and are such that the family
{R0, R1, B0, B1, G0, G1} is well-distributed. Clearly, this subfamily has the
following properties:

(1) it is 3-coloured family of pairwise disjoint translated copies of K and
is T (3)-chromatic and well-distributed;

(2) it has two members of each colour;
(3) there is a line L with slope zero, tangent to the triplet {R0, G0, B0},

that intersects them in that order and R0 and B0, say, below L and
G0 above L, and

(4) the sets R1, B1, and G1 do not intersect L.
Under exactly these conditions, we proved in Theorem 3.6 that such a family
can not exist. �
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17. H. Tverberg, Proof of Grünbaum’s conjecture on common transversals for translates,
Discrete Comput. Geom. 4 (1989), no. 3, 191–203.

18. , On geometric permutations and the Katchalski-Lewis conjecture on partial
transversals for translates, Discrete and Computational Geometry, DIMACS Series in
Discrete Mathematics and Theoretical Computer Science, vol. 6, American Mathe-
matical Society, Providence, RI, 1991, pp. 351–361.
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