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ON PRIMITIVE SYMMETRIC ASSOCIATION SCHEMES WITH

m1 = 3

EIICHI BANNAI AND ETSUKO BANNAI

ABSTRACT. We classify primitive symmetric association schemes with
m1 = 3. Namely, it is shown that the tetrahedron, i.e., the association
scheme of the complete graph K4, is the unique such association scheme.
Our proof of this result is based on the spherical embeddings of associa-
tion schemes and elementary three dimensional Euclidean geometry.

1. INTRODUCTION.

Let X = (X, {Ri}0≤i≤d) be a symmetric association scheme. That is, X is
a pair of a finite set X with cardinality |X| = n and a set of relations Ri(0 ≤
i ≤ d) satisfying certain conditions. The reader is referred to [2] and/or [3]
for the definition and the basic properties of association schemes.

Let Ai(0 ≤ i ≤ d) be the adjacency matrix with repect to the relation
Ri(0 ≤ i ≤ d) on X, and let A = 〈A0, A1, . . . , Ad〉 be the Bose-Mesner alge-
bra of X. Let Ei(0 ≤ i ≤ d) be the primitive idempotents of A. We denote
the eigenmatrices of X by P and Q. Let ki(= p0

ii = Pi(0)) be the subdegrees

of X, and let mi(= q0
ii = Qi(0) = rank of Ei) be the dual subdegrees of X.

The purpose of this paper is to prove the following theorem.

Theorem 1. Let X = (X, {Ri}0≤i≤d) be a primitive symmetric association scheme
with m1 = 3. Then X must be the association scheme of tetrahedron, i.e., the asso-
ciation scheme with d = 1 and |X| = 4.

In the rest of this Introduction, we give a brief sketch of the proof of The-
orem 1. Let X be an association scheme satisfying the assumptions of The-
orem 1. Then X can be embedded in the unit sphere in the real Euclidean
space R

3 in such a way that two elements x and y of X (in the unit sphere

S2) in the relation Ri have the fixed inner product 1
3 Q1(i). By renumbering

the relations R1, R2, . . . , Rd if necessary, we may assume without loss of

generality that 1
3 Q1(1) ≥ 1

3 Q1(i) for all i with 1 ≤ i ≤ d. By using the
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spherical embedding of the association scheme X in S2, we can conclude
that k1 ≤ 5. Again, using the spherical representation of the association
scheme, we prove that the cases k1 = 5, 4 and 3 are impossible. This will
be shown in Sections 4, 5 and 6, respectively, and we complete the proof of
Theorem 1.

The result proved in this paper was originally obtained by the first au-
thor, and a preprint was circulated in the preprint series of Kyushu Uni-
versity (KYUSHU-MPS-1996-3, June 1996). The result was also announced
in the Workshop on Distance Regular Graphs organized by G. Hahn and
G. Sabidussi held in Montreal in Nov. 1996. In that preprint, the classifica-
tion of quasi-regular polyhedrons (cf. [4], [6] and [7] ) and the classification
of primitive symmetric association schemes with k1 = 3 by Yamazaki [8]
were used. Subsequently, with the help of the second author, the paper
was revised by adapting more elementary approach and by improving the
exposition of the proofs. This revised version was included in our book [1]
(written in Japanese) in 1999. The content of the present paper is essentially
an English version of it with some improvements.

2. BASIC FACTS

Definition 2. An Association scheme X = (X, {Ri}0≤i≤d) is imprimitive if
there exists a nonempty proper subset Λ ( 6= {0}) of {0, 1, . . . , d} for which
∪i∈ΛRi defines an equivalence relation on the set X. If X is not imprimitive, then
X is called primitive.

Let Γi = (X, Ri) be the graph defined on X with Ri for some i. For
x, y ∈ X, define x ∼i y if there exists a path from x to y in the graph Γi.
This ∼i gives an equivalence relation on X (we consider x = x0 = x as a
path from x to x of length 0). Let

Ai
l =

d

∑
j=0

αi,l,j Aj

and define Λi ⊆ {0, 1, . . . , d} by

Λi = {j ∈ {0, 1, . . . , d} | αi,l,j 6= 0 for some l}.

Then we have the following well known proposition.

Proposition 3. x ∼i y if and only if (x, y) ∈ Rj with some j ∈ Λi.

Proposition 3 implies that ∪j∈Λi
Rj defines an equivalence relation on X.

The following proposition is also well known, however we will give a proof
of it for the reader’s convenience.

Proposition 4. Let X be a primitive symmetric association scheme. Then the
following (1), (2) and (3) hold.
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(1) For any i, with 1 ≤ i ≤ d, the graph Γi is connected.
(2) ki ≥ 2 holds for any i 6= 0.
(3) If ki = 2 for some i, then k j = 2 holds for j 6= 0, |X| is a prime number, and

X is the association scheme of the regular p-gon with p a prime mumber.

Proof Proposition 3 implies (1) and (2) immediately. We will prove (3).
Since the graph Γi is connected, if ki = 2, the graph is an n-gon. Without
loss of generarity, we may assume k1 = 2. Let X = {x1, x2, . . . , xn} and
(x1, x2), (x2, x3), . . . , (xn−1, xn), (xn, x1) ∈ R1. If 3 ≤ [ n

2 ], then (x1, x3) 6∈ R1.
We may assume (x1, x3) ∈ R2 by reordering the relations R2, . . . , Rd if nec-
essary. This implies p1

2,1 = 1 and p2
1,1 6= 0. Therefore (x, y) ∈ R2 if and only

if there is a path x ∼1 y of length 2. Since Γ1 is an n-gon, k2 = 2 holds. If
4 ≤ [ n

2 ], then (x1, x4) 6∈ R1 ∪ R2. We may assume (x1, x4) ∈ R3. By a sim-
ilar argument as given above we can show (x, y) ∈ R3 if and only if there
is a path x ∼1 y of length 3 and k3 = 2. If we continue this process, then
we will find out that (x, y) ∈ Rj if and only if there exists a path x ∼1 y

of length j and k j = 2 for any j ≤ [ n
2 ]. Since the graph Γj is connected for

any j, the cardinality n of X cannot be a multiple of any j with 2 ≤ j ≤ [ n
2 ].

Hence n must be a prime number p and X is the association scheme of a
regular p-gon. �

Next we will explain how to embed X in a unit sphere in Euclidean
space. We have

(2.1) E1 =
1

|X|
d

∑
j=0

Q1(j)Aj.

Since X is symmetric, all the entries of the eigen matrices P and Q of X

are real numbers. If necessary, change the ordering of A1 . . . , Ad and we
may assume Q1(1) ≥ Q1(j) for any 1 ≤ j ≤ d. Let V be the vector space
over the real number field R indexed by the set X. Let {ex, x ∈ X} be the
canonical basis of V. Let V1 = VE1. Then dim(V1) = rank(E1) = m1. Let

x =
√

n
m1

exE1 ∈ V1. Let us denote the inner product between 2 vectors x, y

by x · y. Then we have

x · y =
n

m1
exE1

t(eyE1) =
n

m1
exE1

t(ey) =
n

m1
E1(x, y).

Then equation (2.1) implies

‖x‖2 = x · x =
n

m1

Q1(0)

n
= 1.

Hence {x | x ∈ X} is on the unit sphere of the m1-dimensional Euclidean
space V1. Next we prove that x = y if and only if x = y. If (x, y) ∈ Rj with
j 6= 0 and x = y, then 1 = x · y = n

m1
E1(x, y). Then equation (2.1) implies

Q1(j) = m1.
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Let Λ = {i | Q1(i) = m1}. The matrix Q is nonsingular and Q0(i) = 1 for
any i, 0 ≤ i ≤ d. Hence Λ has to be a proper subset of {0, 1, . . . , d}. It is
easy to see that ∪i∈ΛRi gives an equivalence relation on X. This contradicts
the primitivity of X. Therefore Q1(j) = m1 holds if and only if j = 0. Thus
we have seen that x −→ x gives a one to one correspondence between X

and the subset X = {x | x ∈ X} ⊂ Sm1−1 ⊂ V1
∼= R

m1 .

Remark If X is a primitive symmetric association scheme and m1 = 2, then

X is on the unit circle in R
2. Therefore ki = 2 holds for any i, 1 ≤ i ≤ d and

X is a regular p-gon with p a prime number.

3. k1 ≤ 5

In this section we prove that k1 ≤ 5, under the assumptions of Theorem

1. Therefore m1 = 3 and X is a subset of S2. In the following we identify

X and X. Let A(X) = {x · y | x, y ∈ X, x 6= y} (⊂ R). Then A(X) =

{Q1(j)
3 | 1 ≤ j ≤ d}. For i with 1 ≤ i ≤ d, α ∈ A(X) and x ∈ X, let

Ri(x) = {y ∈ X | (x, y) ∈ Ri} and Γα(x) = {y ∈ X | x · y = α}. Let Λα =

{i | Q1(i)
3 = α} for any α ∈ A(X). Then by definition we have ki = |Ri(x)|

for any i, 0 ≤ i ≤ d. We will prove the following proposition.

Proposition 5. (1) If Ri(x) ∩ Γα(x) 6= ∅, then Ri(x) ⊆ Γα(x).
(2) Let Γα be the graph defined on X by {(x, y) ∈ X × X | x · y = α}. Then

Γα is regular.

(3) Let α = Q1(1)
3 , the maximum real number in A(X). Then k1 = |R1(x)| =

|Γα(x)| ≤ 5.

Proof (1) If (x, y) ∈ Ri(x) ∩ Γα(x), then α = Q1(i)
3 . Then x · z = Q1(i)

3 = α

holds for any z ∈ Ri(x).
(2) (1) implies that Γα(x) = ∪i∈Λα

Ri(x) holds. Hence |Γα(x)| = ∑i∈Λα
ki

holds and the graph Γα is regular, and it’s valency is ∑i∈Λα
ki.

(3) Since α is the maximum real number in A(X), points x, y ∈ X with

x · y = α gives the minimum distance a =
√

2(1 − α) between the distinct
points in X. Without loss of generality we may assume x = (0, 0, 1). First
we will show that |Γα(x)| ≤ 5 holds. Let S = {y ∈ S2 | x · y = α}. Then
S is a circle on the plane {(x, y, z) ∈ R

3 | z = α} whose center is (0, 0, α)

and radius
√

1 − α2 (see fig.1 given above). Since −1 ≤ α < 1, we have√
1 − α2 <

√

2(1 − α). This means the radius of S is strictly less than the

minimum distance
√

2(1 − α) of the points in X. Since the kissing number
of the unit cirles in R2 is 6, Γα(x) contains at most 5 points. Next, we note
that, from the primitivity of X, and Proposition 4, each ki(i ≥ 1) must be
at least 2, and if k j = 2 with some j, then X is the association scheme of a
regular p-gon for some prime number p. If X is the association scheme of a
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FIGURE 1

regular p-gon, then mi ≤ 2 holds for any i, which contradicts the assump-
tion m1 = 3. Hence Proposition 5 implies 3 ≤ k1 = |R1(x)| ≤ |Γα(x)| ≤ 5.
Since |Γα(x)| = ∑i∈Λα

ki and ki ≥ 3, we must have k1 = |Γα(x)| ≤ 5. Hence
R1(x) = Γα(x) holds. �

Proposition 6. Let α = Q1(1)
3 , the maximum real number in A(X). Then the

graph defined on Γα(x) by {(u, v) ∈ Γα(x) | u · v = β} is regular for any x ∈ X
and β ∈ A(X).

Proof Proposition 5 tells us that Γα(x) = R1(x) for any x ∈ X. Let u ∈
Γα(x). Then Proposition 5 implies that

|{v ∈ Γα(x) | v · u = β}| = ∑
j∈Λβ

p1
j,1,

where Λβ = {j | Q1(j)
3 = β}. �

Remark. The argument in this section shows in general that if a primitive
symmetric (or commutative) association scheme has a given m1 = m, then
at least one of the ki(1 ≤ i ≤ d) is bounded by a function depending only
on m.

4. THE IMPOSSIBILITY OF THE CASE k1 = 5

Let us assume that k1 = 5. Let x0 ∈ X(⊂ S2). We note that α = 1
3 Q1(1)

is the maximum value among the real numbers in A(X). Then Γα(x0) =
{x1, x2, . . . , x5} is on the circle S = {y ∈ S2

∣

∣ x0 · y = α}. We may
assume that the 5 points {x1, x2, . . . , x5} surround x0 clockwise (see fig.2
given below). Let β = max{xi · xj | 1 ≤ i, j ≤ 5, i 6= j}. Then β ≤ α. We

may assume x1 · x2 = β. Then β = Q1(j)
3 and (x1, x2) ∈ Rj with some

j. Thus p1
1,j ≥ 1 holds. Since (x0, xi) ∈ R1, the graph defined on the

5 point set Γα(x0) with respect to the relation Rj is regular with the de-

gree p1
1,j. Since β is the maximum value of the inner products between

the 5 points in Γα(x0), Γα(x0) is a regular pentagon on the circle S with
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x1 · x2 = x2 · x3 = x3 · x4 = x4 · x5 = x5 · x1 = β.
(1) Suppose that α = β. Γα(x1) is a regular pentagon (see fig.2). Since
x0, x2, x5 ∈ Γα(x1) and x3, x4 6∈ Γα(x1), there exists x6, x7 ∈ Γα(x1). Since
Γα(x1) is a regular 5-gon and α is maximum in A(X), we have Γα(x1) =
{x0, x2, x6, x7, x5} (which surround x1 counter clockwise) with x0 · x2 =
x2 · x6 = x6 · x7 = x7 · x5 = x5 · x0 = α = β. Similarly x3, x0, x1, x6 ∈
Γα(x2) and x4, x5, x7 6∈ Γα(x2), there exists x8 ∈ Γα(x2). Hence Γα(x2) =
{x6, x1, x0, x3, x8} (which surround x2 counter clockwise) with x6 · x1 =
x1 · x0 = x0 · x3 = x3 · x8 = x8 · x6 = α. Since the three pentagons Γα(x0),
Γα(x1) and Γα(x2) are congruent to each other, we have x3 · x1 = x3 · x5 =
x3 · x6. This implies that the three points x1, x5, x6 are at the same distance
from x3. We also have x1, x5, x6 ∈ Γα(x7). This implies that the two points
x3 and x7 are antipodal to each other. This implies that X must be the set
of vertices of a regular icosahedron with 12 vertices. Since this association
scheme is antipodal, X cannot be primitive, a contradiction.
(2) Suppose that α > β. Since Γα(x0) and Γα(x1) are regular 5-gons on
the circles of the same radii, they are congruent to each other (see fig.3
given below). Since α > β, we have x2, x3, x4, x5 6∈ Γα(x1). Therefore
Γα(x1) = {x0, x6, x7, x8, x9} (which surround x1 counter clockwise) with
x0 · x6 = x6 · x7 = x7 · x8 = x8 · x9 = x9 · x0 = β. Then {x0, x2, x6, x1} are on
the same plane in R

3 and form a quadratilateral. Also the angles between

the edges of the {x0, x2, x6, x1} satisfy ∠x1x0x2 = ∠x0x1x6 <
2π
5 <

π
2

because x0 and x1 are not on the plane determined by Γα(x0) and Γα(x1)
respectively. Therefore x2 · x6 > x0 · x1 = α. This contradicts the fact that
α is the maximum in A(X).
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FIGURE 2. k1 = 5, α = β
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FIGURE 3. k1 = 5, α > β

5. THE IMPOSSIBILITY OF THE CASE k1 = 4.

Let us assume that k1 = 4. Fix x0 ∈ X(⊂ S2 ⊂ R
3). Then Γα(x0) =

{x1, x2, x3, x4} is on the circle S = { y ∈ S2|x0 · y = α}. Since nontrivial
regular graphs with 4 vertices are either 4-gon or the union of 2 disjoint
edges, {x1, x2, x3, x4} is a rectangle (which surrounds x0 clockwise (see fig.
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4 below) with
x1 · x2 = x3 · x4 = β,

and
x2 · x3 = x1 · x4 = γ

Without loss of generality we may assume α ≥ β ≥ γ. Let δ = x1 · x3 (=

x2 · x4). Then we have δ < γ. Since β = Q1(j)
3 , γ = Q1(i)

3 and δ = Q1(l)
3

with some j, i, l in {1, . . . , d}, we have p1
j,1 = p1

1,j ≥ 1, p1
i,1 = p1

1,i ≥ 1 and

p1
l,1 = p1

1,l ≥ 1. Then for any x ∈ X, Γα(x) is also a rectangle. Let u ∈ Γα(x).

Then there must exist points y, z, w,∈ Γα(x) satisfying y · u = β, z · u = γ
and w · u = δ. Therefore Γα(x) must be congruent to Γα(x0) for any x ∈ X.

x0 x1

x2

x3

x4

FIGURE 4.
α ≥ β ≥ γ
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α = β = γ
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α > β = γ

(1) Suppose that α = β = γ. Then Γα(x0) = {x1, x2, x3, x4} is a square
with x1 · x2 = x2 · x3 = x3 · x4 = x4 · x1 = α. Since x2, x0, x4 ∈ Γα(x1)
and x3 6∈ Γα(x1), there exists x5 ∈ Γα(x1). Since Γα(x1) is congruent to the
square Γα(x0), the point x5 is at the same distance from the 3 points x2, x1, x4

(see fig.5 given below). This implies that x0 and x5 form an antipodal pair
on S2. Then X must be the set of vertices of a regular octahedron of 6
vertices. Since this association scheme is antipodal, X cannot be primitive,
a contradiction.
(2) Suppose that α > β = γ. Then Γα(x0) = {x1, x2, x3, x4} forms a
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square with x1 · x2 = x2 · x3 = x3 · x4 = x4 · x1 = β. Since x2, x3, x4 6∈
Γα(x1) and x0 ∈ Γα(x1), there exists 3 points x5, x6, x7 in Γα(x1). Since
Γα(x1) is congruent to Γα(x0), {x0, x5, x6, x7} surround x1 clockwise with
x0 · x5 = x5 · x6 = x6 · x7 = x7 · x0 = β (see fig.6 above). Then the 4 points
x0, x1, x2, x7 are on the same plane of R

3. Since ∠x2x0x1 = ∠x7x1x0 <
π
2 ,

we have x2 · x7 > x0 · x1 = α holds. This contradicts the fact that α is the
maximum value in A(X).
(3) Suppose that α = β > γ. Then Γα(x0) = {x1, x2, x3, x4} is a rectangle
(which surrounds x0 clockwise) with x1 · x2 = x3 · x4 = α and x2 · x3 =
x4 · x1 = γ. Since x0, x2 ∈ Γα(x1) and x3, x4 6∈ Γα(x1), there exist 2 points
x5, x6 ∈ Γα(x1). Since Γα(x1) is congruent to Γα(x0) and x0 · x2 = α, Γα(x1) =
{x0, x5, x6, x2} (which surrounds x1 clockwise) with x0 · x2 = x5 · x6 = α
and x2 · x6 = x0 · x5 = γ (see fig.7 below). Then we have x0 · x6 = x2 · x5 =
δ. The three rectangles x1x2x3x4, x2x0x5x6, x0x1x7x8 move to each other
by rotations around the line passing through the origin of the sphere and
perpendicular to the regular triangle x1x0x2. Therefor each of the following
three 4 point sets are on the same plane in R

3:

{x0, x1, x5, x4}, {x2, x0, x3, x8}, {x1, x2, x7, x6}.

Also the 6 point set {x3, x4, x5, x6, x7, x8} is on the same plane.
(a) First we assume x4 · x5 = α. Then x0x1x5x4, x2x0x3x8, x1x2x7x6 are
squares and x3x4x5x6x7x8 is a regular hexagon (see fig.8 below).
Since x8 ∈ Γα(x3) ∩ Γα(x2) ∩ Γα(x7), we have x8 · x4 = x8 · x1 = x8 · x6 = δ.
Thus x8 is at the same distance from the three points x4, x1, x6. On the other
hand x5 is also at the same distance from the three points x4, x1, x6. Since x5

and x8 are at the opposite side of the plane containing the triangle x4x1x6,
they are an antipodal pair of S2. This implies that X must be the set of all
the 12 vertices of a quasi-regular polyhedron of type [3, 4, 3, 4]. However,
this is impossible because the quasi-regular polyhedron of type [3, 4, 3, 4] is
an antipodal set.
(b) Next we assume x4 · x5 = x6 · x7 = x8 · x3 < α. Since the six points
x3, x4, x5, x6, x7, x8 are on a circle, we have x5, x6, x7 6∈ Γα(x3). Since x1, x2 6∈
Γα(x3), there exists 2 points x9, x10 ∈ Γα(x3) (see fig.9 given above). Simi-
larly there exist 2 points x11, x12 ∈ Γα(x4). Then both x8 and x9 must be on
the plane determined by the three points x2, x0, x3. Hence the five points
x8, x2, x0, x3, x9 must be on a same plane.
(b-1) Assume that x8 · x9 = α holds. Then x8x2x0x3x9 is a regular pen-
tagon. Similarly x0x1x5x12x4 is a regular pentagon which is congruent to
x8x2x0x3x9. Thus we can show that each edge of a regular triangle is ad-
jacent to a regular pentagon (see fig.9). Then the two points a and b in
fig.9 are antipodal to each other. Therefore X is the quasi-regular poly-
hedron [3, 5, 3, 5] of 30 vertices (icosidodecahedron). However, since the
quasi-regular polyhedron [3, 5, 3, 5] is antipodal, this is impossible.
(b-2) Next, assume that x8 · x9 < α holds. Then there must exist u, v ∈
Γα(x8) satisfying x9 6= u, v (see fig.10. below). Then u must be on the same
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plane determined by {x8, x2, x0, x3, x9}. Thus u, x8, x2, x0, x3, x9 is on a
circle C in S2.

Let us consider the rectangular cone {x0, x1, x2, x3, x4} (see fig.11 given
above). Let P be the center of the rectangle x1x2x3x4. Then we have

∠x1Px2 > ∠x1x0x2 =
π

3
.

Hence we have

∠x2x0x3 < ∠x3Px2 < π − π

3
=

2π

3
.
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Similarly we have

∠ux8x2 = ∠x8x2x0 = ∠x0x3x9 <
2π

3
.

Since u · x9 ≤ α, this implies that the length of every edge of the hexagon
ux8x2x0x3x9 is longer than the radius of the circle C. This is a contradiction.
Therefore this case does not occur.
(4) Suppose α > β > γ.

Let us consider the rectangular cone {x0, x1, x2, x3, x4}. Let P be the cen-
ter of the base lectangle (see fig.12 given below). Then ∠x1x0x2 < ∠x1Px2 <

π
2 . Since x2, x3, x4 6∈ Γα(x0), there exist x5, x6, x7 ∈ Γα(x1) (see fig.13
given below). If x0 · x7 = β, then x2, x0, x1, x7 must be on the same
plane. Moreover ∠x0x1x7 = ∠x1x0x2 <

π
2 holds. Hence x2 · x7 > α

holds. But this is impossible. Therefore we have x0 · x7 = γ. Similar
consideration for Γ(x2), Γ(x3), Γ(x4) will yield three more rectangles (see
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FIGURE 12.
α > β > γ
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x0 · x7 = β
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FIGURE 14.
x0 · x7 = γ

fig.14 given above) having x0 in common. Where we may possibly have
x7 = x8, x10 = x11, x13 = x14, x16 = x5. However, this is a contradiction
because ∠x5x0x7 = ∠x8x0x10 = ∠x11x0x13 = ∠x14x0x16 = π

2 .
Thus we have shown that k1 = 4 is immpossible.
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6. THE CASE k1 = 3.

Let us assume k1 = 3. Fix x0 ∈ X ⊂ S2. Then Γα(x0) = {x1, x2, x3}
is a regular triangle which surrounds x0 clockwise (see fig.15 given below).

Then we must have ∠x1x0x2 = x2x0x3 = x3x0x1 <
2π
3 .

(1) If x1 · x2 = x2 · x3 = x3 · x1 = α, then {x0, x1, x2, x3} forms a regular
tetrahedron.
(2) If x1 · x2 = x2 · x3 = x3 · x1 < α, then x2, x3 6∈ Γα(x1). Hence there exist
x4, x5 ∈ Γα(x1) (see fig.15 given below). Then the 4 points {x2, x0, x1, x5}
must be on the same plane. Therefore {x2, x0, x1, x5} is on a circle C on the
sphere S2.
(a) If x2 · x5 = α, then the four isosceles triangles x1x0x5, x0x2x1, x2x5x0, and
x5x4x1 are isometric to each other. Hence {x2, x0, x1, x5} must form a
square. Then we must have x3 · x4 = α. We can easily show that X is a set
of all the 8 vertices of a cube. However, since cubes are antipodal, this is
impossible.
(b) Next we assume x2 · x5 < α. Then there exist x6, x7 ∈ Γα(x2) (see fig.17
given below). Since x6, x2, x0, x1 are on the same plane, x6 must be on the
circle C.
(b-1) Assume x6 · x5 = α. Then x6x2x0x1x5 is a regular pentagon.
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FIGURE 18.
x2·x5<α
x5·x6<α

Then there are 5 regular pentagons isometric to x6x2x0x1x5, attached to
x6x2x0x1x5 (see fig.17 given above). Then x4 and x10 are antipodal to each
other (see fig.17 given above). Therefore X is the set of all the 20 vertices
of the regular dodecahedron. However, since a dodecahedron is antipodal,
this is impossible.
(b-2) Finally, assume x5 · x6 < α. Then there exist u, v ∈ Γα(x6) (see fig.18
given above). Since x0, x2, x6, u are on a same plane u is on the circle C.

Since ∠x5x1x0 = x0x2x6 = x2x6u = x1x0x2 <
2π
3 , the length of the edges

x5x1, x1x0, x0x2, x2x6, x6u are equal and longer than the length of the edge
of the regular hexagon on C. Therefore the length of the edge x5u is less
than that of x5x1. This implies x5 · u > α. This is a contradiction.

We remark that this case k1 = 3 was originally treated by using the re-
sult of Yamazaki [8] which classifies symmetric association schemes with
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k1 = 3. Our present treatment avoids the use of this difficult and deep re-
sult of Yamazaki.

7. COMPLETION OF THE PROOF OF THEOREM 1.

We have shown that k1 = 5, 4 are impossible in Sections 4 and 5. The
case k ≤ 2 is also impossible (see Proposition 4 in Section 2). Also we have
shown in Section 6 that if k1 = 3, the only possibility for X is the set of all
the 4 vertices of a tetrahedron. Hence we have Theorem 1.

Remarks. It would be interesting to weaken some of the assumptions of
Theorem 1 and then to classify such association schemes. For example, it
would be interesting to classify imprimitive symmetric association schemes
with m1 = 3. Also, it would be interesting to classify primitive (non sym-
metric) commutative association schemes with m1 = 3. This has been al-
ready treated in Hirasaka [5], while our present paper was being revised.
Of course, it would be interesting if one could classify primitive symmet-
ric association schemes for other small values of m1, say 4. It seems that
it is possible to classify symmetric Q-polynomial association schemes with
m1 = 4 by generalizing the ideas employed in the present paper. We hope
that we can come back to this problem in the near future.
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