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A CHARACTERIZATION OF THE BASE-MATROIDS OF A
GRAPHIC MATROID

FRANCESCO MAFFIOLI AND NORMA ZAGAGLIA SALVI

Abstract. Let M = (E,F) be a matroid on a set E, and B one of
its bases. A closed set θ ⊆ E is saturated with respect to B when
|θ ∩B| = r(θ), where r(θ) is the rank of θ.

The collection of subsets I of E such that |I ∩ θ| ≤ r(θ) for every
closed saturated set θ turns out to be the family of independent sets
of a new matroid on E, called base-matroid and denoted by MB . In
this paper we prove that a graphic matroid M , isomorphic to a cycle
matroid M(G), is isomorphic to MB , for every base B of M , if and only
if M is direct sum of uniform graphic matroids or, in equivalent way, if
and only if G is disjoint union of cacti. Moreover we characterize simple
binary matroids M isomorphic to MB , with respect to an assigned base
B.

1. Introduction

Let M = (E,F) be a matroid on a set E, having F as its family of
independent sets. For notations and definitions we refer to [6].

Let Ξ denote the set of all closed sets of M . Then

F = {S ⊆ E : |S ∩ θ| ≤ r(θ),∀θ ∈ Ξ}.

A set θ ⊆ E is defined [3] saturated with respect to a base B of M if

|θ ∩B| = r(θ).

Thus any B-saturated closed set θ satisfies the relation cl(θ ∩ B) = θ; in
other words, θ coincides with the closure of its intersection with B.

If in addition θ belongs to Ξ, we have a saturated closed set. The set of
all the saturated closed sets of M , with respect to a base B, is denoted by
ΞB. A circuit is fundamental with respect to B when it is the fundamental
circuit of an element i ∈ E \ B. Calling γ(i) the unique minimal subset of
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B such that γ(i) ∪ i 6∈ F , then γ(i) ∪ i is a fundamental circuit. We use the
notation

FB = {S ⊆ E : |S ∩ θ| ≤ r(θ), ∀θ ∈ ΞB}
and

MB = (E,FB).
In [3] it is proved that M = (E,FB) is a matroid, and in particu-

lar a transversal matroid. An application of these matroids, named base-
matroids, is in the field of inverse combinatorial optimization problems;
indeed many different inverse problems have been addressed in the recent
literature [1, 3, 5].

Recall that a matroid M on a ground set E, whose family of independent
sets is F , is direct sum of the matroids M1,M2, . . . ,Ms on disjoint sets
E1, E2, . . . , Es respectively, when E1, E2, . . . , Es is a partition of E and

F = {I1 ∪ · · · ∪ Is : Ii ∈ F(Mi), 1 ≤ i ≤ s},
where F(Mi) is the family of independent sets of Mi.

A simple matroid M is binary if the symmetric difference of any two
different circuits is a union of disjoint circuits. Clearly graphic matroids are
examples of binary matroids.

The main aim of this paper is determining a characterization of a graphic
matroid M which is isomorphic to MB (M ' MB), where B is any base of
M . Indeed, it is proved that a matroid M , isomorphic to a cycle matroid
M(G), is isomorphic to MB for every base B of M if and only if G is
disjoint union of cacti or, in equivalent way, if and only if M is direct sum of
uniform graphic matroids. Finally we characterize a simple binary matroid
M isomorphic to MB, with respect to an assigned base B.

2. Independent circuits

Let F and FB denote the collections of independent sets of M and MB

respectively. It is easy to see that

F ⊆ FB,
and the inclusion is proper when a dependent set of M turns out to be
independent in MB; in this case M is not isomorphic to MB. In other words
the above relation implies that M 'MB if and only if

F = FB.
Lemma 2.1. Let M be a matroid and B one of its bases. Then M 'MB if
and only if every circuit of M is also circuit of MB.

Proof. If every circuit of M is also circuit of MB, then it follows that every
dependent set of M is dependent also in MB. Then F = FB and conse-
quently M 'MB.

Conversely, if M ' MB, from the condition F ⊆ FB it follows F = FB.
Then it is not possible that there exists a dependent subset of M which
turns out to be independent in MB. �
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We first consider the case of a circuit of M , dependent in MB.

Proposition 2.2. Assume that a circuit C of M satisfies the inequality
|C ∩ θ| > r(θ) for a suitable closed set θ of M saturated with respect to a
base B. Then θ = cl(C).

Proof. There are two cases to consider depending on the condition that C
is not contained or contained in θ.

If C is not contained in θ, then C ∩ θ is a proper subset of C; then
it is independent in M and consequently independent also in MB. Thus
|C ∩ θ| ≤ r(θ), a contradiction.

In the second case, we have |C ∩ θ| = |C|; then r(C) ≤ r(θ). As r(C) =
|C|−1, we obtain the following double inequality |C|−1 ≤ r(θ) < |C|. Then
r(θ) = |C| − 1 and therefore θ = cl(C). �

Definition 2.3. A circuit C of M is said to be independent with respect to
B, or B-independent, if

|cl(C) ∩B| < |C| − 1.

Moreover C is dependent with respect to B, or B-dependent, if it is not
independent with respect to B; that is,

|cl(C) ∩B| = |C| − 1.

Thus cl(C) is saturated with respect to B.

Notice that if a circuit C is B-dependent, then C /∈ FB. In other words
C is dependent in MB; in particular it is a circuit of MB. On the contrary,
if C is B-independent, then C is independent in MB and consequently M is
not isomorphic to MB.

Recall ([2]) that a circuit C of a matroid M has a chord e if there are two
circuits C1 and C2 such that C1 ∩ C2 = {e} and C = C1 4 C2. In this case
we say that C is the sum of C1 and C2 and also that C ∪ {e} is split into
C1 and C2.

When a chord belongs to a base B, we say that it is a B-chord.

Lemma 2.4. A circuit of M , fundamental with respect to B, is B-dependent
and does not contain B-chords.

Proof. Let C be a circuit ofM fundamental with respect toB. If |C| = m+1,
then |C ∩ B| = m and C is B-dependent. If C contains a B-chord e, then
cl(C) containsm+1 elements which belong to B. This implies the impossible
relation r(cl(C)) = m+ 1. �

Proposition 2.5. Let M be a uniform matroid of rank n. Then for every
base B of M it is M 'MB.

Proof. Let C be a circuit of M , that is a (n+ 1)-subset of E(M). It follows
that |C ∩ E| > r(E), so that C is dependent also in MB. It is in partic-
ular a circuit because every proper subset of C is independent in M and
consequently in MB. The result follows from Lemma 2.1. �
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3. Graphic matroids

In this section we consider the problem of characterizing graphic matroids
M isomorphic to MB for every base B of M . Let G = (V,E) be a graph
without loops and parallel edges, having V and E as the sets of vertices and
edges respectively.

Recall that two cycles of a graph are said intersecting when the intersec-
tion of their edge sets is not empty.

Lemma 3.1. A cycle matroid M(G), having rank n, is uniform if and only
if G is either an n-tree or an (n+ 1)-cycle.

Proof. Let us assume that M is uniform. If m is the number of edges of
G, then either m = n or m > n. In the first case M(G) does not contain
dependent sets; then G does not contain cycles and G is an n-tree. If m > n,
the condition that M is uniform implies that every (n + 1)-subset forms a
minimal dependent set, that is a (n+1)-cycle of G. Let C be a (n+1)-cycle
and e = (u, v) a possible edge of E \ C. Then u and v can not belong to
C because otherwise we obtain a chord of C and then a cycle having length
lesser than n+1. Thus at least one of the vertices u and v does not belong to
C; this implies that there exists a spanning tree having cardinality greater
than n, a contradiction.

Conversely, if G is either an n-tree or an (n + 1)-cycle, then in both the
cases M(G) has rank n. In the first case it is a free matroid, while in the
second case it is the uniform matroid Un,n+1. �

Lemma 3.2. Let G be a graph having two intersecting cycles; then G con-
tains two cycles C and H such that C 4 H is one cycle and C ∩ H is a
path.

Proof. Let C and Q two intersecting cycles; C4Q is a set of disjoint cycles.
Let D one of these cycles, where D = C ′ ∪ H ′, C ′ ⊆ C and H ′ ⊆ Q are
paths and H ′ is vertex disjoint from C ′, but on the end vertices.

The subgraph C 4D coincides with (C \ C ′) ∪H ′. In other words, it is
obtained from C by replacing the path C ′ by the path H ′. Then C 4D is
one cycle and C ∩D = C ′. �

Proposition 3.3. Let G be a graph having two intersecting cycles. Then
M(G) contains a base B in relation to which MB is not isomorphic to M .

Proof. Let G be a graph having two intersecting cycles, say C and H. By
Lemma 3.2 we may assume that C4H is one cycle, say D, and C ∩H = P
is a path of length ≥ 1. Assume that D = C ′ ∪H ′ where C ′ , H ′ are paths
contained in C and H, respectively.

Let B a spanning tree of C ∪ H obtained by taking all the edges of C
but an edge e of P and all the edges of H but e and another edge, say f , of
H \P . We may extend B to a spanning tree of G , which we still denote B.
Then we may see that H is not B-fundamental because contains two edges
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which do not belong to B. Then

|cl(H) ∩B| = |H| − 2

and H is B-independent. This implies that M(G) is not isomorphic to MB,
with respect to the base B. �

Recall that a connected graph G is called a cactus when any edge belongs
to at most one cycle. In other words G is a cactus if and only if it is
connected and its possible cycles are edge-disjoint.

Corollary 3.4. If the cycle matroid M(G) is isomorphic to MB for every
spanning tree B of G, then G is a graph whose components are cacti.

Proof. From Proposition 3.3 it follows that G has not intersecting cycles; in
other words the components of G are cacti. �

Theorem 3.5. A cycle matroid M(G) is isomorphic to the base-matroid
MB, for every base B of M , if and only if G is a disjoint union of cacti.

Proof. If a cycle matroid M(G) is isomorphic to the base-matroid MB, for
every base B, then, by Proposition 3.3, G does not contain intersecting
cycles and by Corollary 3.4 the components of G are cacti.

Conversely, if the components of G are cacti, then G has not intersecting
cycles. If there exists a base B in relation to which MB is not isomorphic
to M , then, by Lemma 2.1, there exists a cycle Q of G, which turns out to
be independent in MB. Clearly by Lemma 2.4 Q is not fundamental with
respect to B. Denote by f an element of Q \B; then the fundamental cycle
F (f), obtained by adding f to B, and Q are distinct and intersecting, a
contradiction. �

Theorem 3.6. For every base B of a graphic matroid M , M 'MB if and
only if M is direct sum of uniform graphic-matroids.

Proof. Let M = ⊕Mi be direct sum of uniform graphic matroids and B a
base of M . The B = ⊕Bi, where Bi is a base of Mi. By Proposition 2.5
Mi 'MiBi

and therefore M 'MB.
Now assume that M is isomorphic to the cycle-matroid M(G) and more-

over that M 'MB in relation to a base B of M , that is a spanning tree of
G. Then by Theorem 1 G is union of disjoint cacti and therefore does not
contain intersecting cycles. This implies that E(G) can be partitioned into
edge-disjoint cycles, say C1, C2, . . . , Cr, r ≥ 0, and edge-disjoint trees, say
T1, T2, . . . , Ts, s ≥ 0. Then M is direct sum of the matroids on C1, C2, . . . , Cr

and T1, T2, . . . , Ts, which turn out to be all uniform.
Thus M(G) is direct sum of uniform graphic matroids. �

Now we generalize the result of the previous theorem to the case of a
simple binary matroid.

Theorem 3.7. Let M be a simple binary matroid on E and B a base of M .
Then M 'MB if and only if either all the circuits of M are fundamental or
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every circuit not fundamental with respect to B contains at least one chord
which belongs to B.

Proof. If M ∼= MB, then by Lemma 2.1 every circuit of M is also a circuit
of MB; in other words every circuit of M has to be B-dependent. Let C be
a n-circuit, not fundamental with respect to B. Because it is B-dependent,
then |cl(C) ∩B| = n− 1.

From the condition that C is not fundamental it follows there exists at
least an element, say a, which belongs to (cl(C) \ C) ∩ B. Because M is
binary, from the proof of Lemma 2.1 of [2], it follows that every element of
cl(C) \ C is a chord; then the element a is a B-chord.

Conversely, assume that every possible circuit, not fundamental with re-
spect to B, contains at least one B-chord. Our aim is to prove that it is
B-dependent; by Lemma 2.1 this implies that M ∼= MB. Let C be an n-
circuit, not B-fundamental, having a B-chord, say c1. Let H1, H2 be two
circuits in which C ∪ c1 is splitted. If H1 and H2 are both B-fundamental,
then (C ∩ B) ∪ c1 is an independent set of cardinality n − 1 whose closure
coincides with cl(C). Then C is B-dependent.

Now, assume that at least one of the above circuits, say H2, is not B-
fundamental. Then it contains at least one chord c2 which belongs to B,
such that H2 ∪ c2 can be decomposed into two distinct circuits intersecting
in c2. By repeating the above procedure, we arrive to obtain that C can be
decomposed into a number, say s, of fundamental circuits. Thus C contains s
elements which do not belong to B and s−1 chords which belong to B. If T is
the set of similar chords, then |cl(C)∩B| = |(C∩B)∪T | = n−s+s−1 = n−1
and C is still B-dependent. �
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