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The present paper provides a brief introduction to a holistic approach to ship design optimization, 
defines the generic ship design optimization problem, and demonstrates its solution by using advanced 
optimization techniques for the computer-aided generation, exploration, and selection of optimal designs. 
It discusses proposed methods on the basis of some typical ship design optimization problems of cargo 
and naval ships related to multiple objectives, leading to improved and partly innovative design features 
with respect to ships’ economy, cargo carrying capacity, safety, survivability, comfort, required powering, 
environmental protection, or combat strength, as applicable. 

Este documento brinda una breve introducción a un enfoque holístico a la optimización del diseño de 
embarcaciones, define el problema genérico de la optimización del diseño de embarcaciones y demuestra 
su solución mediante el uso de técnicas avanzadas de optimización asistidas por computador para la 
generación, exploración y selección de diseños óptimos. Discute los métodos propuestos sobre la base 
de algunos problemas típicos de optimización de diseño de embarcación de buques de carga y navales 
relacionados a los objetivos múltiples, conllevando a características de diseño mejoradas y parcialmente 
innovadoras con respecto a la economía de la embarcación, capacidad de carga, seguridad, supervivencia, 
comodidad, potencia requerida, protección ambiental o fortaleza de combate, como sea aplicable.

Key words: holistic ship design, parametric design, multi-criteria optimization, naval ships.

Palabras claves: diseño holístico de buques, diseño paramétrico, optimización de múltiples criterios, 
buques navales.
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Ships are built to cover needs of society through the 
provision of specific services. These services may be 
on a commercial or non-commercial basis; whereas, 
in the first case (commercial ships) the objective is 
to generate profit for the ship owner, the latter case 
is related to a public service of some kind, the cost 
of which is generally assumed by a governmental 
authority. The main bulk of commercial ships are 
cargo ships, which carry all types of cargo (solid 
and liquid cargo or passengers) and provide in 
fact the largest (by volume of cargo and transport 
distance, [ton-miles]) worldwide transportation 
work, compared to other modes of transport. 

The design of ships is a complex endeavor requiring 
the successful coordination of many disciplines, 
of both technical and non-technical nature, and 
of individual experts to arrive at valuable design 
solutions. Inherently coupled with the design 
process is design optimization, namely the selection 
of the best solution out of many feasible ones on 
the basis of a criterion, or rather a set of criteria. 
Such evaluation criteria are the shipbuilding cost 
or the required freight rate for merchant ships or 
more complex ones that include, besides economy, 
ship performance in terms of safety, comfort, 
survivability in intact and damage condition and 
environmental friendliness. A systemic approach 
to ship design may consider the ship as a complex 
system integrating a variety of subsystems and their 
components, e.g., for merchant ships subsystems 
for cargo storage and handling, energy/power 
generation and ship propulsion, accommodation of 
crew/passengers and ship navigation, whereas for 
naval ships combat systems are added.   

Considering that ship design should actually 
address the whole ship’s  life cycle, it may be split into 
various stages that are traditionally composed of the 
concept/preliminary design, the contractual and 
detailed design, the ship construction/fabrication 
process, and ship operation for an economic life and 
scrapping/recycling. It is evident that an optimal 
ship is the outcome of a holistic optimization of the 
entire, above defined, ship system over its whole 
life cycle. But even the simplest component of 
the above-defined optimization problem, namely 

the 1st loop (conceptual/preliminary design), is 
complex enough to be simplified (reduced) in 
practice. Inherent to ship design optimization are 
the conflicting requirements resulting from the 
design constraints and optimization criteria (merit 
or objective functions), reflecting the competing 
interests of the various ship design stake holders 
(ship-owner, shipbuilder, cargo owner and cargo 
forwarder, flag and class authorities, etc.).  

The present paper provides a brief introduction 
to a holistic approach to ship design optimization, 
defines the generic ship design optimization 
problem, and demonstrates its solution by use 
of advanced optimization techniques for the 
computer-aided generation, exploration, and 
selection of optimal designs. It discusses proposed 
methods on the basis of some typical ship design 
problems of cargo and naval ships related to 
optimizations with multiple objectives and leading 
to improved and partly innovative design features 
with respect to ship economy, cargo carrying 
capacity, safety, survivability, comfort, required 
powering, environmental protection or combat 
strength (naval ships), as applicable.

Inherently coupled with the design process is 
design optimization, namely the selection of the 
best solution out of many feasible ones on the 
basis of a criterion, or rather a set of criteria. A 
systemic approach to ship design may consider the 
ship as a complex system, integrating a variety of 
subsystems and their components, e.g., subsystems 
for cargo storage and handling, energy/power 
generation and ship propulsion, accommodation 
of crew/passengers, and ship navigation. They are 
all serving well-defined ship functions. 

Ship functions may be divided into two main 
categories, namely payload functions and inherent 
ship functions.For example, for Ro-Ro passenger 
ships, the payload functions are all those related to 
the provision of public and private accommodation 
spaces for the passengers and spaces/handling and 
access equipment for the cargo (Ro-Ro decks, 
ramps, ventilation, etc.); inherent ship functions 
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are those related to the transport of passengers and 
cargo safely from port to port with certain speed, 
namely the ship as a system, consisting of ship’s 
hull (main and superstructure), facilities of crew, 
navigation control (bridge), machinery, tanks (fuel 
and lubrication oil, water and sewage, ballast and 
voids), comfort systems (air conditioning, water 
and sewage, electrical), mooring and life-saving 
equipment, etc. (Fig. 1).   

Independently, considering that ship design 
should actually address the whole ship's life 
cycle, it may be split into various stages that are 
traditionally composed of the concept/preliminary 
design, the contractual and detailed design, the 
ship construction/fabrication process, and ship 
operation for an economic life and scrapping/
recycling. It is evident that the optimal ship with 
respect to her whole life cycle is the outcome of a 
holistic1 optimization of the entire, above defined 
ship system for its life-cycle. It is noted that 
mathematically, every constituent of the above 
defined life-cycle ship system forms evidently itself 
a complex nonlinear optimization problem for the 
design variables, with a variety of constraints and 
criteria/objective functions to be jointly optimized. 
Even the simplest component of the ship design 

1  Principle of holism according to Aristotle (Metaphysics): “The 
whole is more than the sum of the parts”

process, namely the 1st loop (conceptual/
preliminary design), is complex enough to be 
simplified (reduced2) in practice. Also, inherent 
to ship design optimization are the conflicting 
requirements resulting from the design constraints 
and optimization criteria (merit or objective 
functions), reflecting the interests of the various 
ship design stake holders: ship owners/operators, 
ship builders, classification society/coast guard, 
regulators, insurers, cargo owners/forwarders, port 
operators etc.

Assuming a specific set of requirements (usually 
the shipowner’s requirements for merchant ships 
or mission statement for naval ships), a ship needs 
to be optimized for lowest construction cost, for 
highest operational efficiency or lowest Required 
Freight Rate (RFR), for highest safety and comfort 
of passengers/crew, for satisfactory protection of 
cargo and the ship herself as hardware and last but 
not least, for minimum environmental impact, 
particularly for oil carriers with respect to marine 
pollution in case of accidents and for high-speed 
vessels with respect to generated wave wash. 
Recently, even aspects of ship engine emissions 

2 Principle of reductionism may be seen as the opposite of holism, 
implying that a complex system can be approached by reduction 
to its fundamental parts. However, holism and reductionism 
should be regarded as complementary approaches, as they are 
both needed to satisfactorily address complex systems in practice.

Structure Hull, poop, forecastle
Superstructures

Crew Facilities Crew spaces
Service spaces
Stairs and corridors

Machinery Engine and pump rooms
Engine casing, funnel
Steering and thrusters

Tanks Fuel & Lub oil
Water and sewage
Ballast and voids

Comfort Systems Air conditioning
Water and sewage

Outdoor Decks Mooring, lifeboats, etc.

Cargo Units Containers
Trailers
Cassettes
Pallets
Bulk/Break Bulk

Cargo Spaces Holds
Deck cargo spaces
Cell guides
Tanks

Cargo Handling Hatchet & Ramps
Cranes
Cargo pumps
Lashing

Cargo Treatment Ventilation
Heating and cooling
Pressurizing
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Fig. 1. Payload and Ship functions of Cargo Ships (Levander, 2003)
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and air pollution need to be considered (see 
current discussions about the Energy Efficiency 
Design Index (EEDI), International Maritime 
Organization-MEPC, 2008). Many of these 
requirements are clearly conflicting and a decision 
regarding the optimal ship design needs to be 
rationally made.

To make things more complex but coming closer 
to reality, even the specification of a set of design 
requirements with respect to ship type, cargo 
capacity, speed, range, etc. is complex enough 
to require another optimization procedure 
that satisfactorily considers the interests of all 
shareholders of the ship as an industrial product 
and service vehicle of international markets or 
others. Actually, the initial set of ship design 
requirements is the outcome of a compromise of 
intensive discussions between highly experienced 
decision makers, mainly on the shipbuilder’s side 
and end users who attempt to articulate their 
desires and tradeoffs they are willing to allow. A 
way to undertake and rationally consolidate this 
kind of discussion has been advanced by the EU-
funded project LOGBASED (Brett et al., 2006 ).

Since the mid 60s with the advance of computer 
hard- and software more and more parts of the 
design process were taken over by computers, 
particularly the heavy algorithmic and drafting 
elements of ship design. Simultaneously, the first 
computer-aided preliminary design software 
systems were introduced, dealing with the 
mathematical parametric exploration of the design 
space on the basis of empirical/simplified ship 
models for specific ship types or the optimization 
of design variables for specific economic criteria by 
gradient based search techniques. With the further 
and faster advance of computer hard- and software 
tools, along with their integration into powerful 
hard- and software design systems, the time has 
come to look ahead in ship design optimization in 
a holistic way, namely by addressing and optimizing 
several and gradually all aspects of ship life (or all 
elements of the entire ship life-cycle system), at least 
the stages of design, construction and operation; 
within a holistic ship design optimization we should 
herein also understand exhaustive multi-objective 
and multi-constrained ship design optimization 

procedures even for individual stages of ship life 
(e.g., conceptual design) with least reduction of 
the entire real problem (Nowacki, 2009, Andrews 
et al., 2009, Papanikolaou et al., 2009a, and 
Papanikolaou, 2009b).

The use of Genetic Algorithms (GA), combined with 
gradient-based search techniques in micro-scale 
exploration and with a utility functions technique 
for the design evaluation, is advanced in the present 
paper as a generic-type optimization technique to 
generate and identify optimized designs through 
effective exploration of the large-scale, nonlinear 
design space and a multitude of evaluation criteria. 
Several applications of this generic, multi-objective 
ship design optimization approach by using the 
design software platform of the Ship Design 
Laboratory of NTUA, integrating well-established 
naval architectural and optimization software 
packages with various application methods and 
software tools, as necessary to evaluate stability, 
resistance, seakeeping, structural integrity, etc., 
may be found in the listed references. The following 
examples, deduced from past projects of NTUA-
SDL, may be highlighted. 

•	 Hydrodynamic hull form optimization of 
high-speed, twin-hull vessels (Papanikolaou, 
1991, Papanikolaou et al., 1996 ).  

•	 Hull form optimization of high-speed mono- 
and twin-hull vessels for least wave resistance 
and wave wash (EU project FLOWMART, 
Zaraphonitis and Papanikolaou, 2003). 

•	 Multi-objective optimization of naval ships 
(Boulougouris and Papanikolaou, 2004). 

•	 Hull form optimization of a wave piercing, 
high-speed, mono-hull vessel for least 
resistance and best seakeeping (EU project 
VRSHIP-ROPAX2000, Boulougouris and 
Papanikolaou, 2006 ). 

•	 Parametric design and multi-objective 
optimization of conventional and high-speed 
ROPAX ships (Zaraphonitis and Papanikolaou, 
2003, Skoupas et al., 2009).  

•	 Risk-based ship design (see a series of examples 
of application by various research teams, 
Papanikolaou (ed), 2009c). 

•	 Logistics-based optimization of ship design 
(Gkohari and Papanikolaou, 2010). 
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•	 Multi-objective tanker optimization 
(Papanikolaou et al., 2010). 

Within a holistic ship design optimization, 
we should herein mathematically understand 
exhaustive multi-objective and multi-constrained 
optimization procedures with least reduction of the 
entire real design problem. The generic ship design 
optimization problem and its basic elements may 
be defined as follows (Fig. 2). 

•	 Optimisation Criteria (Merit Functions, 
Goals): This refers to a list of mathematically 
defined performance/efficiency indicators that 
may be eventually reduced to an economic 
criterion, namely the profit of the initial 
investment. Independently, there may be 
optimization criteria (merit functions or goals) 
that may be formulated without direct reference 
to economic indicators, see, e.g., optimization 
studies for a specific X ship function, like ship 
performance in calm water and in seaways, 
ship safety, ship strength including fatigue, 
etc. The ship design optimization criteria are 

generally complex nonlinear functions of the 
design parameters (vector of design variables) 
and are often defined by algorithmic routines 
in a computer-aided design procedure. 
According to Levander (2003), the most 
important performance indicators for cargo 
vessels are summarized in Fig. 3.

•	 Constraints: It mainly refers to a list of 
mathematically defined criteria (in the form 
of mathematical inequalities or equalities) 
resulting from regulatory frameworks 
pertaining to safety (for ships, mainly 
the international SOLAS and MARPOL 
regulations). This list may be extended by 
a second set of criteria characterized by 
uncertainty with respect to their actual values 
and being determined by the market conditions 
(demand and supply data for merchant ships), 
by the cost of major materials (for ships: cost 
of steel, fuel, workmanship), by the anticipated 
financial conditions (cost of money, interest 
rates), and other case-specific constraints. It 
should be noted that the latter set of criteria 
is often regarded as a set of input data with 
uncertainty to the optimization problem and 
may be assessed on the basis of probabilistic 
assessment models. 

•	 Design Parameters: It  refers to a list of 
parameters (vector of design variables) 

The Generic Ship Design 
Optimization Problem

Fig. 2. Generic Ship Design Optimization Problem

Design Optimization Output

VARIATION OF DESIGN PARAMETERS
• Hull form
• Arrangement of spaces
• Arrangement of (main) outfitting
• Structural arrangements
• Network arrangements (piping, electrical, etc)
• Etc...

Parametric Model of Ship Geometry and Out�tting

CONSTRAINTS
• Regularions set by society
• Market demand/supply
• Cost for major materials, fuel and workmanship
• Structural arrangements
• Other, case dependent constraints

OUTPUTDESIGN OPTIMIZATION

OPTIMIZATION CRITERIA
• Maximization of Performance/
   Efficiency Indicators
• Minimization of Enviromental
   Impact Indicators
• Minimization of Building and
   Operational Costs
• Maximization of investment profit
• Minimization of investment risk
• Etc...

INPUT DATA GIVEN BY
OWNER REQUIREMENTS
AND/OR PARENT HULL
• Deadweight, payload
• Speed
• Maximum Draft
• Initial Arrangement
• Profit expectation
• Etc...
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IMPACT AREA TECHNOLOGY DRIVERS GOALS INDICATOR

 

Construction
Design Concept
Standard Solutions
Modular Construction
Supplier Networking

Construction
E�ciency

Building cost
[ $ / Payload unit]

Bunker cost
[ $ / year ]

Crew cost
[ $ / year ]

Keep schedule
Time saving

Casualties
Insurance cost
Repair & replacement cost

Health risk
Enviroment fees & �nes
Disposal cost

Money making potential
[ RFR ]

Enviromental
Friendliness

Propulsion
E�ciency

Automation

Reliability

Safety

Transport
Capacity

Smoke & Emissions
Waste, Sewage, Ballast
Wake & Noise
Recycling & Scrapping 

Hull Form
Propulsion Solution
Fuel Type & Consumption
Heat Recovery

Navigation
Machinery Operation
Docking & Mooring

Planned Maintenance
Preventive Maintenance
Condition Monitoring

Fire prevention
Grounding prevention
Collision prevention

Payload Functions

Ship Functions

Social Values

Payload Capacity
Speed & Power
Cargo Units
Cargo Handling

Fig. 3. Key Performance Indicators for Cargo Ships (Levander, 2003)

characterizing the design under optimization; 
for ship design, this includes the ship’s main 
dimensions, unless specified by the ship 
owner’s requirements (length, beam, side 
depth, draft) and may be extended to include 
the ship’s hull form, arrangement of spaces 
and of (main) outfitting, of (main) structural 
elements and of (main) networking elements 
(piping, electrical, etc), depending on the 
availability of topological-geometry models 
relating the ship’s design parameters to a 
generic ship model to be optimized.

•	 Input Data: This initially includes 
the traditional owner’s specifications/
requirements, which for a merchant ship are 
the required cargo capacity (deadweight and 
payload), service speed, range, etc., and may 
be complemented by a variety of further data 
affecting ship design and its economic life, 
like financial data (profit expectations, interest 
rates), market conditions (demand and supply 
data), costs for major materials (steel and fuel), 
etc. The input data set may include, besides 
numerals of quantities, more general type of 
knowledge data, like drawings (of ship general 
arrangements) and qualitative information that 

needs to be properly translated for inclusion in 
a computer-aided optimization procedure.

•	 Output: It includes the entire set of design 
parameters (vector of design variables) for 
which the specified optimization criteria/merit 
functions obtain mathematically extreme 
values (minima or maxima); for multi-criteria 
optimization problems, optimal design 
solutions are on the so-called Pareto front and 
may be selected on the basis of tradeoffs by the 
decision maker/designer. For the exploration 
and final selection of Pareto design solutions, 
a variety of strategies and techniques may be 
employed.

In mathematical terms, the multi-objective 
optimization problem may be formulated as: 

where μi is the i-th objective function, g and h 
are a set of inequality and equality constraints, 
respectively, and x is the vector of optimization 
or vector of design variables. The solution to the 
above problem is a set of Pareto solutions, namely 

(1)
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Fig. 4. Generic Procedure for the Ship Design Optimization Problem – NTUA-SDL

solutions for which improvement in one objective 
cannot be achieved without worsening of at least 
one other objective. Thus, instead of a unique 
solution, a multi-objective optimization problem 
has (theoretically) infinite solutions, namely the 
Pareto set of solutions.

The use of Multi-Objective Genetic Algorithms 
(MOGA), combined with gradient based search 
techniques in micro-scale exploration and with 
a utility functions technique for the design 
evaluation, is advanced in the present paper as a 
generic type optimization technique for generating 
and identifying optimized designs through 
effective exploration of the large-scale, nonlinear 
design space and a multitude of evaluation criteria 
occurring in ship design. Several applications of this 
generic, multi-objective ship design optimization 
approach by use of NTUA-SDL3's design software 
system, integrating the naval architectural software 
package NAPA4, the optimization software 
modeFRONTIER5 and various application software 

3  National Technical University of Athens – Ship Design 
Laboratory, NTUA-SDL, http://www.naval.ntua.gr/sdl
4  NAPA Oy (2005), NAPA software, http://www.NAPA.fi/
5  E.STE.CO (2003), “modeFrontier software v.2.5.x”, http://www.
esteco.it/

tools, as necessary for the evaluation of stability, 
resistance, seakeeping etc. may be found in the 
listed references.

Two typical application examples of the introduced 
generic ship design optimization procedure of 
NTUA-SDL are presented and briefly commented 
in the following. 

Multi-objective Optimization of Tanker 
Ships

This application gives an overview of research 
studies undertaken at the Ship Design Laboratory 
of NTUA within the framework of the EU-funded 
project SAFEDOR (2005-2009) and, thereafter, 
in collaboration with Germanischer Lloyd 
(Papanikolaou et al., 2010). The studies introduce 
a risk-based parametric optimization of double-
hull tankers to achieve innovative designs with 
increased cargo carrying capacity and improved 
environmental protection, while challenging 
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various constraints imposed by the latest MARPOL 
regulations (Papanikolaou, 2009c).  

For the design concept development stage, a full 
parametric multi-objective design optimization 
platform by using Genetic Algorithms has been 
developed, taking into account probabilistic oil-
outflow calculation methods for side and bottom 
damages. The resultant Pareto-optimal designs 
are evaluated from the point of view of oil outflow 
consequences, cargo capacity, design feasibility, 
ship maintainability and ballast water extent. 
Developed alternative designs dispose, compared 
to a standard double-hull design, increased cargo 
carrying capability and reduced structural weight, 
at a comparable or even slightly reduced risk for oil 
outflow; therefore, from the point of view of both 
economy and safety, they appear very promising 
compared to existing standard type double-
hull designs. A preliminary economic analysis 
also showed that despite the anticipated slightly 
increased building cost, developed alternative 
designs are related to an appreciable decrease of 
unit transport cost, making them attractive to the 
shipping industry.

Reference Design
The, herein, optimized tanker vessel, code-named 
“Double Venture” is a double-hull construction 

tanker ship of AFRAMAX size also used in 
another EU-funded project POP&C (2004-2007). 
Table 1 presents the basic characteristics of the 
vessel. A double-skin construction is arranged 
along the cargo length area, consisting of six (6) 
pairs of side and bottom tanks for use of water 
ballast (Fig. 5). Two slop tanks are also provided, 
aft wards of main cargo area. Cargo handling is by 
means of centrifugal pumps installed in a pump 
room, which is located forward of the machinery 
space. It is noted that the above referenced double-
hull design disposes of an increased double side 
and bottom clearance of 2.5 m, compared to the 
minimum 2.0 m required, according to MARPOL 
relevant requirements. 

Alternative Configurations
Five different configurations were considered, 

Length, oa 250.10m

Length, bp 239.00m

Breadth, moulded 44.00m

Depth, moulded (main deck) 21.00m

Width of double skin sides 2.50m

Width of double skin bottom 2.50m

Draught scantling 14.60m

Deadweight, scantling draught (comparable with 
design proposed)

109,800dwt
(cargo density 0.868 T/m3)

Cargo capacity
Liquid volume, heavy oil, diesel oil,
Water ballast

122,375m3+2,830m3 (Slop), 3,380m3, 
260m3

41,065m3 + 3,500 m3 (peaks)

Classification Lloyds Register

Number of Cargo tanks 12 (6x2) plus 2 slop tanks

Cargo Tanks block length 181.44 m

Table 1. Particulars of reference vessel “Double Venture”

Fig 5. Sketch of Reference Vessel “Double Venture”
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Table 2. Alternative compartmentation configurations

Fig 6. Outflow vs. cargo volume – Pareto designs from different configurations

with six or seven tanks in the longitudinal 
direction, two or three tanks in the transverse 
direction and flat or corrugated bulkheads. The 
five different combinations of compartmentation 
are summarized in Table 2. A total of 21,500 
designs were examined in the present study. In 
Figs. 6 and 7, only the feasible designs are shown. 
The open circles correspond to dominated designs, 
while the full circles correspond to designs on the 
Pareto front. For comparison, the reference design is 
also included, marked by a full triangle. It should 
be noted that the steel weight of the reference 
vessel is not its actual weight as built, but the 
weight calculated by the POSEIDON software 
by Germanischer Lloyd, based on a corresponding 
structural design according to GL rules. This 

ensures full comparability with the generated 
optimal designs.

Discussion of Results
The five alternative configurations were selected 
to allow validating the characteristics of the 
reference design, as well as identifying possible 
improvements through analysis of the respective 
Pareto frontiers. Putting all Pareto frontiers into 
a single diagram provides a better insight of the 
relationships between design objectives, design 
parameters, and alternative configurations.  
 
Fig. 6 clearly shows that the “6x3 flat” Pareto designs 
dominate all the other designs. Furthermore, there 
are several Pareto designs with significantly better 
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of cargo 

tanks

Bulkhead 
type

Number of 
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Configuration 1 6x2 flat 7287

Configuration 2 6x2 corrugated 1738

Configuration 3 6x3 flat 6147

Configuration 4 6x3 corrugated 3270

Configuration 5 7x2 flat 3043
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oil outflow (in terms of the MARPOL mean oil 
outflow index, which must be less than 0.015 for the 
reference AFRAMAX tanker) and cargo volume 
performance than the reference design.

As expected, Fig. 7 shows that for the same 
cargo volume, most generated “6x2 flat” Pareto 
designs have less steel weight than all the other 
configurations, noting that the structural weight 
of both the generated Pareto designs and of the 
reference ship were calculated by the same model, 

namely here based on POSEIDON structural 
designs. The reference design is here again 
dominated by several “6x2 flat” and “6x3 flat” 
designs. 
In Fig. 8, the “6x3 flat” designs, as well as the 
“6x2 flat” designs dominate all other designs. 
The reference design is again clearly dominated 
by several “6x3 flat” designs. At the same time, 
practically all “6x2 flat” Pareto designs have less 
steel weight than the reference design at acceptable oil 
outflow performance. 
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Fig 7. Cargo volume vs. steel weight in cargo area – Pareto designs from different configurations

Fig 8. Outflow vs. steel weight in cargo area – Pareto designs from different configurations
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Fig 8. Outflow vs. steel weight in cargo area – Pareto designs from different configurations

In addition to the above, the following observations 
can be made: 

•	 None of the corrugated arrangements proves 
better than flat bulkhead designs. This does 
not mean that the corrugated geometries 
should be in general disregarded as alternative 
configurations. They have important 
advantages with respect to the ease of 
production and maintenance, which have not 
been considered in this study. Also, it should 
be noted that the flat bulkhead structural 
designs did not include some minor stiffeners, 
thus the comparison may be not entirely ‘fair’ 
in this respect. 

•	 The “7x2 flat” arrangement performed poorly 
since the steel weight increases without any 
significant gains in the outflow or the capacity, 
respectively.  

The reference design appears to be on the Pareto 
front of the “6x2 flat” designs. It was already noted 
earlier that the reference design is a well-proven 
design in practice, which was optimized with 
respect to steel weight (by the yard designer), most 
likely by use of Finite Element Method (FEM). .

Holistic Naval Ship Design

Introduction to Naval Ship Design
From the system’s point of view, a naval ship 

may be regarded as an integrated, self-propelled 
combat system. It may be requested to provide 
accommodation space for personnel of the size of 
a small village and be hosted within a large mobile 
structure that continuously operates in a hostile 
environment (physical and operational); thus, 
many challenges come in addition to those of a 
merchant ship design.  

In recent years, the task of formulating clearer 
goals and setting tangible design specifications for 
naval ships has been significantly improved with 
the use of the 2010 International Naval Ship Code 
(INSC, 2010). The INSC is based on a similar 
philosophy like the Goal Based Standards (GBS), 
currently discussed for merchant ships at the 
International Maritime Organization (IMO). It 
addresses, however, specific naval ship features and 
methods of operation. The goals are represented at 
the top tiers of the framework, below which the 
detailed requirements which the ship has to meet 
in design, construction, and operational phase are 
placed. The structure of the NSC 2010 (ANEP 77 
v.2, 2010) version of the code is explained in Figs. 
9 and 10. The code offers an off-the-self safety and 
performance management system for navies that 
need to establish a system of self regulation.

Compared to a merchant ship, the complexity of 
designing a naval ship is further increased by the 
multitude of disciplines that need to be considered 
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Fig 10. The GBS structure of the NSC (see RINA Warship Technology, 2011)

Fig 11. Stakeholders disciplines of naval ship design (see Neu, 2000)
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and integrated in the ship design process, as shown 
in Fig. 11.  

To enable major improvements in acquisition 
engineering design and analysis processes, many 
leading navies are working on developing and 

deploying scalable physics-based computational 
engineering software products aiming to 
replace empirical design based on historical data 
and experimental testing with physics-based 
computational design validated with experimental 
testing. This will allow the detection and resolution 
of any design flaws early in the design process 
before major schedule and budget commitments 
are made. Additionally, it will allow the innovation 
by the development of optimized designs for new 
concept and the integration of the various systems 

earlier in the acquisition process. The use of 
such a methodology will increase the acquisition 
program’s flexibility and agility to respond to 
rapidly changing requirements (Hurwitz, 2010).

In that respect, Holistic Ship Design Optimization 
in naval ship design is achieved by the development 
of an integrated engineering software platform of 
tools that supports a reconfigurable ship design 
and acquisition process. This enables the designer 
to develop cost-effective ship designs on schedule 
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and within budget, able to perform as required 
and predicted. An example of such an integrated 
toolset is shown in Fig. 12.

At top level of Fig. 12, there are a number of 
geometric modeling tools (such as Tribon6, 
ShipConstructor7, CATIA8, Paramarine9, NAPA10 
etc.). These software tools generate ship's geometry 
and related data which are then passed over to the 
appropriate Analysis Model Synthesizer that uses 
specialized Analysis Management Software such as 
(e.g.):

•	 Davis' ShipIR/NTCS11 for IR,
•	 IDS' Ship EDF for Radar Cross Section 

analysis (see Fig. 13),
•	 UCL and UoGs integrated PARAMARINE-

SURFCON and maritimeEXODUS12 for 
design, simulation

6  Now AVEVA Marine http://www.aveva.com/products_services_
aveva_marine.php
7  http://www.shipconstructor.com/
8  http://www.3ds.com/solutions/shipbuilding/overview/
9  http://www.qinetic.com
10  http://www.napa.fi
11  http://www.wrdavis.com/NTCS_intro.html
12  http://fseg.gre.ac.uk/exodus

of evacuation and enhanced operational 
effectiveness (see Fig. 14).

The development and validation of such integrated 
tool platforms is a very demanding task; two well 
known software platforms, which are used and 
continuously further developed by two major 
navies, are:

•	 NAVSEAS (US) Leading Edge Architecture 
for Prototyping Systems (LEAPS) (Hurwitz, 
2010)  

•	 QinetiQ-GRC's PARAMARINE software 
in UK (http://www.qinetiq.com). 

The Ship Design laboratory at NTUA has also 
been developing integrated approaches to naval 
ship design, namely by utilizing its generic ship 
design optimization procedure (outlined in Fig. 4) 
together with a set of specific design tools for naval 
ship design. These are: 

•	 A naval ship design version of the 
Parametric Design Tool (PDT)13 developed 

13  http://www.idscompany.it/page.php?f=176&id_v=2 
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Fig 12. Sample Integrated Toolset (see ISSC Committee v.5, 2009)
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Fig 13. RCS warship analysis by Ship EDF (IDS Ingegneria dei Sistemi S.p.A.13)

Fig 14. Personnel movement simulation results for RN Frigate (Andrews, 2009)

originally for the design of commercial ships 
(RoRo, tankers, bulkers, containerships) 
(Boulougouris and Papanikolaou, 2009) 
coupled with the general optimization 
software modeFRONTIER14 (see ES.TE.
CO, 2003). This is used for the fast 
population of the design space with 
conceptual solutions that can be further 

14  http://www.modefrontier.com

investigated (Fig. 15).
•	 An advanced toolset integrating the well-

known ship design software package 
NAPA, modeFRONTIER and a 
number of external CAE tools such as 
NUMECA's15 Fine/Marine CFD code, 
NTUA-SDL's NEWDRIFT16 seakeeping 
(see Papanikolaou, 2001), Flowtech's 

15  http://www.numeca.com
16  http://www.naval.ntua.gr/sdl
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Fig 15. NTUA-SDL Parametric Design Tool Design Space Global Exploitation

SHIPFLOW17 (see Larsson, 1990) and GL's 
POSEIDON18 structural design software. 
In addition a number of tools have been 
programmed in NAPA macro-language 
using NAPA BASIC.

•	 Using a Parametric Design Tool (PDT) the 
designer has a computationally efficient tool 
for the parametric exploration of the design 
space and the identification of the feasible 
solutions areas. This is basically a global 
optimization step. After this step, the more 
sophisticated tools are introduced to perform 
the local, more in-depth optimization of the 
design, taking into account the full set of 
objectives and ranking the designs according 
to decision maker’s preference. 

17  http://www.flowtech.se
18  http://www.gl-group.com/poseidon2/

An example of application of this multi-objective 
optimization of a naval ship using genetic 
algorithms and including maximization of the 
survivability as one of the objectives may be 
found in the listed reference (Boulougouris and 
Papanikolaou, 2004). 

The present paper provided a brief introduction 
to a holistic approach to ship design optimization, 
defined the generic ship design optimization 
problem, and demonstrated its solution by 
using advanced optimization techniques for the 
computer-aided generation, exploration, and 
selection of optimal designs. It discussed proposed 
methods on the basis of some typical ship design 
optimization problems of a tanker and naval ships 
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related to multiple objectives, leading to improved 
and partly innovative design features with respect 
to ship economy, cargo carrying capacity, safety, 
survivability, comfort, required powering, 
environmental protection, or combat strength, as 
applicable. 

It was shown that multi-objective mathematical 
optimization approaches are very valuable tools 
and greatly enhance the quality of ship design, 
even if applied to vessel concepts already optimized 
by traditional methods. The design developed and 
optimization methodology may be a useful tool 
for the designer in the preliminary design stage, 
facilitating the elaboration of a large number of 
design alternatives quickly and with little effort. The 
designer may explore this possibility to investigate 
the effect of crucial decisions on the vessel’s operating 
performance before proceeding to the detailed 
design stage. The design methodology may also 
be effectively used in feasibility studies, providing 
assistance for the determination on a rational basis 
of the most suitable vessel size, transport capacity, 
speed, and other operating characteristics for a 
selected service. The integration of the parametric 
ship design application with a multi-objective 
optimization software facilitates the design space 
exploration in a rational and efficient way, enabling 
the identification of favorable and unfavorable 
areas of the design variables and ultimately for 
the determination of the optimal designs located 
on the Pareto Frontier (in case of multi-criteria 
optimization). Furthermore, once the optimum 
design has been selected, its detailed NAPA model 
including (but not limited to) the hull-form and 
the watertight subdivision is readily available for 
further elaboration and detailed design work, 
considerably reducing related effort.

A final comment on the way ahead: though the 
generic solution approach to the holistic ship 
design problem appears well established, it remains 
for researchers to develop and integrate a long list 
of application algorithms and related software, 
addressing the great variety of ship design for life 
cycle. This is a long-term task of decades, requiring 
profound skills and understanding of the physics 
and design of ships, a domain requiring properly 

trained naval architects and scientists from related 
disciplines.

The author likes to thank his associate, Dr. 
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