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Abstract 

This article revises the popular issue of collinearity amongst explanatory 

variables in the context of a multiple linear regression analysis, particularly in 

empirical studies within social science related fields. Some important 

interpretations and explanations are highlighted from the econometrics 

literature with respect to the effects of multicollinearity on statistical inference, 

as well as the general shortcomings of the once fervent search for methods 

intended to detect and mitigate these effects. Consequently, it is argued and 

demonstrated through simulation how these views may be resolved against an 

alternative methodology by integrating a researcher’s subjective information in 

a formal and systematic way through a Bayesian approach. 

Key-words: multiple linear regressions, classical normal regression, 

collinearity, multicollinearity, classical inference, subjective probability, 

Bayesian linear regression, prior information, posterior distributions, simulation 

 

JEL Classification: C11, C12 

 

1. Introduction 

Multicollinearity is the exotic term accorded by econometricians to denote 

strong linear relationships (e.g. collinearity) amongst explanatory variables in a 

multiple linear regression analysis. Indeed, multicollinearity and its effects on 

statistical inference are well explored topics in econometric literature (for an 

extensive overview and analysis see Judge, Hill, Griffiths, Lütkepohl, & Lee, 1988, 

pp. 859-881). Why is collinearity in explanatory variables of such emphasized 

importance in econometrics? The fundamental problem for an economist engaged in 

an applied study, as for almost any other social science related statistical 

investigation for that matter, is that strong linear relationships amongst explanatory 

variables pose not only a formidable impedance on statistical inference regarding 

individual parameters, but a vastly elusive one at that; since economists rarely have 

direct control over the data generating process, they neither control the variation in 

explanatory variables, nor possess the option to obtain larger and/or different samples 

for their application. 

From a statistics perspective, the common view projects that collinearity 

undermines accurate inference through its effect on the standard errors of individual 

parameter estimates: ceteris paribus, stronger collinearity proportionately increases 
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standard errors, leads to wider confidence intervals, and lower test statistics (in 

absolute value) in significance tests.
1
 Accordingly, when an empirical study yields a 

particular regression parameter statistically insignificant (i.e. fails to reject the 

appropriate hypothesis test), there are two reasons why this occurs: (i) the true value 

of the parameter of interest is in fact zero, or (ii) the data sample is not informative 

enough to conclusively distinguish this parameter as statistically significantly 

different from zero. Since the latter is strongly related to the degree of collinearity in 

explanatory variables, a researcher particularly interested in demonstrating a 

statistically significant relationship may, therefore, be motivated not only to employ 

techniques intended to alleviate (ii), but also to search for a reasonable justification of 

rejecting (i) informally by arguing that the failure of the significance test is more 

attributable to (ii) through the presence of multicollinearity. 

Countless methods of “detecting” multicollinearity and containing its effects ex 

post have been proposed. In lieu of redesigning experiments that generate the data or 

obtaining larger samples (options which are most often simply not available to 

economists), the operational “solutions” in the literature almost exclusively focus on 

either the systematic inclusion/exclusion of certain explanatory variables, or the 

reconditioning of explanatory variables such as to induce orthogonality and yield 

lower degrees of collinearity according to some predetermined measure, depending 

on a particular case of interest. 

It is important to emphasize, however, that all such detection mechanisms and 

ex post data-manipulation solutions have almost unilaterally fallen victim to a 

criticism that consistently resounds a common theme – they are all invariably ad hoc. 

That is, there is no formal argumentative justification, neither from the perspective of 

probability theory nor classical statistics inference, for the general use of such 

proposed solutions. Simply put, colliniarity in explanatory variables is one feature 

(among several) of the data that is directly related to the amount of information 

provided by the sample. When the sample is not informative enough to lead to 

decisive conclusions, the only potential “solution” to this is to introduce more 

information, but if the new information does not manifest itself in the form of 

additional/different data, such information can only be subjective. Insofar as classical 

statistics inference outright rejects subjective information, however, it is not 

surprising that the search for operational solutions within this framework has failed 

to produce generally accepted techniques to combat multicollinearity: techniques 

incorporating subjective information within an objectivist paradigm are indeed ad 

hoc. 

The fundamental premise of the present paper is that there is in fact an 

appropriate place for subjective information in statistical inference. With this as a 

basis, it is argued that properly characterizing one’s subjective information and 

formally incorporating it into an empirical study is indeed an effective way to obtain 

conclusive statistical inference where the data alone may not offer definitive answers. 

                                                 
1
 This is, however, not generally true for linear combinations of parameters.  For an 

example where multicollinearity leads to increased power in a hypothesis test on a sum of 

regression parameters see Goldberger, 1991, pp. 250-251. 
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This is generally accomplished by formulating subjective information in terms of 

prior beliefs and employing Bayesian methods to systematically integrate the prior 

beliefs with the information available in the data. 

To support the proceeding argument, section 2 provides an overview of the 

multiple Classical Normal Regression (CNR) model with emphasis on the properties 

that are of particular interest to our discussion, as well as an in-depth, formal 

description of the effects of multicollinearity in this context. Accordingly, section 3 

introduces the Bayesian linear regression and concludes with a simulation example 

that demonstrates how multicollinearity may be handled from the Bayesian 

perspective in empirical applications within an economic study. 

 

2. Classical Normal Regression and Multicollinearity 

Recall that the multiple linear regression postulates a linear relationship 

between a dependent variable  and  explanatory variables  of the form 

 

 

(1

) 

where in accordance with the assumptions of the CNR model, . 

Without loss of generality, we designate  to be the parameter of interest and 

 and  to be the nuisance parameters. Moreover, we will denote the 

Ordinary Least Squares (OLS) estimators of , and  with , and , respectively. 

In what follows, it is convenient to express the estimators employing the 

following matrix notation: let  be the  vector consisting of dependent variables 

,  the  vector , and let  denote the  

matrix with elements  and  for  and 

. Furthermore, define , with  representing the  row of 

 and  denoting the element of  located at row  and column . Then, 

 
 

(2

) 

  
(3

) 

It is well known that  and  are stochastically independent and 

marginally follow the distributions 

  
(4

) 

  
(5

) 
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By letting  represent the coefficient of determination obtained from 

regressing  on all other explanatory variables , and  the sample variance 

of , we may write . From this expression, the conventional view on 

the effect of multicollinearity is immediately evident: as collinearty between  and 

other explanatory variables increases,  and for a fixed sample size 

. Thus, multicollinearity is typically related to imprecise estimates, 

which is in turn, reflected in wide confidence intervals as well as weak power in 

hypothesis tests on individual parameters. 

Because the computation of confidence intervals and individual test statistics 

related to the parameter  involve only the statistics , , and , it is evident that 

the epicentre of the multicollinearity effect lies in the variance of the individual 

parameter estimate under consideration. Yet the reason that a higher degree of 

collinearity in explanatory variables increases the variance of parameter estimates (or 

equivalently, the standard errors) is that larger collinearty means less variability in 

the sample, and hence, less information. Less informative data, in turn, naturally 

leads to more imprecise (or less certain) estimates. The central question, however, is 

how much collinearity is too much? 

To that end, it should be noted that the effect of collinearity on the variance of 

parameter estimates is significant only relative to the sample size. In fact, if the joint 

explanatory vector  is independent across observations , the effect (on the 

variance of an individual parameter estimate) of an increase in the sample size by 

one observation is equivalent to the effect of a decrease in the auxiliary coefficient of 

determination  by . Intuitively, both collinearity and sample size may 

be viewed as two very similar factors that determine the variability in the sample, 

which is the primary source of information offered by the data for statistical 

inference. Hence, the extent of either effect (high collinearity or low sample size) on 

individual parameter inference must be interpreted accordingly. 

A succinct and elegant interpretation of the severity of collinearity is best offered 

by the esteemed econometrician Arthur S. Goldberger (Goldberger, 1991, p. 252): 

To say that “standard errors are inflated by multicollinearity” is to suggest 

that they are artificially, or spuriously, large. But in fact they are appropriately 

large: the coefficient estimates actually would vary a lot from sample to sample. This 

may be regrettable but it is not spurious. 

Note that from a purely classical objectivist perspective that obstinately refutes 

all prior information in statistical inference, this claim is undisputable. That is, one 

certainly cannot commit inferential exclusivity to a set of data, and upon receiving 

vague inference from that data, dismiss this vagueness on the grounds that the data is 

“poorly conditioned.” Within the bonds of data exclusivity, one simply has no way of 

judging to what extent is a confidence interval “unreasonably” wide, since there 

exists no basis for comparison in succinctly defining “unreasonably.” Indeed, a larger 

degree of collinearity reduces the ability of the data to identify the statistical 

significance of individual parameters, as does a lower sample size, lower sum of 
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squared residuals in explanatory variables, etc., and without an ulterior source of 

information this data deficiency is incircumventable; different techniques of 

manipulating the data can only exploit more efficiently (or less efficiently) the 

variability already present, but will never induce more variability. 

On the other hand, it is entirely reasonable to gauge the degree to which 

“standard errors are inflated” by admitting prior information because the prior belief 

provides exactly the basis for comparison lacking in a purely objectivist paradigm. 

More specifically, one may justifiably claim that a confidence interval is “too wide” 

if it extends into regions where a priori the researcher assigns a low degree of 

probability in the sense that the information offered by the data regarding the 

parameter of interest contradicts the prior information. In addition, the extent of this 

“contradiction” may be sensibly measured when the prior information is formalized 

in a probabilistic manner. It is in this sense that prior information provides an 

additional instrument, which in the presence of collinearity provides the crucial 

supplement to variability lacking in the data. 

As a matter of fundamental principle, classical statistics inference offers little 

in terms of accommodation for subjective prior beliefs, and incorporating such 

beliefs in this paradigm, even when formulated probabilistically, is an awkward 

exercise at best. Bayesian methods, on the other hand, are well known to be the most 

efficient way of systematically combining prior information with the data in 

generating robust statistical inference (for introductory Bayesian texts, see (Koop, 

2003) and (Gelman, Carlin, Stern, & Rubin, 2003)). To that end, we provide a simple 

demonstration of how prior information may be employed in alleviating adverse 

effects of collinearity within the Bayesian linear regression framework (Koop, 2003, 

pp. 15-85), (Gelman, Carlin, Stern, & Rubin, 2003, pp. 351-385), (Poirier, 1995,              

pp. 524-580). 

 

3. Bayesian Linear Regression 

In concept, Bayesian inference differs fundamentally from classical inference 

in the following sense: the focus of Bayesian inference is on what the parameter is 

most likely to be, whereas the most common concern of classical inference is on what 

the parameter is definitely not. Nevertheless, there are strong practical parallels 

between the two approaches. For example, given a particular significance level  the 

 posterior probability interval (commonly constructed as the highest 

posterior density (HPD) interval) bears a close resemblance to the  

confidence interval for either individual parameters or a combination of parameters, 

while the mode of the posterior distribution is comparable to the parameter estimate 

generated by classical techniques. More importantly, as the sample size increases, 

both the posterior modes and posterior probability intervals converge to the 

corresponding Maximum Likelihood estimates and confidence intervals (Poirier, 

1995, pp. 306-307). 

Note that the latter fact reflects exactly the previously outlined intuition 

regarding the effect of collinearity relative to sample size. Insofar as the effect of 

collinearity is most apparent in smaller samples and diminishes proportionately as  
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increases, it is crucial that whatever instrument is adapted to offset the effects of 

collinearity in smaller samples reduces in relative importance as the sample size 

grows. Employing prior information through Bayesian techniques achieves just that: 

prior information is most influential on the posterior distribution, and hence most 

effective in combating collinearity, when  is small, while this influence is 

proportionately reduced as  increases and vanishes altogether as . 

We illustrate the Bayesian approach in this context through a simple simulation 

example based on some well-known results of the Bayesian linear regression. 

Accordingly, suppose the model of interest is 

 ,   
(6

) 

and the true parameter values are 

   

Using a pseudo-random number generator, we simulate three data samples of 

 for , , and , respectively, and compare the 

inference one would obtain under the Bayesian framework to that of the classical 

framework. Since our primary interest lies in the influence of collinearity on 

statistical inference, the simulated data is generated to yield a relatively high sample 

correlation between the explanatory variables while each pair  is sampled 

independently. Moreover, the experiment is designed such that the correlation 

between  and  emits a stronger effect on the precision of the estimates of  

relative to . Summary statistics of the simulated datasets are reported in Table 1. 
 

Table 1 

Simulation Data Summary Statistics 

  

 

 

average 

standard 

deviation 

correlation 

   

       

       

       

       

       

       

       

       

       
 

Now, consider how an econometrician might approach the task of estimating 

this model aware only of the descriptive properties of the data and operating under 

the assumption that the linear model is correctly specified as given in (6). Assume 

further that the econometrician is in possession of the smallest sample ( ) and 

is concerned that the strength of collinearity relative to this sample size may lead to 



 53 

uninterestingly vague inference regarding her primary parameters of interest  and 

. On the other hand, her theoretical training endows her with some key intuition 

regarding the values of these parameters. She summarizes her beliefs as follows: 

1) centered at , ; 

2) symmetric (i.e.  is just as likely as , etc.); 

3) highly unlikely that  or . 

These beliefs may be formalized in terms of prior probability distributions 

regarding  and . Consequently, we shall proceed with a general form of the prior 

distribution given by 

 ,   
(7

) 

where  denotes the inverse gamma distribution (for example, see (Gelman, 

Carlin, Stern, & Rubin, 2003, pp. 573-577)). It can be shown that the implied 

marginal distribution of  is 

 
 

(8

) 

where  student-t distribution with  degrees of freedom, and therefore, all three 

prior beliefs described above may be accommodated in (8) by appropriately setting 

the parameters  and . Specifically, let , , 

, where  denotes the cumulative distribution function 

(cdf) of the student-t distribution with  degrees of freedom This ensures that the 

modes of the distributions for  and  are  and , respectively, while 

, where  may be set to any reasonably small value, 

(e.g. the ensuing results are based on ). The symmetry condition is, of 

course, automatically satisfied since the student-t distribution is naturally symmetric. 

Note that Bayesian methods require that prior distributions be properly 

specified for all parameters. Since, the researcher is neither particularly interested in 

 and , nor does she posses very specific beliefs regarding their values, she may 

specify , , , and  in such way that results in mildly-informative prior 

distributions for  and . Such mild beliefs, for example, are sufficiently 

represented with the following values: , , , . 

The essence of Bayesian inference is the focus on updating one’s prior belief 

by the observed data sample. This, in turn, requires the construction of the likelihood 

function, which is operationally expressed as the distribution of the dependent 

variable conditional on the parameters: 

  
(9

) 

where  denotes the  identity matrix. Using (7) and (9), the joint posterior 

distribution is obtained through Bayes’ Rule as 
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(1

0) 

and contains all information necessary to carry out statistical inference on the 

parameters. While exact analytic expressions for posterior distributions are, in 

general, intractable (most often, posterior inference is based on simulating from the 

posterior distribution), the Bayesian linear regression model yields fairly simple and 

practically straightforward posteriors. 

Consequently, define the following notation: let , 

 (i.e. a  diagonal matrix), and 

  

(1

1) 

  

  

  

The joint posterior distribution of all model parameters in our case is then 

given by 

 ,   
(1

2) 

whereas the marginal posterior distributions of interest are obtained as 

 

 

(1

3) 

The marginal posterior distributions for each of the three cases (of varying 

sample size) under examination are plotted along with the corresponding prior 

distributions for the parameters  and  in Figure 1, Panels (A) and (B), 

respectively. More specifically, Panel (A) illustrates the evolution of the posterior 

distribution of  from the prior as the sample size grows while Panel (B) depicts the 

analogous phenomenon for . The intuition regarding the influence of prior 

information on posterior inference as  increases is immediately evident. In both 

cases, with each increasing sample size, the posterior distribution collapses around 

the mode, which in turn, converges to the true parameter value.  
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Panel (A):  Panel (B):  

Fig. 1. Prior and posterior distributions for  and  

Observe, however, that the collapsing effect is distinctly slower for  in 

comparison to . This is precisely a reflection of the influence of collinearity, which 

is by design more influential in the posterior distribution of than that of . In fact, 

a closer examination of Panel (A) reveals that the posterior of  for  is not 

noticeably less dispersed relative to its prior distribution, but rather only exhibits a 

shift in location towards the true value. A more illuminating interpretation of the 

latter may be formulated as follows: the posterior distribution of  at  

reflects a joint effort on the part of the prior information and the data whereby the 

information from the data is incorporated into more accurately centering the posterior 

while the prior maintains the dispersion contained by substituting for the lack of 

certainty projected by highly collinear data with a priori information. As a result, 

even with a relatively low sample size (i.e. relative to the degree of correlation in the 

explanatory variables), posterior inference regarding  is sufficiently informative. 

The important trade-off is, of course, that this gain in precision at  is 

strongly reliant on the prior beliefs, and hence, accentuates the importance of 

introducing prior information cautiously and in a manner that is convincingly 

justifiable. On the other hand, as the sample size grows and the information projected 

by the data gains in vigor, the need for the prior to contain the posterior precision 

diminishes and its role in determining the shape of the posterior distribution is 

marginalized. This is clearly reflected in Panel (A), by the progressive reduction of 

the posterior dispersion at  and  where the abundance of available 

observations overcomes the small sample deficiencies resulting from collinearity. 

Table 2 and Table 3 further reinforce this intuition in a numerical comparison of 

Bayesian and classical inference that would be conventionally employed in interpreting 

the results for each of the three sample size levels. A quick overview of Table 3, which 

summarizes typical classical quantities of interest, reveals the diminishing effect of 

collinearity in increasing : for both parameters  and , as  increases regression 

estimates converge to the true values, standard errors decrease, confidence intervals 

shrink, and significance test statistics grow (in absolute value). Additionally, this 

phenomenon is accelerated for quantities related to , in evident parallel with the 
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influence of prior information on posterior distributions, and is likewise explained by 

the more prominent influence of collinearity on the precision of  estimates. 

In this sense, the fact that the analogous posterior quantities detailed in Table 2 

converge to their classical counterparts is unsurprising. In fact, at  the 

posterior modes of  and  (which for the student-t distribution are equivalent to 

the respective posterior means and medians) are nearly identical to the OLS estimates 

 and , respectively. Similarly, posterior standard deviations are approximately 

equivalent to the standard errors, as are the  posterior probability intervals to the 

 confidence intervals. 

Where the posterior inference differs most significantly from classical 

inference, however, is in terms of the parameter  for . Here, it is 

worthwhile to note that the  classical confidence interval extends over negative 

values of . Indeed, the limited sample is not informative enough to identify  as 

statistically significantly different from zero at the  significance level in the 

classical context (this is equivalently verified by the corresponding significance test 

failing to reject the null hypothesis  against ). On the Bayesian 

side, Table 2 illustrates that with a sample of  observations, the lower bound 

of the  posterior probability interval is notably greater than the hypothesized 

null value . In an analogous statement of significance, therefore, our Bayesian 

inference allows us to confidently proclaim  as statistically significantly different 

from zero, given our prior beliefs.
2
 

 

Table 2 

Bayesian/Posterior Inference 

  

mean / 

median / 

mode 

standard 

deviation 

 Probability Interval (HPD) zero 

outside 

interval 
lower bound upper bound 

 

     yes 

     yes 

     yes 

 

     yes 

     yes 

     yes 
 

                                                 
2
 In fact, the Bayesian paradigm defines a formal methodology of Bayesian 

Hypothesis Testing which is based on Bayesian Posterior Odds and is generally unrelated in 

terms of inference to the HPD interval approach demonstrated here; for more details see 

(Poirier, 1995, pp. 376-392, 540-551).  However, the technical and conceptual complexities 

involved in a satisfactory discussion of posterior odds are beyond the scope of our purpose.  

We only mention here that in the simplified setting of our example, and particularly insofar 

as our focus is on comparing posterior inference to classical inference, the HPD interval 

approach is sufficiently appropriate. 
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Table 3 

Classical/Frequentist Inference 

  estimate standard 

deviation 
 Confidence 

Interval 

significance test 

 significantly 

different 

from zero 
lower 

bound 

upper 

bound 

       
no 

      yes 

      
yes 

       
yes 

      yes 

      
yes 

4. Conclusion 

The simulation example of the previous section serves to illustrate a simple 

case where incorporating subjective information through Bayesian methods yields a 

more conclusive statistical inference relative to its strictly objective, classical 

counterpart. This should be by no means misinterpreted as suggesting that subjective 

beliefs offer a general solution to the multicollinearity problem. A better way to 

perceive the role of subjective information in a particular application is to ask the 

question what kind of prior belief(s) would yield the affirmative results sought by the 

researcher? If such beliefs are justifiable through theoretical considerations related to 

the subject of interest, then Bayesian inference may offer convincing support for 

definitive empirical claims that cannot be asserted by objective inference alone, be it 

due to multicollinearity or other data sample related deficiencies. If the said beliefs, 

on the other hand, cannot be justified on a theoretical basis, conclusions drawn based 

on ad hoc claims will once again be subject to doubt and inevitable rejection.  
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