Analisis Umur Kelelahan Sambungan *Bracket Topside Module FPSO* Menggunakan *Fracture Mechanics*

Tyo Dwiki Prakoso dan M. Nurul Misbah Departemen Teknik Perkapalan, Fakultas Teknologi Kelautan, Institut Teknologi Sepuluh Nopember (ITS), Surabaya 60111 *e-mail*: mnmisbah@na.its.ac.id

Abstrak-Salah satu tantangan dalam mendesain struktur FPSO adalah struktur antara topside structure dan hull structure. Struktur tersebut harus mempunyai kekuatan yang cukup akibat beban siklis seperti topside inertia loads dan hull girder bending moment akibat beban gelombang pada kondisi lingkungan dan sea states. Beban siklis tersebut menyebabkan terjadinya kelelahan yang memicu terjadinya fatigue cracking sehingga dapat mempengaruhi production integrity. Penelitian ini dilakukan untuk mengetahui umur kelelahan topside interface structure menggunakan dua pendekatan yaitu metode cumulative fatigue damage untuk menganalisis umur kelelahan akibat inisiai retak dan metode pendekatan fracture mechanics untuk menganalisis perambatan retak dan pengaruh perambatan retak terhadap umur kelelahan topside interface structure. Pemodelan struktur dilakukan dengan pemodelan elemen hingga secara global dan lokal. Dari pemodelan global didapatkan lokasi kritis vaitu sambungan TS10 untuk selanjutnya ditinjau dalam analisis lokal. Hasil tegangan lokal menunjukkan Bracket 2 mempunyai tegangan maksimum yaitu 29,489 Mpa. Setelah itu nilai tegangan tersebut diaplikasikan pada pemodelan retak untuk menentukan nilai stress intensity factor (SIF), laju perambatan retak, jumlah siklus dan umur kelelahan struktur. Dengan itu didapatkan nilai stress intensity factor (SIF) retak awal dari topside interface structure yaitu 1,469 MPa√m dan laju perambatan retak awal yaitu 2,2 x 10⁻¹¹ m/cycle. Setelah itu didapatkan jumlah siklus dari retak awal sampai retak kritis yaitu 2,3 x 10⁵ cycle. Umur kelelahan topside interface structure menggunakan pendekatan fracture mechanics yaitu 101,028 tahun dengan nilai safety factor adalah 5,05. Sedangkan dengan menggunakan metode SN Cuve didapatkan umur yaitu 151,72 tahun.

Kata Kunci—Cummulative Fatigue Damage, Fracture Mechanics, Stress Intensity Factor, Perambatan Retak, Topside Interface Structure.

I. PENDAHULUAN

INDONESIA masih mempunyai potensi cadangan minyak dan gas bumi (migas) yang cukup melimpah di laut. Dengan itu, aktivitas industri hulu minyak dan gas di Indonesia mulai fokus dan beralih dari lapangan *onshore* ke daerah lepas pantai maupun perairan dalam (Tim Komunikasi ESDM, 2018; Eksplorasi Lapangan Offshore, Fokus Utama Pengembangan Aktivitas Hulu Migas). Dalam tahap *field development* di lapangan *offshore*, salah satu faktor yang diperhatikan adalah fasilitas produksi. Salah satu alternatif fasilitas produksi yang sesuai untuk perairan dalam adalah FPSO (*Floating Production and Storage Offloading*).

Dalam proses perancangan dan operasional FPSO, isu keselamatan (*safety issue*) merupakan tolok ukur kualitas bangunan laut, terutama dalam aspek desain strukturnya. Salah satu tantangan dalam mendesain struktur FPSO adalah struktur antara *topside structure* dan *hull structure* dimana struktur tersebut sangat mempengaruhi *production integrity*. Kerusakan struktur bangunan laut seperti FPSO pada umumnya diakibatkan oleh kelelahan (*fatigue*), kelelahan pada *topside interface structure* diakibatkan karena struktur mendapatkan beban dominan yaitu *hull girder bending moment* dan *topside inertia loads*. Dimana beban tersebut merupakan respon akibat beban gelombang yang bersifat siklis, dimana struktur merespon secara dinamis gelombang acak.

Kelelahan tersebut memicu terjadinya *fatigue cracking* ditandai dengan retak awal (*initial crack*) dan pada proses selanjutnya terjadi perambatan (*propagation*) serta kerusakan (*failure.*). Sumber awal perambatan retak pada *topside interface* structure adalah global hull girder stress, local stress concentrations, tegangan akibat hull hull girder deflection dan topside inertia forces. Oleh karena itu, diperlukan analisis kelelahan dengan dua pendekatan yaitu metode *cumulative* fatigue damage untuk menganalisis umur kelelahan akibat inisiai retak dan metode pendekatan *Fracture Mechanics* untuk menganalisis perambatan retak yang kemungkinan terjadi pada struktur yang terbentuk selama masa fabrikasi atau service life dan pengaruh umur perambatan retak terhadap umur kelelahan sambungan topside interface structure.

II. TINJAUAN PUSTAKA

A. Topside Module Support

Topside structure adalah struktur yang dibangun secara modular serta semua jenis equipment dan sistem diatas geladak.*Topside interface structures* adalah struktur yang mentransfer beban antara lambung dan *topside structure*.

Berdasarkan banyak variasi tipe desain deck stool, desain diaplikasikan menjadi beberapa tipe sambungan. Sambungan diklasifikasikan menjadi 4 tipe sambungan yaitu sambunga A, B, C dan D. Desain sambungan pada geladak secara umum dilakukan sepanjang *transverse frames* dan *longitudinal stiffener*.

	Tabel 1.						
Tipe Desain Deck Stool							
	Deskripsi	Jumlah Kaki	Ukuran Kaki	Deck reinforcment			
А	Kaki pada setiap	3-6	Slides, small	Tidak			
	frame	longitudinal					
		2-4 transsverse					
В	Stool span two	2 longitudinal	Welded,	Iya			
	frames	2 transverse	large				
С	Gusset pada setiap	3-6	Welded,	Tidak			
	frame	longitudinal	small				
		2-4 transsverse					
D	Stool span two	3-4	Slides, large	Possibly			
	frames	longitudinal					
		2 transsverse					

Tipe sambungan A dan C biasanya tidak memerlukan modifikasi atau penguatan struktur dibawah geladak, sedangkan tipe sambungan B memerlukan tambahan pelat dan penguatan dibawah geladak. Deck stool atau gussets diatur pada lokasi seperti web frame dan transverse bulkhead pada arah memanjang dan pada arah melintang yaitu pada longitudinal stiffener dan longitudinal bulkhead [1].

Topside module support termasuk dalam detail struktur pada FPSO yang harus dianalisis kelelahan *karena topside module support* mengalami beban – beban siklis seperti hull girder bending moment, topside inertia loads [2].

B. Pembebanan

Dalam proses perancangan struktur lepas pantai (*offshore structure*), penentuan kemampuan kerja struktur dipengaruhi oleh beban yang bekerja pada struktur tersebut. . Beban – beban yang harus dipertimbangkan oleh perancang dalam peracangan *offshore structure* salah satunya adalah beban gelombang.

Gelombang yang digunakan dalam perhitungan struktur bangunan apung dibagi menjadi 2 (dua) yaitu gelombang regular dan gelombang irregular. Keadaan gelombang laut sesungguhnya adalah gelombang irregular. Respon akibat beban gelombang yang digunakan adalah *accelerations*, dimana *accelerations* merupakan komponen *topside inertia loads*. Topside inertia loads dihitung sesuai 6 dof, dan dibagi menjadi 2 jenis gerak yaitu gerakan translasional dan gerakan rotasional. Untuk gerakan translasi, gaya inersia diperoleh dalam persamaan dibawah:

$$F = m x a \tag{1}$$

Sedangkan untuk gerakan rotasional, momen gaya diperoleh dalam persamaan dibawah:

$$Momen = I x \alpha \tag{2}$$

Dimana α adalah momen inersia yang diperoleh dalam persamaan dibawah:

$$I = m x r^2 \tag{3}$$

C. Konsep Perhitungan Fatigue

Secara umum terdapat dua metode pendekatan yang dipakai dalam analisis *fatigue* yaitu metode pendekatan *stress life* dan metode pendekatan *fracture mechanics*. Metode pendekatan *stress life* menggunakan kurva SN untuk menentukan umur kelelahan. Sedangkan metode *Fracture Mechanics* adalah metode dengan pendekatan kriteria ukuran cacat pada material beserta perambatan retak.

D. Metode Cummulative Fatigue Damage

Dalam mengestimasi kumulatif kerusakan fatigue (*Cummulative Fatigue Damage*) terdapat empat metodologi salah satunya adalah metode *simplified fatigue analysis*, Pada metode *simplified fatigue analysis*, pendekatan empiris menggunakan parameter distribusi Weibull dan distribusi rentang tegangan disesuaikan dengan distribusi penyebaran rentang tegangan terhadap beban siklis yang terjadi pada struktur.

Distribusi rentang tegangan dalam kurung waktu panjang digambarkan sebagai distribusi Weibull dua parameter :

$$Q(\Delta \boldsymbol{\sigma}) = \exp\left[-\left(\frac{\Delta \boldsymbol{\sigma}}{q}\right)^{h}\right]$$
(4)

Saat distribusi rentang tegangan dalam kurung waktu panjang diaplikasikan dengan distribusi Weibull untuk kondisi beban berbeda, dan one-slope S-N curve dipakai, fatigue damage ditunjukkan oleh persamaan berikut [3]:

$$D = \frac{V_0 T_d}{\bar{a}} q^m \Gamma\left(1 + \frac{m}{h}\right) \le \eta \tag{5}$$

Dimana :

$$q = \frac{\Delta \sigma_0}{(\ln n0)^{1lh}} \tag{6}$$

Secara teori fatigue damage D = 1 pada saat mengalami kegagalan. Tetapi sebagaimana telah disampaikan sebelumnya bahwa D dipengaruhi oleh banyak ketidakpastian sehingga ketentuan berbagai klasifikasi menetapkan bahwa D kecil dari satu [4].

E. Fracture Mechanics

Proses terjadinya kepecahan memperlihatkan 3 fase yaitu pertumbuhan retak tanpa pembebanan, pertumbuhan retak stabil, dan pertumbuhan retak tidak stabil [5].

- 1. Retak awal
- 2. Perambatan Retak
- 3. Final Fracture

Mekanika kepecahan, mode deformasi retak digolongkan dalam 3 mode deformasi, yaitu:

- 1. Mode I (opening mode)
- 2. Mode II (*slidding mode*)
- 3. Mode III (tearing mode)

F. Stress Intensity Factor

Faktor intensitas tegangan (Stress Intensity Factor) merupakan parameter yang mengandung pengertian prinsip keseimbangan energi dan distribusi di ujung retak. Range dari SIF diberikan oleh Bai dengan persamaan :

$$\Delta K = F \,\sigma \,\sqrt{\pi a} \tag{7}$$

G. Kedalaman Kritis

Kedalaman retak kritis terjadi jika stress intensity factor yang dihasilkan telah mencapai *fracture toughness* dari material. Kedalaman retak kritis dihitung dengan menggunakan rumus:

$$a_f = \left(\frac{K_{ic}}{\alpha \sigma_{max}}\right)^2 \frac{1}{\pi} \tag{8}$$

H. Perambatan Retak

Hasil perhitungan perambatan retak ini umumnya sebagai umur kelelahan dari struktur yang ditinjau. Dengan memberikan masukan berupa besar retak awal dan retak akhir akan diketahui jumlah batas siklus yang masih aman dengan mengintegralkan persamaan laju keretakan berikut [6] :

$$N = \int_{ao}^{af} \frac{da}{da/dN} \tag{9}$$

Dengan mensubstitusi Persamaan didapatkan persamaan baru yaitu:

$$N = \int_{ao}^{af} \frac{da}{C (\Delta K)m}$$
(10)

Paris equation dapat disubstitusikan dengan persamaan S-N curve, dengan persamaans sebagai berikut [7]:

$$N = \frac{I}{c\sigma^m} \tag{11}$$

Dimana I merupakan integral dan didefinisikan dengan persamaan berikut :

$$I = \int_{ao}^{af} \frac{da}{(F\sqrt{\pi a})m}$$
(12)

Persamaan antara *S-N formulation* dan *fracture mechanics* ditunjukkan dari persamaan diatas dengan I/C sama dengan ā pada persamaan 5.

III. METODOLOGI PENELITIAN

A. Pengumpulan Data

Dalam penelitian ini, objek yang digunakan adalah FPSO 101760 DWT. Dengan ukuran utama FPSO seperti tercantum pada Tabel 2.

Tabel 2.	
Ukuran Utama FPS	0
Item	Dimensi
Length Overall	246.8 m
Length Between Perpendicular	235.0 m
Breadth	42.0 m
Depth	21.3 m
Height	92.05
Displacement	123877 ton

FPSO 101760 DWT beroperasi di Lapangan Gas Blok BD dengan yotal distribusi kejadian gelombang pada lapangan operasi setiap arah gelombang ditunjukkan pada Tabel 3.

Tabel 3 menunjukkan arah dari *west* mempunyai persentase paling besar yaitu 25,16%. Dengan itu untuk analisis hidrodinamis menggunakan arah gelombang dari *west*. Berikut adalah wave scatter diagram untuk gelombang 100 tahun dari arah west.

Direction Number of Hours Persentase (%) North 7883 4,73 North North East 1811 1,09 North East 823 0,49 East North East 1559 0,94 East 9971 5,99 East South East 11934 7,16 South East 7105 4,27 South East 3276 1,97 South South East 3276 1,97 South South West 2894 1,74 South South West 2601 1,56 West South West 2601 1,56 West South West 22938 13,77 North West 8199 4,92 North North West 7143 4,29 Calm 33640 20,09 Unrecorded 1488 0,89 Total 166560 100	Tabel 3.					
$\begin{array}{ c c c c c c c } \hline Direction & Number of Hours & Persentase (%) \\ \hline North & 7883 & 4,73 \\ \hline North North East & 1811 & 1,09 \\ \hline North East & 823 & 0,49 \\ \hline East North East & 1559 & 0,94 \\ \hline East & 9971 & 5,99 \\ \hline East South East & 11934 & 7,16 \\ \hline South East & 7105 & 4,27 \\ \hline South South East & 3276 & 1,97 \\ \hline South South West & 2894 & 1,74 \\ \hline South South West & 749 & 0,45 \\ \hline West South West & 2601 & 1,56 \\ \hline West & 41901 & 25,16 \\ \hline West & North West & 8199 & 4,92 \\ \hline North North West & 7143 & 4,29 \\ \hline Calm & 33640 & 20,09 \\ \hline Unrecorded & 1488 & 0,89 \\ \hline Total & 166560 & 100 \\ \hline \end{array}$	Persentase Gelombang					
North 7883 4,73 North North East 1811 1,09 North East 823 0,49 East North East 1559 0,94 East 9971 5,99 East South East 11934 7,16 South East 7105 4,27 South East 3276 1,97 South South East 3276 1,97 South South West 825 0,5 South West 749 0,45 West South West 2601 1,56 West 41901 25,16 West North West 8199 4,92 North North West 7143 4,29 Calm 33640 20,09 Unrecorded 1488 0,89 Total 166560 100	Direction	Number of Hours	Persentase (%)			
North North East 1811 1,09 North East 823 0,49 East North East 1559 0,94 East 9971 5,99 East South East 11934 7,16 South East 7105 4,27 South East 3276 1,97 South South East 3276 1,97 South South West 2894 1,74 South South West 749 0,45 West South West 2601 1,56 West 41901 25,16 West North West 22938 13,77 North West 7143 4,29 Calm 33640 20,09 Unrecorded 1488 0,89 Total 166560 100	North	7883	4,73			
North East 823 0,49 East North East 1559 0,94 East 9971 5,99 East South East 11934 7,16 South East 7105 4,27 South South East 3276 1,97 South South East 3276 1,97 South South West 825 0,5 South West 749 0,45 West South West 2601 1,56 West 41901 25,16 West North West 22938 13,77 North West 8199 4,92 North North West 7143 4,29 Calm 33640 20,09 Unrecorded 1488 0,89 Total 166560 100	North North East	1811	1,09			
East North East15590,94East99715,99East South East119347,16South East71054,27South South East32761,97South South East32761,97South South West8250,5South West7490,45West South West26011,56West South West2293813,77North West81994,92North North West71434,29Calm3364020,09Unrecorded14880,89Total166560100	North East	823	0,49			
East99715,99East South East119347,16South East71054,27South South East32761,97South28941,74South South West8250,5South West7490,45West South West26011,56West South West2293813,77North West81994,92North North West71434,29Calm3364020,09Unrecorded14880,89Total166560100	East North East	1559	0,94			
East South East119347,16South East71054,27South South East32761,97South28941,74South South West8250,5South West7490,45West South West26011,56West4190125,16West North West81994,92North North West71434,29Calm3364020,09Unrecorded14880,89Total166560100	East	9971	5,99			
South East 7105 4,27 South South East 3276 1,97 South 2894 1,74 South South West 825 0,5 South West 749 0,45 West South West 2601 1,56 West 41901 25,16 West North West 22938 13,77 North West 8199 4,92 North North West 7143 4,29 Calm 33640 20,09 Unrecorded 1488 0,89 Total 166560 100	East South East	11934	7,16			
South South East 3276 1,97 South 2894 1,74 South South West 825 0,5 South West 749 0,45 West South West 2601 1,56 West 41901 25,16 West North West 22938 13,77 North West 8199 4,92 North North West 7143 4,29 Calm 33640 20,09 Unrecorded 1488 0,89 Total 166560 100	South East	7105	4,27			
South 2894 1,74 South South West 825 0,5 South West 749 0,45 West South West 2601 1,56 West South West 2601 25,16 West North West 22938 13,77 North West 8199 4,92 North North West 7143 4,29 Calm 33640 20,09 Unrecorded 1488 0,89 Total 166560 100	South South East	3276	1,97			
South South West 825 0,5 South West 749 0,45 West South West 2601 1,56 West South West 2601 25,16 West North West 22938 13,77 North West 8199 4,92 North North West 7143 4,29 Calm 33640 20,09 Unrecorded 1488 0,89 Total 166560 100	South	2894	1,74			
South West 749 0,45 West South West 2601 1,56 West 41901 25,16 West North West 22938 13,77 North West 8199 4,92 North North West 7143 4,29 Calm 33640 20,09 Unrecorded 1488 0,89 Total 166560 100	South South West	825	0,5			
West South West 2601 1,56 West 41901 25,16 West North West 22938 13,77 North West 8199 4,92 North North West 7143 4,29 Calm 33640 20,09 Unrecorded 1488 0,89 Total 166560 100	South West	749	0,45			
West 41901 25,16 West North West 22938 13,77 North West 8199 4,92 North North West 7143 4,29 Calm 33640 20,09 Unrecorded 1488 0,89 Total 166560 100	West South West	2601	1,56			
West North West 22938 13,77 North West 8199 4,92 North North West 7143 4,29 Calm 33640 20,09 Unrecorded 1488 0,89 Total 166560 100	West	41901	25,16			
North West 8199 4,92 North North West 7143 4,29 Calm 33640 20,09 Unrecorded 1488 0,89 Total 166560 100	West North West	22938	13,77			
North North West 7143 4,29 Calm 33640 20,09 Unrecorded 1488 0,89 Total 166560 100	North West	8199	4,92			
Calm 33640 20,09 Unrecorded 1488 0,89 Total 166560 100	North North West	7143	4,29			
Unrecorded 1488 0,89 Total 166560 100	Calm	33640	20,09			
<i>Total</i> 166560 100	Unrecorded	1488	0,89			
	Total	166560	100			

Tabel 4.
Joint Probability Gelombang 100 Tahun - West

Цe	Peak Period (Tp)							Total	
115	1,5	2,5	3,5	4,5	5,5	6,5	7,5	8,5	- 10141
0,25	-	0,001	0,070	0,247	-	-	-	-	0,318
0,75	-	-	-	0,094	0,443	-	-	-	0,538
1,25	-	-	-	-	0,027	0,103	-	-	0,130
1,75	-	-	-	-	-	0,010	0,004	-	0,013
2,25	-	-	-	-	-	-	0,001	-	0,001
2,75	-	-	-	-	-	-	-	-	-
Total	-	0,001	0,070	0,341	0,470	0,113	0,005	-	-

B. Pemodelan Hidrodinamis

Pemodelan hidrodinamis dilakukan untuk untuk mendapatkan *acceleration motion*. *Acceleration motion* ini selanjutnya digunakan sebagai parameter dalam perhitungan beban yang akan digunakan dalam analisis tegangan global.

Gambar 1. Model FPSO dengan Mooring

C. Pemodelan Struktur

Pemodelan struktur global dengan menggunakan metode elemen hingga dilakukan dengan tujuan untuk mendapatkan nilai tegangan pada struktur *topside stool* yang dimodelkan, sehingga mengetahui titik kritis untuk ditinjau dalam analisis. Pemodelan struktur ini dibuat dengan referensi pada penelitian sebelumnya yaitu menggunakan model lambung sebagian dan *topside stool* [8].

Gambar 2. Model Struktur Global

D. Kondisi Batas dan Aplikasi Penbebanan

Sebelum dilakukan analisis, model struktur diberi kondisi batas yaitu pada ujung geometri (*face*) lambung dan komponen – komponen beban. Komponen beban diaplikasikan dengan cara pendekatan "*point load*" modelling. Point load didefinisikan sebagai suatu titik dengan nilai x, y, z sesuai dengan titik berat *topside module* yang diaplikasikan diatas *topside stool*. Point load disini merepresentasikan *topside* weight sehingga *topside inertia loads* dapat diaplikasikan [2].

E. Pemodelan Lokal

Pemodelan lokal adalah pemodelan retak pada lokasi kritis yang didapatkan dari analisis rentang tegangan. Pemodelan lokal ini dilakukan dengan tujuan untuk mendapatkan *stress intensity factor*. Pemodelan lokal menggunakan teknik *submodelling*, dengan menggunakan *solution* dari global model (pemodelan struktur) sebagai *boundary condition* [2].

Gambar 4. Pemodelan Lokal (a) Bracket 1 (b) Bracket 2 (c) Bracket 3 (d) Bracket 4

Gambar 5. Kondisi Batas dari Model Global

F. Parameter Perhitungan Umur Kelelahan

Pada peritungan umur kelelahan menggunakan *fracture mechanics*, perlu diketahui parameter – parameter seperti parameter material yakni C dan m yaitu masing – masing sebesar 6,98 x 10⁻¹² dan 3 . Sedangkan untuk perhitungan menggunakan *SN Curves* menggunakan parameter \bar{a} yang didapatkan pada persamaan (11).

G. Bagan Alir

Gambar 6. Bagan Alir

IV. ANALISIS DAN PEMBAHASAN

A. Analisis Hidrodinamis

Percepatan gerak (*acceleration motion*) FPSO dihitung menggunakan analisis *time response with irregular wave* dengan analisisi numerik. Nilai percepatan gerak (*acceleration motion*) dihitung sesuai 6 *dof* pada arah sudut datang gelombang *west* (270°). Dalam analisis ini, spektrum gelombang menggunakan teori JONSWAP dengan mengambil nilai γ (gamma) yaitu 3,38 dalam rentang frekuensi 0,1 rad/s sampai 1,793 rad/s. Simulasi dilakukan dengan waktu 1200 s.

Gambar 7 menunjukkan contoh hasil simulasi pada arah gelombang *west* (270°) dengan tinggi gelombang (Hs) 0,75 m dan peak period (Tp) 4,5 s. Pada gerak *surge* dan gerak *yaw* nilai *acceleration motion* cenderung besar, hal ini dikarenakan gelombang datang dari haluan kapal. Dari hasil seperti diatas diambil nilai maksimum setiap variasi tinggi dan *peak period*.

Hasil acceleration motion selanjutnya dijadikan parameter untuk perhitungan beban, sehingga didapatkan 10 variasi pembebanan.

B. AnalisIs Tegangan Global

Analisis tegangan global dilakukan setiap variasi pembebanan (LC1-LC10) untuk mengetahui lokasi kritis untuk selanjutnya dilakukan analisis lokal. Distribusi tegangan ditunjukkan pada Tabel 5 dan Gambar 8 sebagai contoh *output* pada satu variasi pembebanan yaitu LC5.

Tabel 5.			
Hasil Tegangan Lokal			
Variasi	σ(MPa)		
Sambungan TS1	95,263		
Sambungan TS2	107,180		
Sambungan TS3	51,915		
Sambungan TS4	33,516		
Sambungan TS5	44,357		
Sambungan TS6	113,870		
Sambungan TS7	69,792		
Sambungan TS8	14,185		
Sambungan TS9	56,369		
Sambungan TS10	155,250		
Sambungan TS11	127,910		
Sambungan TS12	15,686		
Sambungan TS13	113,240		
Sambungan TS14	135,710		
Sambungan TS15	84,328		
Sambungan TS16	40,073		

Gambar 8 menunjukkan lokasi kritis yaitu pada sambungan TS10. Hal ini disebabkan lokasi sambungan TS10 memiliki lokasi yang paling dekat dengan "*point load*", sehingga tegangan pada lokasi tersebut memiliki tegangan paling besar dibandingkan lokasi sambungan lain. Dengan itu lokasi yang digunakan untuk analisis lokal adalah sambungan TS10.

C. Analisis Tegangan Lokal

Analisis tegangan lokal ditinjau pada 4 bracket pada sambungan kaki TS10 yang ditunjukkan pada Gambar 9, hasil tegangan setiap bracket menjadi acuan untuk skenario retak.

Gambar 9. Bracket Yang Ditinjau

Analisis tegangan lokal hanya dilakukan pada pembebanan yang memiliki probabilitas terbesar dari variasi pembebanan yang lain. Sesuai *wave scattter diagram* bahwa gelombang dengan tinggi 0,75 m dan periode gelombang 4,5 s memiliki probabilitas terbesar dibanding yang lain yaitu 0.443 ditunjukkan pada Tabel 4. Tegangan yang digunakan pada analisis lokal ini adalah tegangan normal ke arah vertikal, hasil tegangan setiap bracket ditunjukkan pada Tabel 6.

Ta	Tabel 6.					
Hasil Teg	Hasil Tegangan Lokal					
Variasi	$\sigma_{normal}(MPa)$					
Bracket 1	-3,516					
Bracket 2	29,489					
Bracket 3	-15,27					
Bracket 4	-8,018					

(a) Bracket 1 (b) Bracket 2 (c) Bracket 3 (d) Bracket 4

Gambar 10 menunjukkan bahwa *Bracket* yang mempunyai tegangan tarik yaitu pada *Bracket 2*. Setelah didapatkan nilai tegangan, ukuran retak kritis dapat dihitung menggunakan persamaan (8) sehingga didapatkan ukuran kedalaman kritis yaitu 145,84 mm. Lokasi retak awal terjadi pada *bracket toe* yang ditunjukkan pada Gambar 11 dan akan merambat tegak lurus dengan sambungan antara geladak dan *bracket*.

Gambar 11. Skenario Retak

Pemodelan retak dilakukan dari retak awal sampai retak kritis dengan *increment* ukuran perambatan sebesar 10%. Berikut adalah contoh pemodelan retak pada retak kritis.

Gambar 12. Pemodelan Retak

D. Perhitungan Stress Intensity Factor

Nilai *stress intensity factor* yang dihasilkan merupakan SIF mode I. Nilai SIF dihitung dengan menggunakan metode numerik ditunjukkan pada Gambar 11 sebagai contoh output dalam simulasi, sehingga didapatkan hasil nilai *stress intensity factor* dapat dilihat pada Tabel 7.

Gambar 11. Nilai SIF Kedalaman Kritis Pada Simulasi Numerik

Tabel 7.
Vilai SIF Pembebanan Maksimum

No	a (mm)	of (mm)	AV1 (MDaylow)
INO.	a (mm)	ai (iiiii)	AKI (MPavili)
1	0,50	15,03	1,469
2	15,03	29,57	4,241
3	29,57	44,10	5,297
4	44,10	58,64	8,299
5	58,64	73,17	9,977
6	73,17	87,71	11,438
7	87,71	102,24	13,963
8	102,24	116,78	14,662
9	116,78	131,31	17,829
10	131,31	145,84	20,714

Gambar 12. Nilai SIF Pembebanan Maksimum

Gambar 12 menunjukkan bahwa nilai SIF semakin besar seiring bertambahnya kedalaman retak. Hal ini sesuai dengan persamaan Bai bahwa nilai SIF berbanding lurus dengan kedalaman retak.

E. Analisis Perambatan Retak

Nilai laju perambatan retak dapat dicari dengan persamaan (10), dengan nilai SIF pada Tabel 7 sehingga didapatkan hasil laju perambatan retak sebagai berikut.

Tabel 8. Laju Perambatan Pembebanan Maksimum							
ao	af	Δa	da/dN (m/cyle)	ΔN	Ν		
0,50	15,03	0,015	2,2E-11	6,6E+08	6,6E+08		
15,03	29,57	0,015	5,3E-10	2,7E+07	6,8E+08		
29,57	44,10	0,015	1,0E-09	1,4E+07	7,0E+08		
44,10	58,64	0,015	4,0E-09	3,6E+06	7,0E+08		
58,64	73,17	0,015	6,9E-09	2,1E+06	7,0E+08		
73,17	87,71	0,015	1,0E-08	1,4E+06	7,1E+08		
87,71	102,24	0,015	1,9E-08	7,6E+05	7,1E+08		
102,24	116,78	0,015	2,2E-08	6,6E+05	7,1E+08		
116,78	131,31	0,015	4,0E-08	3,7E+05	7,1E+08		
131,31	145,84	0,015	6,2E-08	2,3E+05	7,1E+08		

Gambar 13. Laju Perambatan Retak Pembebanan Maksimum

Gambar 13 menunjukkan bahwa semakin besar nilai *stress intensity factor* maka nilai laju perambatan retak akan semakin besar. Hal tersebut telah sesuai dengan pernyataan Hukum Paris - Erdogan bahwa nilai laju perambatan retak berbanding lurus dengan nilai SIF.

F. Perhitungan Umur Kelelahan

Umur kelelahan berdasarkan pendekatan *fracture mechanics* dapat dihitung menggunakan persamaan berikut.

$$\mathbf{F} = \mathbf{N}\mathbf{t} \ \mathbf{x} \ \mathbf{T} \tag{13}$$

Dimana Nt adalah nilai total siklus dan T adalah periode gelombang dengan nilai 3.5 s. Dengan persamaan berikut didapatkan total umur kelelahan sambungan *bracket topside module* FPSO adalah 101,028 tahun. Tabel 9 menunjukkan pengaruh perambatan retak terhadap umur kelelahan

			Tabel 9.				
Umur Kelelahan Setiap Tahap Perambatan Retak							
No.	a (mm)	af (mm)	F	Tahun	% Tahun		
1	0,50	15,03	2,96E+09	93,827	92,872		
2	15,03	29,57	3,08E+09	97,722	96,727		
3	29,57	44,10	3,14E+09	99,721	98,706		
4	44,10	58,64	3,16E+09	100,241	99,221		
5	58,64	73,17	3,17E+09	100,541	99,517		
6	73,17	87,71	3,18E+09	100,739	99,714		
7	87,71	102,24	3,18E+09	100,848	99,822		
8	102,24	116,78	3,18E+09	100,942	99,915		
9	116,78	131,31	3,18E+09	100,995	99,967		
10	131,31	145,84	3,19E+09	101,028	100		

Umur Kelelahan - Kedalaman Retak

Gambar 14. Grafik Hubungan Umur dan Kedalaman Retak

Gambar 14 menunjukkan menunjukkan bahwa retak mulai merambat dengan laju perambatan yang relatif sangat tinggi, karena perambatan retak dari retak awal sampai 10% kedalaman kritis membutuhkan sampai 92% dari total umur kelelahan.

Sedangkan umur kelalahan berdasarkan metode *SN Curves* didaptakan dari pembagian umur desain dengan rasio kerusakan kumulatif. Nilai rasio kerusakan kumulatif (D) dapat dicari dengan persamaan (5),dengan parameter \bar{a} pada persamaan tersebut didapatkan dari perhitungan I/C pada persamaan (11), sehingga didapatkan parameter \bar{a} yaitu 5,5 x 10¹⁰ dan m = 3. Sedangkan untuk parameter bentuk Weibull (h) yaitu 1,25 didapatkan sesuai kondisi lingkungan. Setelah diperoleh nilai rasio kerusakan kumulatif (D), selanjutnya dilakukan perhitungan umur kelelahan dengan melakukan pembagian dari umur desain dengan rasio kerusakan kumulatif. Jika umur desain 20 tahun, maka umur kelelahan adalah 151,172 tahun.

Tabel 10. Perbandingan Hasil Umur Kele	lahan
Pendekatan	Tahuns
Fracture Mechanics	101,028
Cummulative Fatigue Damage	151,172

Tabel 10 menunjukkan perbedaan hasil umur kelelahan dengan dua pendekatan. Hasil umur kelelahan dengan

pendekatan *cummulative fatigue damage* dengan parameter \bar{a} pada *SN Curve* dihitung sesuai dengan pendekatan *fracture mechanics*. Dengan membandingkan hasil tersebut dan hasil umur kelelahan berdasarkan perambatan retak didapatkan terdapat penurunan umur sebesar 33%. Dengan umur desain 20 tahun dan umur kelelahan yaitu 101,028 tahun, maka nilai *safety factor* dari sambungan *bracket topside module FPSO* adalah 5,05.

V. KESIMPULAN

Pada lokasi tinjauan struktur pada analisis tegangan global, menunjukkan bahwa sambungan TS10 merupakan lokasi kritis yang selanjutnya digunakan untuk analisis umur kelelahan dan inspeksi. Hal ini terjadi karena sambungan TS10 memiliki letak paling dekat dengan *point load*.

Nilai *stress intensity factor* (SIF) retak awal dari sambungan *bracket topside module FPSO* yaitu 1,469 MPa \sqrt{m} dan pada kedalaman kritis nilai SIF yaitu 20,174 MPa \sqrt{m} . Hasil simulasi menunjukkan bahwa nilai SIF semakin besar seiring bertambahnya kedalaman retak.

Laju perambatan retak awal dari sambungan *bracket topside module FPSO* yaitu 2,2E-11 m/cycle dan pada kedalaman kritis laju perambatan retak pada yaitu 6,2E-08 m/cycle. Nilai laju perambatan tersebut relative sangat tinggi, karena perambatan retak dari retak awal sampai 10% kedalaman kritis membutuhkan sampai 92% dari total umur kelelahan. Hasil analisis perambatan retak juga menunjukkan semakin besar nilai *stress intensity factor* maka nilai laju perambatan retak akan semakin besar.

Umur kelelahan sambungan *bracket Topside Module FPSO* menggunakan pendekatan *fracture mechanics* yaitu 101,028 tahun. Sedangkan dengan menggunakan metode *cummulative fatigue damage* didapatkan umur yaitu 151,72 tahun. Hasil tersebut menunjukkan terdapat perbedaan umur kelelahan akibat retak awal sebesar 33%. Dengan umur kelelahan 101,028 tahun dan umur desain 20 tahun, didapatkan nilai *safety factor* pada sambungan *bracket Topside Module FPSO* adalah 5,05.

DAFTAR PUSTAKA

- L. O. Henriksen, X. Wang, and D. J. Liu, "Structural Design and Analysis of FPSO Topside Module Supports," in *SMTC*, 2008.
- [2] Det Norske Veritas, DNVGL-RP-C206: Fatigue Methodology of Offshore Ships. DNV GL - Maritime, 2015.
- [3] Det Norske Veritas, DNV-RP-C203: Fatigue Design of Offshore Steel Structure. DNV GL - Maritime, 2011.
- [4] I. A. Billal and M. Ayyub, *Reliability-Based Structural Design*. Master Set, 2003.
- [5] A. Salvadori and A. Carini, "Minimum Theorems in Incremental Linear Elastic Fracture Mechanics," *Int. J. Solids Struct.*, vol. 48, no. 9, pp. 1362–1369, 2011.
- [6] A. Almarnaess, Fatigue Handbook: Offshore Steel Structure, 3rd ed. Tapir Academic Press, 1985.
- [7] Y. Bai, Marine Structure Design. Elsevier, 2003.
- [8] G. Gourdet, "Connection Hull-Topsides: Principles, Designs and Returns of Experience," Bur. Verit. Tech. Pap., 2008.