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ABSTRACT RotaTeq (RV5) is a widely used live attenuated pentavalent rotavirus
(RV) vaccine. Although fecal shedding of RV vaccine strains persists for long time pe-
riods, it is unclear how each vaccine strain replicates in intestinal tissue and is ex-
creted in stool. To examine this issue, we established RV5 genotype-specific real-
time reverse transcription-PCR (RT-PCR) assays. Five real-time RT-PCR assays were
designed for the VP7 gene in genotypes G1, G2, G3, G4, and G6. All assays exhibited
excellent linearity, and the detection limit was 1 infectious unit (IU)/reaction for G2,
G4, and G6 and 10 IUs/reaction for G1 and G3. No cross-reactivity was observed
among G genotypes. The inter- and intra-assay coefficients of variation were less
than 3%. The assays were used to examine 129 stool samples collected from eight
infants who received RV5. In cases 1 and 2, who received three rounds of vaccina-
tion, RV shedding decreased gradually with the number of vaccinations. G1 and G6
shedding appeared to be predominant in comparison to shedding of the other ge-
notypes. Patterns of fecal shedding of the five genotypes of vaccine viruses differed
between the eight vaccine recipients. RV5 genotype-specific real-time RT-PCR assays
will be useful to study the molecular biology of RV5 replication in infants and exper-
imental animals.
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Rotavirus (RV), which belongs to the family Reoviridae, consists of 11 segments of
double-stranded RNA surrounded by a triple-layered capsid comprising a core,

inner, and outer capsid. Based on the antigenic and genetic features of the inner capsid
protein VP6, RV has been categorized into eight recognized groups (A to H) (1), and two
species were identified recently (I and J) (2, 3). Group A RVs are a leading cause of
gastroenteritis in children and causes substantial morbidity and mortality worldwide
(4). For the majority of human group A RVs (RVAs), three genogroups have been
established: two major genogroups represented by the reference strains Wa (geno-
group 1 genes) and DS-1 (genogroup 2 genes) and one minor genogroup represented
by reference strain AU-1 (genogroup 1 genes) (5, 6). The genotype of RV is determined
based on the sequences of the VP7 and VP4 genes, which define the viral G and P
genotypes, respectively (7). Four strains, G1P[8], G2P[4], G3P[8], and G4P[8], are pre-
dominant worldwide, including in Latin America. Thus, four common G types (G1, G2,
G3, and G4) in conjunction with P[8] or P[4] represent over 88% of the strains analyzed
worldwide. In addition, genotype G9 viruses associated with P[8] or P[6] were shown to
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have emerged as the fifth globally important G type, with a relative frequency of 4.1%
(8, 9). Because several G-P combinations, such as G1P[8], G2P[4], G3P[8], G4P[8], and
G9P[8], are commonly prevalent around the world (10, 11), it is thought that the host
immune response against these five genotypes plays important roles in preventing
severe RV gastroenteritis (RVGE).

Currently, there are two commercially available live attenuated RV vaccines, Rotarix
(RV1; GlaxoSmithKline, Rixensart, Belgium) and RotaTeq (RV5; Merck and Co., White-
house Station, NJ, USA) (12). RV1 is a monovalent vaccine derived from the most
common human RV genotype (G1P[8]) attenuated by serial passage in cell culture (13).
It was anticipated that the host immune response to RV1 administration could confer
cross-protection against other common genotypes of RV. On the other hand, RV5 is a
pentavalent human-bovine RV reassortant vaccine that contains the five most prevalent
genotypes (G1, G2, G3, G4, and P[8], which is carried as G6P[8]) and was designed to
induce type-specific protective immunity against these common strains in children (14).
Although the conceptual mechanism for preventing severe RVGE differs between the
two RV vaccines, previous studies demonstrated that both vaccines are generally safe
and equally efficacious in clinical trials (13, 15, 16). Both are live attenuated vaccines,
and vaccine viruses are excreted into stool after vaccination (13, 16–24). Additionally,
transmission of vaccine virus strains from vaccine recipients has been observed in
healthy children (15). Although RV5 vaccine shedding was examined by Vesikari et al.
(16), the kinetics of fecal shedding of each genotype remain unclear.

Molecular methods for RV genotyping have been developed using microarray
hybridization (25), restriction fragment length polymorphism (26), one-step or two-step
conventional reverse-transcription PCR (RT-PCR) assay followed by gel-based genotyp-
ing of PCR amplifications (27–29), and nucleotide sequencing (30). Real-time RT-PCR
assays have several advantages, including greater sensitivity than the conventional
nested PCR (31), higher throughput, reduced turnaround time, and the ability to
quantify viral RNA. In this study, we developed RV5 genotype-specific real-time RT-PCR
assays to discriminate five different VP7 genotypes of RV5 and examined the kinetics of
fecal shedding of these five genotypes in vaccinated infants.

MATERIALS AND METHODS
Viruses and RNA extraction. Commercially available RV5 was used as a vaccine strain. Human RVA

strains KU G1P[8], DS-1 G2P[4], YO G3P[8], and ST3 G4P[6] and bovine RVA strain WC3 G6P[5] were used
as representative wild-type viruses for the corresponding RV genotypes. These RVA strains were
propagated as described previously (32). Briefly, RVA strains were pretreated with trypsin (type IX, from
porcine pancreas) (10 �g/ml; Sigma-Aldrich, St. Louis, MO, USA) for 30 min at 37°C and propagated in
MA104 cells in Eagle’s minimum essential medium (Nissui, Tokyo, Japan) without fetal calf serum but
containing trypsin (1 �g/ml).

The supernatant of viral cultures was used for RNA extraction. RNA was extracted from 140 �l of RV5
vaccine suspension, each wild-type strain, and stool samples using a QIAamp viral RNA minikit (Qiagen,
Valencia, CA, USA). After extraction, RNA was stored at �80°C.

Primers, probes, and conditions for the genotype-specific real-time RT-PCR assays. Locations
and sequences of primers and probes for genotype-specific real-time RT-PCR assays are shown in Table
S1 in the supplemental material. The primers and probes were designed to discriminate between G1, G2,
G3, G4, and G6 using PrimerQuest (Integrated DNA Technologies, Coralville, IA, USA) based on the
reference sequences of vaccine strains (GenBank accession numbers GU565057.1 for G1, GU565068.1 for
G2, GU565079.1 for G3, GU565090.1 for G4, and GU565046.1 for G6). To increase the sensitivity of the
assays, ZEN double-quenched probes (Integrated DNA Technologies) were used.

Genotype-specific real-time RT-PCR assays were carried out using a TaqMan RNA-to-CT 1-Step kit
(Applied Biosystems, Foster City, CA, USA). Single-well denaturation, reverse transcription, and amplifi-
cation were performed on a StepOne real-time PCR system (Thermo Fisher Scientific, Waltham, MA, USA)
in standard mode. PCR conditions were as follows: RT step for 15 min at 48°C, DNA polymerase activation
and RT inactivation for 10 min at 95°C, and 45 cycles of denaturation for 15 s at 95°C, primer annealing
for 30 s (G1, at 56°C; G2, no step; G3, at 51°C; G4, at 50°C; G6, at 62°C), and extension/emission of
fluorescence for 60 s at 60°C. The real-time RT-PCR mixture (25-�l total volume) contained 12.5 �l of 2�
RT-PCR mixture, 5 �l of template RNA, 40� TaqMan RT enzyme mixture, 200 nM probe, 400 nM primer,
100� 6-carboxy-X-rhodamine (ROX) reference dye, and nuclease-free water. All samples were subjected
to heat denaturation at 95°C for 5 min.

Standard curves and positive control. RNA extracted from RV5 was used to prepare standard
curves for each genotype-specific real-time RT-PCR assay.
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According to the prescribing information, RV5 contains �2.2 � 106 infectious units (IU) of G1, �2.8 � 106

IU of G2, �2.2 � 106 IU of G3, �2 � 106 IU of G4, and �2.3 � 106 IU of P1A[8] in 2 ml of vaccine solution.
Serial dilutions of each genotype were used to make each standard curve for real-time RT-PCR assays. RNA
extracted from RV5 was used as a positive control for all genotype-specific real-time RT-PCR assays.

Reproducibility and repeatability of genotype-specific real-time RT-PCR assays. To assess the
reproducibility (intra-assay variation) and repeatability (interassay variation) of genotype-specific real-
time RT-PCR assays, duplicate experiments were performed with each wild-type strain. Reproducibility
was determined by measuring the samples five times on separate days within the same experiment (to
assess the intra-assay variation) and between four different assays (interassay variation). The coefficient
of variation (CV) of the threshold cycle (CT) value was defined as the ratio of the standard deviation to
the mean.

Clinical samples. A total of 129 stored stool samples serially collected from eight infants (cases 1 to
8) who received RV5 in a previous clinical study approved by our institutional review board (approval no.
14-140) were used in experiments aimed at evaluating the clinical reliability of the assays. In cases 1 and
2, stool samples were collected for 14 days after the first and second vaccination and for 11 days (case
1) or 8 days (case 2) after the third vaccination in the foster home. Cases 3 to 8 were patients hospitalized
in a neonatal intensive care unit (NICU) who received RV5 during hospitalization. The stool samples were
collected for 9 days only after the first vaccination. Specimens were stored at �20°C until the analysis.
Ten percent suspensions (1 ml) of each stool sample were prepared in physiological saline solution.
Alternatively, swab samples were rinsed in 200 �l of physiological saline solution. Each suspension was
clarified by centrifugation for 20 min at 4,000 � g, and 140 �l of the supernatant was used for RNA
extraction.

RESULTS
Linearities and sensitivities of RV5 genotype-specific real-time RT-PCR assays.

The linearity and sensitivity of RV5 genotype-specific real-time RT-PCR assays were
evaluated using serial dilutions of RNA extracted from RV5. Excellent linearity was
obtained (date not shown), and a high correlation was obtained between the concen-
tration of the diluted RNA and the CT value of each genotype in all genotype-specific
real-time RT-PCR assays. Detection limits were 1 IU/reaction for G2, G4, and G6 and 10
IU/reaction for G1 and G3.

Specificity of RV5 genotype-specific real-time RT-PCR assays. Although only the
vaccine strain was amplified by the G2-specific real-time RT-PCR assays, both vaccine
and wild-type genotypes were coamplified by the other four genotype-specific real-
time RT-PCR assays (Fig. 1). In each G-specific real-time RT-PCR assay, only the matched

FIG 1 Specificity of one-step real-time RT-PCR assay for discrimination of five specific G genotypes of RotaTeq. �, RNA extracted from RotaTeq; Œ, RNA extracted
from a G genotype-specific rotavirus wild-type strain in the corresponding real-time RT-PCR; �, RNA extracted from a rotavirus wild-type strain of another G
genotype in the corresponding real-time RT-PCR.
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wild-type strain was specifically amplified. So, no cross-reaction between the other G
genotypes was observed in any of the genotype-specific real-time RT-PCR assays.

Intra- and interassay variability of RV5 genotype-specific real-time RT-PCR
assays. To evaluate the reproducibility of RV5 genotype-specific real-time RT-PCR
assays, we evaluated inter- and intra-assay variability. To determine the intra-assay
variability, the CT values of the standard curves were measured in duplicate, and the
mean CT values and coefficients of variation were calculated on five consecutive days
(Table 1). To evaluate the reproducibility of the methods, the coefficient of variation
was defined as the ratio of the standard deviation to the mean. As shown in Table 1,
the coefficients of variation of intra-assay experiments were less than 2.8% for five G
genotypes. To evaluate reproducibility between the assays, CT values were measured in
quadruplicate (Table 2). As shown in Table 2, the coefficients of variation of the
interassay examination were less than 2.9% for five G genotypes.

Reliability of assays for analyzing clinical samples. To examine replication of the
five different genotypes after vaccination, we analyzed stool samples collected from
vaccine recipients using the RV5 genotype-specific assays. In case 1, fecal shedding of
G6 predominated after the first vaccination, whereas shedding of G1 predominated
after the second and third vaccinations (Fig. 2A). In case 2, both G1 and G4 shedding
predominated after the first vaccination, and G1 shedding predominated after the
second vaccination (Fig. 2B). In both cases 1 and 2, fecal shedding of vaccine viruses
decreased as the number of vaccinations increased. As shown in Fig. 3, the predomi-
nantly shed genotypes were G3 in case 3, G6 in case 4, G1, G2, and G6 in case 5, G1 and
G4 in case 6, and G1 and G6 in case 8. Fecal shedding of all five genotypes was low in
case 7.

DISCUSSION

Fecal shedding of vaccine viruses can cause transmission of vaccine virus(es) from
vaccinated children to unvaccinated contacts, potentially inducing herd immunity. On
the other hand, such transmission poses a risk of vaccine-derived disease in immuno-

TABLE 1 Intra-assay variability of real-time RT-PCR assays for discrimination of five specific G genotypes of RotaTeq

Amt of RNA
(IU/reaction)

Intra-assay variability by genotypea

G1 G2 G3 G4 G6

CT SD CV (%) CT SD CV (%) CT SD CV (%) CT SD CV (%) CT SD CV (%)

1 ND ND ND 39.11 0.47 1.2 ND ND ND 41.20 0.72 1.7 37.31 0.57 1.5
10 33.32 0.61 1.8 35.66 0.53 1.5 34.34 0.64 1.9 36.76 0.46 1.3 34.08 0.73 2.1
1 � 102 29.46 0.40 1.4 31.82 0.41 1.3 30.51 0.67 2.2 32.65 0.44 1.4 30.45 0.73 2.4
1 � 103 25.90 0.72 2.8 28.18 0.73 2.6 26.49 0.46 1.7 28.45 0.70 2.5 26.53 0.48 1.8
1 � 104 21.93 0.22 1.0 24.47 0.47 1.9 22.70 0.38 1.7 24.35 0.33 1.3 22.43 0.26 1.2
1 � 105 18.29 0.23 1.3 20.79 0.47 2.3 19.09 0.28 1.5 20.18 0.52 2.6 18.89 0.36 1.9
aTo determine intra-assay variability, mean cycle threshold (CT) values and coefficients of variation (CVs) were calculated on five consecutive days. Standard samples
serially diluted from RotaTeq were used. The CV of the CT value is expressed as the ratio of the standard deviation (SD) and the mean. IU, infectious units; ND, not
detected.

TABLE 2 Interassay variability of real-time RT-PCR assay for discrimination of five specific G genotypes of RotaTeq

Amt of RNA
(IU/reaction)

Interassay variability by genotypea

G1 G2 G3 G4 G6

CT SD CV (%) CT SD CV (%) CT SD CV (%) CT SD CV (%) CT SD CV (%)

1 ND ND ND 38.96 0.74 1.9 ND ND ND 39.25 0.16 0.4 39.25 0.67 1.7
10 31.14 0.22 0.7 35.33 0.49 1.4 34.82 0.46 1.3 35.24 0.38 1.1 34.67 0.31 0.9
1 � 102 28.15 0.13 0.5 31.75 0.57 1.8 31.24 0.22 0.7 31.87 0.18 0.6 31.23 0.12 0.4
1 � 103 24.56 0.06 0.3 28.30 0.23 0.8 26.97 0.16 0.6 27.45 0.73 2.7 27.57 0.14 0.5
1 � 104 20.54 0.02 0.1 24.25 0.38 1.6 23.29 0.16 0.7 23.40 0.50 2.1 23.65 0.06 0.3
1 � 105 16.79 0.03 0.2 20.90 0.39 1.9 19.02 0.03 0.2 18.90 0.54 2.9 20.09 0.01 0.1
aTo determine interassay variability, standard samples serially diluted from RotaTeq were used. Cycle threshold (CT) values were measured in quadruplicate. The
coefficient of variation (CV) of the CT value is expressed as the ratio of the standard deviation (SD) and the mean. IU, infectious units; ND, not detected.
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compromised contacts (22, 33). Reassortant strains derived from RV5 or RV1 are
associated with acute gastroenteritis in vaccinated (34, 35) and unvaccinated children
(36). Moreover, previous studies suggested that widespread use of the RotaTeq vaccine
has led to the introduction of vaccine genes into circulating human RVs (37, 38).
Therefore, characterization of the RV genotype of circulating RVA strains is important
also in order to distinguish between wild-type and vaccine strains or vaccine-
reassortant strains (37, 38). In this study, we developed RV5 genotype-specific real-time
RT-PCR assays that can discriminate and quantify each genotype and evaluated their
reliability for analysis of clinical specimens.

The detection limits of RV5 genotype-specific real-time RT-PCR assays were 1
IU/reaction for G2, G4, and G6, and 10 IU/reaction for G1 and G3, equivalent to that of
a previously reported nonspecific real-time RT-PCR method for detecting RV (39) that
was considered sufficiently sensitive for monitoring fecal shedding of vaccine viruses
using clinical specimens.

Except for the G2-specific real-time RT-PCR assay, the assays amplified both the
vaccine and wild-type strains of each G genotype (Fig. 1). However, no cross-reactivity
among the genotypes tested was detected. Therefore, these methods can reliably
discriminate between the five different genotypes contained in the RV5 vaccine,
despite the cross-reaction between wild-type and vaccine strains in the G1-, G3-, G4-,
and G6-specific real-time RT-PCR assays. Additionally, based on the intra- and interassay
variability tests in the initial validation analysis, these assays are highly reproducible and
suitable for the examination of clinical specimens.

As shown in Fig. 2, all G genotype RV loads decreased gradually with the number of
vaccinations. RV IgA antibodies in intestinal tissue play an important role in protective
immunity against RV disease. Moreover, we previously reported that fecal RV RNA load
decreases gradually as the number of vaccinations increases (15). Naturally acquired RV

FIG 2 Excretion of five different rotavirus strains after RotaTeq vaccination in cases 1 and 2, which
completed three rounds of vaccination. Predominant shedding of genotypes is shown as follows: blue, G1;
brick red, G2; green, G3; purple, G4; turquoise, G6.
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infection induces immunity against RV and decreases the severity of the subsequent RV
infection (40). A large cohort study of the natural course of RV infection, performed in
Mexico, revealed that the subsequently identified genotypes tend to be different from
the previously infecting genotype (40). Interestingly, the RV genotypes predominantly
excreted in cases 1 (G6) and 2 (G4) at the time of the first vaccination were barely
detected in fecal excretion after the second vaccination. Thus, our data support the idea
of genotype-specific protective immunity, as proposed based on a previous clinical
study (40). To confirm this hypothesis, future studies should test the association
between fecal shedding of an RV genotype and the genotype-specific neutralizing
antibody response.

In this study, among 12 separate administrations of RV5, G1 genotype shedding was
predominant in seven vaccinations, and G6 genotype shedding was predominant in

FIG 3 Excretion of five different rotavirus strains after RotaTeq vaccination in cases 3 to 8. Samples from these six cases
were collected only after the first vaccination, and predominant shedding of genotypes is shown as follows: blue, G1; brick
red, G2; green, G3; purple, G4; turquoise, G6.
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four. Thus, shedding of G1 and G6P[8] genotypes appeared to predominate over
shedding of other genotypes (Fig. 2 and 3). According to previous preclinical trials
aimed at evaluating the safety and efficacy of RV5, neutralizing antibody responses
against G1 and G6 were superior to those against G2, G3, and G4, and vaccine efficacies
were almost equivalent among the five genotypes (16). The present findings, together
with data from previous preclinical trials (41, 42), suggest that the G1 and G6P[8]
genotypes can proliferate predominantly in vivo and may induce a strong immune
response against G1, G6, and P[8] genotypes in vaccinated infants. Future studies
should measure genotype-specific neutralizing antibody titers and other immunolog-
ical factors to determine whether the level of fecal shedding of RV is correlated with the
immune response (43–46).

Although the number of cases in this study was limited, patterns of fecal shedding
of the five different genotypes of vaccine viruses appeared to differ among the vaccine
recipients. For example, in case 7, shedding of all five RV vaccine strains was limited.
Various factors such as breast feeding and maternal antibodies may interfere with the
host immune response. Breast milk contains RV-specific antibodies and other neutral-
izing factors (47–50), including maternal antibody (51, 52), which may result in sup-
pression of RV vaccine proliferation in intestinal tissue. Vaccine efficacies are lower in
developing countries (53, 54) than in developed countries (55, 56). Therefore, in the
future, it will be important to elucidate the precise mechanisms controlling vaccine
virus replication in intestinal tissue and the host immune response against RV.

In summary, we developed RV5 genotype-specific real-time RT-PCR assays capable
of measuring genotype-specific viral shedding in RV5-vaccinated infants. According to
our analysis of clinical samples, it is likely that shedding of G1 and G6 is predominant
in vaccinated infants. Additionally, because patterns of fecal shedding of the five
different genotypes of RV5 appeared to differ among the vaccine recipients, some
individual factors may contribute to control of vaccine virus replication in intestinal
tissue. The novel RV5 genotype-specific real-time RT-PCR assays should be useful for
high-throughput molecular screening of stool samples. Furthermore, the assays could
be a valuable tool for the study of the molecular biology/replication of RV5 compo-
nents in vaccinated infants and also in suitable animal models.

SUPPLEMENTAL MATERIAL

Supplemental material for this article may be found at https://doi.org/10.1128/JCM
.00035-18.
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