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Abstract

Enterprise imaging has channeled various technological innovations to the field of clinical
radiology, ranging from advanced imaging equipment and postacquisition iterative reconstruction
tools to image analysis and computer-aided detection tools. More recently, the advancements in
the field of quantitative image analysis coupled with machine learning-based data analytics,
classification, and integration have ushered us into the era of radiomics, which has tremendous
potential in clinical decision support as well as drug discovery. There are important issues to
consider to incorporate radiomics as a clinically applicable system and a commercially viable
solution. In this two-part series, we offer insights into the development of the translational pipeline
for radiomics from methodology to clinical implementation (Part 1) and from that to enterprise
development (Part 2).

Corresponding author and reprints: Faiq Shaikh, MD, Institute of Computational Health Sciences, University of California San
Francisco, San Francisco, CA, USA; faiq.shaikh@hotmail.com.
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INTRODUCTION

Radiomics can be defined as the process of transferring the radiology interpretation
knowledge from humans to machines by way of extracting large amounts of quantitative
features from medical images using data characterization and quantification techniques to
get insights into the structure, behavior, and therapy response profile of the disease entity
being studied. Some of the better developed radiomic methodologies exist in the realm of
lung cancer diagnosis and prognostication, as well as radiation therapy planning.

We define translational radiomics as a process of converting the basic radiomic
methodologies into evidence-based clinically applicable models that then undergo the steps
of platform standardization, algorithm integration, and applied business intelligence to create
a commercialized product for mainstream use.

In this article (Part 1), we identify the steps involved in the process of translating the
radiomics methodology into a clinical application, which include the four foundational
components (clinical knowledge, radiomics technique, information architecture, and
machine learning architecture), as well as the translational pipeline steps (systems thinking,
data convergence, clinical workflow integration, and radiologist feedback and assessment;
see Fig. 1).

INITIATING THE TRANSLATION—DEFINING ENTRY POINTS

Clinical Knowledge Transfer

Radiomics is a result of significant advancements made in clinical, computational, and
applied physics within the realm of medical imaging. As the current imaging modalities
become more sophisticated in deciphering more detailed anatomic and functional details,
such as functional MRI, newer modalities and techniques, such as immuno-PET and
bioluminescence, have made it possible to study the complex subcellular process involved in
pathophysiology. As the clinical knowledge of interpreting and analyzing these new
techniques expands, it is important to keep in mind their translatability to artificial
intelligence—based methodologies such as radiomics and imaging genomics.

On one hand, any question posed as potentially addressed through a radiomics approach
must have input from those most knowledgeable of the disease process and its natural
evolution (eg, cardiologist, neurologist, or oncologist), those most familiar with its physical
manifestations on pathology (eg, a pathologist with specialization in cardiovascular,
neurologic, or oncologic processes), and those most cognizant of its manifestations on
imaging, including subspecialty radiologists. On the other hand, radiomics is aligned with
other “omic” techniques; it identifies features that are abstract and outside of the clinician’s
everyday experience and relates those features to some clinically meaningful outcome or
prediction. There is a need for these highly specialized approaches to reconcile with a deeper
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understanding of disease entities from a genotype-phenotype relationship point of view,
which is being recognized as a model to associate clinical manifestation of disease with the
molecular processes that are informed by the genomic signature (see Fig. 2). The final
workflow infrastructure may well be too multispecialty to reside entirely within one
department. Newer sections and divisions for computational medicine may best serve as
hubs for these mtegrated systems driving precision medicine.

Radiomics Methodology Development

There is now an increasing level of understanding of the biologic and microstructural
environment of the tumors (intratumor heterogeneity) and their relationship with the
spectrum of tumor behaviors [1]. The concept of intertumor heterogeneity sheds light on the
variation in the genetic and phenotypic profile between individuals with the same tumor type
[2]. Based on these factors, it is becoming increasingly important to develop and validate
algorithms that take into account both intraand intertumor heterogeneity. This is particularly
important when evaluating treatment response in the setting of metastatic disease. It is
necessary to use that knowledge to select the most relevant radiomic features that correlate
best with the underlying tumor signature, and although some have argued that it may replace
the need for biopsy in some cases (neural involvement), it will largely serve the purpose of
significantly improving the specificity of imaging modalities and provide a deeper, richer,
more nuanced, and incredibly useful understanding of the disease process and how to best
treat 1f.

The core components of the radiomics technique include extracting raw image data sets,
image segmentation, lesion detection, 3-D contouring, feature extraction and classification,
statistical analysis using covariance matrices, and gleaning inferences for clinical decision
support systems or drug discovery [3]. To increase the efficiency and fidelity of a radiomics
technique, one has to understand which structural or metabolic imaging biomarkers are the
best surrogate end points for the disease progression and outcomes. It is also imperative to
perform robust comparative analyses between manual versus semi-automated versus
automated tumor volu-metric segmentation to establish standardized protocols for radiomics
application.

Information Architecture

PACS and vendor neutral archives mainly provide the architectural framework for a legal
record and one-off reference and are designed to function for a clinical workflow. Current
architectures are not conducive to research projects, and burgeoning image analysis
techniques such as radiomics that deal with big data are creating an immense need for a
formidable yet agile framework. Research also necessitates a consistent ontology for
identifying disease cohorts by phenotype and for handling increasingly international
collaborations. Given the large size of imaging data sets, it is more efficient to transport
modeling and feature extraction code than to move exceedingly large data sets. Cloud
computing, although enhancing scalability, requires moving large data sets that then still
reside 1n one or more data centers. “Fog computing” refers to extending cloud computing to
the edge of an enterprise’s network, to facilitate the operation of computing, storage, and
networking services between end devices and cloud computing data centers, and it should be
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considered whereby petabytes of imaging data may stay on premises whereas feature
extraction methods and results are shared among collaborating researchers [4]. Fog
computing may also aid in meeting complex regulatory data compliance requirements in
cross-jurisdictional commercial deployments and research collaborations [5].

Machine Learning Considerations

Beyond the development of novel feature extraction methods, success in the development
and sharing of machine learning models in radiomics may be improved by incorporating the
following practices: ontological agreement, standard software tool sets shared via
containerization methods for reproducible research (which is a lightweight alternative to full
machine virtualization that involves encapsulating an application in a container with its own
operating environment), and, ideally, computational experiment reusability. The integration
of independently developed data sets across disciplines and institutions is a significant
challenge [6]. To address this challenge, standard ontologies are employed to avoid extensive
translational work in the integration of data from disparate sources. Imaging ontologies
include annotation models for labeling regions of interest [6] as well as standard naming and
formats for macroscopic, microscopic, and molecular data elements [6]. Reproducibility is
regarded as a fundamental requirement for the proper judgment of scientific claims. There is
a spectrum of reproducibility ranging from publications without accompanying data or code
to fully linked data and code for full replication. To meet the gold standard of full
replication, a containerization method, such as Docker, can be valuable but does not
necessarily share the composable parts of'a machine learning pipeline. To enable other
researchers to follow each step of the process clearly, the sharing of research objects, which
in this case means radiomics algorithms developed for specific feature extraction from a
specific modality, with stepwise workflow facilitates the reusability of component parts of
the analysis and modeling [7].

THE TRANSLATION PIPELINE

Systems Thinking Considerations

Systems thinking involves studying a system by examining the linkages and interactions
between the components that comprise its entirety [8]. It may be a novel but nevertheless
important exercise to consider the principles of systems thinking as applied to radiomics, to
organize, assess, and optimize its translation and prevent system failures. Factors in systemic
failure may include confused goals, weak systemwide understanding, flawed design,
inadequate feedback, poor cooperation, lack of accountability, and so on [8]. In terms of
radiomics, examples for these include confused goals (poorly conceived clinical decision
support systems application), weak systemwide understanding (underscoring the importance
of a well-defined strategy for the translational process), flawed design (underestimated data
convergence challenges), inadequate feedback (not adequately consulting with radiologists
or referring physicians), or poor cooperation (lack of liaison between computational and
medical experts).

Another important thing to ask is, what binds systems together rather than functional silo
performance? Understanding and anticipating how the translational process for radiomics 1s
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intended to work, how it actually works, and how it may buckle under pressure can prevent
system failure and ensure successful productization of radiomics solutions instead. Once
identified, these systems checkpoints can be standardized across institutions and practices
for streamlined data collection, quality assurance, and reproducibility. Currently, there are
attempts to identify value-based metrics across various types of imaging suites to help
establish systems thinking-based radiology performance assessment methods. Similar
approaches in radiomics will help standardize it as a reliable methodology.

Convergence of Data From Other “Omics”

As diagnostic approaches get more sophisticated, they are able to generate large data sets
that contain valuable information regarding underlying disease processes. This trend has
been seen across various aspects of disease discovery and understanding, ranging from
genomic determinants (genomics), transcribed ribonucleic acid (transcriptomics), protein
expression (proteomics), metabolic processes (metabolomics), and structural or functional
phenotypic manifestation (radiomics; see Fig. 2). As these data sets expand, development of
tools for data mining and feature classification enable the important task of finding
correlations between these datasets. Empowered by machine learning and advanced data
mining tools, this process provides tremendous insights into otherwise cumbersome data
sets. Currently, there is no platform that has the capability to incorporate large data sets
being derived from advanced methodologies of radiomics and genomics and inferring trends
and patterns within and correlations between them. Developing such a platform, which also
has the capability of incorporating validated crowdsourced algorithms for radiogenomic
assessment, will be the single most important facilitating factor for precision medicine.

Radiology Workflow Integration (Operational Checkpoints)

The clinical imaging worktlow should be customized and optimized for each working
environment. A key portion of the translation process involves delivering the machine
learning algorithms to the point of care whereby there is seamless implementation
throughout the Radiology Information System (RIS)/PACS. This seamless workflow can
also be achieved by avoiding disruption of workflow, using separate workstations, and
reducing the need for the radiologist to work in different locations. Tight integration with
PACS is necessary to function as an effective clinical decision support tool, or radiologists
will be less likely to use these tools.

Ideally, communication with vendors to integrate machine learning tools with adequate
superuser training will allow these solutions to thrive in the long term, thereby increasing
radiologist compliance. There needs to be a focus on identifying and decreasing pain points
of the radiologist. Digital dashboard implementation may help radiologists become aware of
the various unique tools and quantifiable data that will allow them to better understand the
disease process and give a more nuanced report with greater confidence [9,10].

Some operational considerations include radiomics software integrated or interfaced with
RIS/PACS, network bandwidth requirements, DICOM compliance and support, disaster
recovery solutions, third-party vendor or Application Program Interface (API) interfaces,
and length of training for superusers and users.

J Am Coll Radiol. Author manuscript; available in PMC 2020 August 20.
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Radiologist Use Assessment and Feedback

To ensure user (imager) engagement, it is essential that a user-friendly pipeline is created
that can be integrated into routine clinical practice. Furthermore, as radiomics outcomes
become more validated, we need to focus on ways to make the results available to clinicians
as part of standard clinical reports that are nuanced and in tune with the clinical scenario at
hand so that they best guide clinical decision making.

A marketplace that acts as a radiomics hub should be established to allow for multi-
institutional collaboration and feedback. This marketplace would allow users to share
imaging and pathological data sets to augment the discovery of clinically viable radiomics
tools. This platform would also allow collaborators to share data about diseases that are not
prevalent at any one institution. This real-time collation and curation of imaging and
pathological data could significantly catalyze radiomics discoveries.

CONCLUSION

There are several key steps in the translation of radiomics techniques to clinically impactful
solutions, which we have outlined along with their considerations. Radiomics, if translated
optimally, has the potential to drive imaging-based precision medicine. Further translation to
enterprise is still a novel concept, and we will discuss in the Part 2 of this series a framework
that identifies its unique challenges and attempts to provide a pathway to mainstream
application that improves outcomes.
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TAKE-HOME POINTS

Radiomics is an emerging methodology with significant potential in driving
precision medicine.

The strategy for the translation of radiomics includes identifying entry points
of clinical knowledge, methodology and technique, information framework,
and the machine learning component.

The first phase of the translational process entails considerations for systems
thinking, data integration and mining, workflow integration, and associated
radiologist feedback.

Developing a multi-omics platform that has the capability of incorporating
validated crowdsourced algorithms for radiogenomic assessment is critical for
advancement of precision medicine.

A radiomics hub or marketplace is needed for multi-institutional collaboration
and feedback to promote data sharing in data-intense radiomics discovery.

J Am Coll Radiol. Author manuscript; available in PMC 2020 August 20.
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