Lehigh Valley Health Network **LVHN Scholarly Works**

Department of Medicine

Are Cardiovascular Risk Factors Responsible for the U-shaped Relationship Between Running and Longevity? The MASTERS Athletic Study

Adrian C. Bell DO Lehigh Valley Health Network, Adrian_C.Bell@lvhn.org

Courtney Bennett DO Lehigh Valley Health Network, Courtney_E.Bennett@lvhn.org

Martin E. Matsumura MD Lehigh Valley Health Network, Martin E.Matsumura@lvhn.org

Follow this and additional works at: https://scholarlyworks.lvhn.org/medicine

Part of the Cardiology Commons, and the Medical Sciences Commons

Published In/Presented At

Bell, A., Bennett, C., & Matsumura, M. (2014, March 29-31). Are cardiovascular risk factors responsible for the u-shaped relationship between running and longevity? the MASTERS athletic study. Poster presented at: The American College of Cardiology (ACC.14) 63rd Annual Scientific Session & Expo, Washington, DC.

This Poster is brought to you for free and open access by LVHN Scholarly Works. It has been accepted for inclusion in LVHN Scholarly Works by an authorized administrator. For more information, please contact LibraryServices@lvhn.org.

Are Cardiovascular Risk Factors Responsible for the U-shaped Relationship Between Running and Longevity? The MASTERS Athletic Study

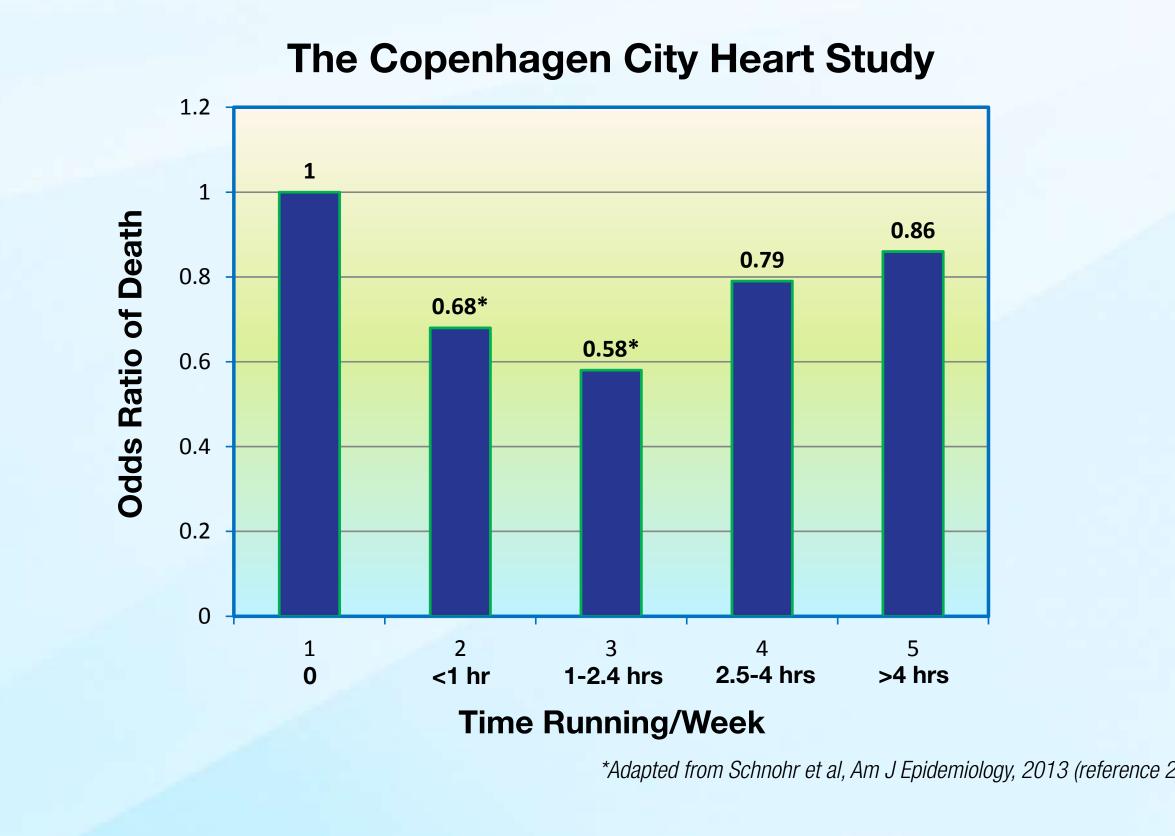
Adrian Bell DO, Courtney Bennett DO, Martin Matsumura MD Lehigh Valley Health Network, Allentown, Pennsylvania

Background:

- Recent studies have noted a U-shaped relationship between running and longevity. While running was generally associated with increased life span, the subgroup who reported training on average >20 miles or >2.5hours² per week did not experience significantly longer lifespan vs non-runners. It is hypothesized that this U-shaped mileage/longevity relationship is due to detrimental cardiac effects of higher mileage training.
- Detrimental effects that have been described are micro-tears of the atria and ventricles due to acute volume overload associated with chronic vigorous exercise.¹
- These micro-tears are thought to be a precursor to myocardial fibrosis and remodeling with a reduction in cardiac function and efficiency, and ultimately a substrate for malignant ventricular arrhythmias. Imaging studies have demonstrated variable rates of fibrosis, possibly as a result of these processes.
- In the present study we examined the hypothesis that confounding factors associated with longer distance training, specifically differences in cardiac risk factors or medication use, account for this U-shaped dose-response curve of running and longevity. Included in these confounders is the use of nonsteroidal anti-inflammatory drugs (NSAIDs), which has been the topic of recent studies examining an association with increased cardiovascular events in runners and the general public.³

Methods:

- The MASTERS Athletic Study is a longitudinal, web based study of training and health habits of runners ages 35 and older.
 Participants were stratified by self-reported average weekly mileage into those running < 20 and those running >20 miles/week.
- Comparisons between the low- and high-mileage groups included typical cardiac risk factors and use of both protective (aspirin) and potentially harmful (NSAIDs) medications.


Results:

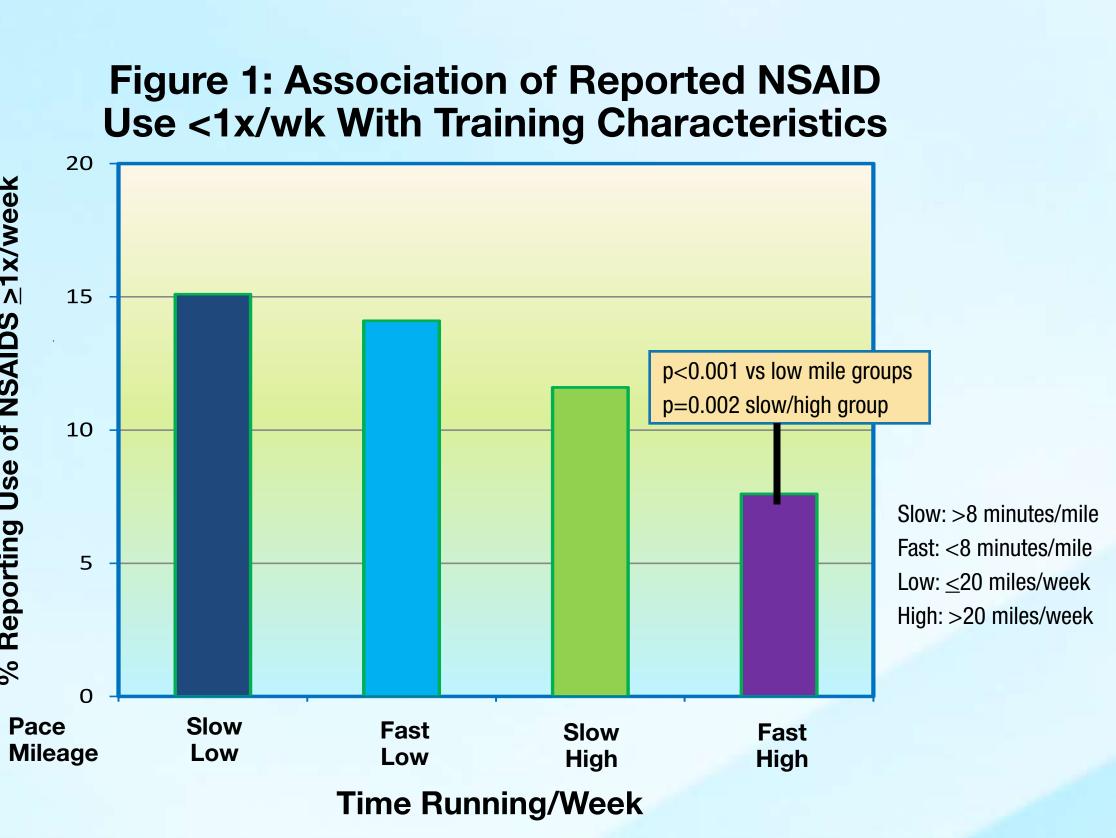

- Of 3,875 respondents, 2,704 (69.8%) reported training >20miles/wk. Comparisons of weekly mileage and potential confounders
 are reported in Table 1.
- Table 2: Prevalence of potential confounders of CAD risk factors and medication use by low and high mileage runners.
- Table 3: Training mileage and intensity comparing low and high mileage runners.
- Figure 1: Percentage of runners reporting use of NSAIDs> 1x/week stratified by training distance/pace groups

Table 1. Baseline Participant Characteristics				
and Reported Training	Intensity			
Mean age, years (Range)	46.6 (35-85)			
Sex, male (%)	66.7			
Average miles/week (%)				
<10	168 (4.3)			
11-20	1003 (25.9)			
21-30	1318 (34.0)			
31-40	769 (19.9)			
41-50	359 (9.3%)			
Average training pace, minutes/mile (% total)				
<6min/mile	19 (0.5)			
6-7 min/mile	165 (4.3)			
7-8 min/mile	881 (22.8)			
8-9 min/mile	1093 (28.3)			
10-11 min/mile	460 (11.9)			
11-12 min/mile	202 (5.2)			
>12 min/mile	102 (2.6)			
Family History of CAD	1566 (40.7)			
Hypertension	825 (21.5)			
Rx'ed HTN Meds	271 (7.0)			
Hypercholesterolemia	858 (22.6)			
Rx'ed Cholesterol Meds	246 (6.4)			
Diabetes Mellitus	47 (1.2)			
Use Analgesic Medicines for Running-related Pain	1393 (36.0)			
Use Aspirin Daily	208 (5.4)			

Table 2. Potential Confounders and Reported Medica Follow-up				
	Low Mileage	High Mileage	p-Value	
Demographics				
Median age, years (25-75%)	45 (40-52.2)	45 (40-52)	0.895	
Mean age, years (SD)	46.5 (8.62)	46.4 (8.40)	0.758	
Sex, %male	58.6	70.3	<0.001	
Risk Factors				
Hypertension (%)	263 (22.7)	562 (21.0)	0.256	
Family History CAD (%)	483 (41.5)	1083 (40.4)	0.543	
Hyperlipidemia (%)	310 (26.9)	548 (20.8)	< 0.001	
Smoking History (%)	379 (32.7	801 (30.1)	0.117	
Diabetes (%)	15 (1.3)	32 (1.2)	0.941	
Medicine Use				
Any NSAID use (%)	761 (65.0)	1627 (60.2)	0.005	
NSAID use >1 dose/week (%)	252 (21.5)	405 (14.5)	<0.001	
NSAID use >1 dose/day (%)	20 (1.7)	33 (1.2)	0.285	
Daily aspirin use (%)	69 (5.9)	134 (5.0)	0.268	
Hyperlipidemia Dx on meds (%)	87 (28.1)	159 (29.0)	0.840	
Hypertension Dx on meds (%)	88 (33.5)	183 (32.6)	0.860	
Medical Evaluation				
Primary doctor visit in past year (%)	675 (59.3)	1488 (56.3)	0.103	
No primary doctor identified (%)	51 (4.5)	113 (4.3)	0.849	
Had stress test within last 5 years (%)	197 (17.2)	509 (19.3)	0.137	
Had ECG within past 5 years (%)	462 (40.6)	1116 (42.5)	0.294	
Discussed risk/benefits of running with doc (%)	540 (47.0)	1329 (50.5)	0.055	

Table 3. Reported Training Characteristics					
	Low Mileage	High Mileage	p-Value		
Training Characteristics					
Training pace < 8 minutes/mile (%)	164 (14.0)	901 (33.4)	< 0.001		
Competition Characteristics					
Longest race marathon or greater (%)	322 (28.9)	1838 (68.2)	< 0.001		
Longest race ultramarathon (%)	23 (2.0)	349 (13.0)	< 0.001		
Compete in triathlons/multisport events (%)	427 (36.9)	889 (33.2)	0.029		
Miscellaneous					
Consume > 4 cups coffee/day (%)	164 (10.3)	274 (10.5)	0.952		

Conclusion:

- Decreased longevity in runners averaging >20 miles/week vs those who run lower average weekly mileage could not be explained by higher prevalence of CAD risk factors or differences in the primary preventative use of daily aspirin.
- In addition, we found that frequent NSAID use was paradoxically more common in runners reporting lower average weekly mileage and slower average pace.
- The underlying cause of the observed U-shaped relationship between training mileage and longevity remains unclear and should be the topic of further study.

References:

. O'Keefe JH. Lavie CJ. Heart 2013

Financial Disclosures: Funding for this project was provided, by the Dorothy Rider Health Care Trust Fund; a nonprofit community foundation unrestricted grant."

The authors of this study have no personal financial disclosures.

Schnohr P. Assessing prognosis: a glimpse of the future. Jogging healthy or hazard? In: Cardiology ESo, ed. EuroPrevent 2012. Dublin, Ireland: European Heart Journal, 2012.
 Kuster M, Renner B, Oppel P, Niederweis U, Brune K. Consumption of analgesics before a marathon and the incidence of cardiovascular, gastrointestinal, and renal problems: a cohort study. BMJ Open, 2013.

© 2014 Lehigh Valley Health Network