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ABSTRACT. This paper describes an experimental investigation to study the combined effect of water binder 

ratio and chemical admixture on mechanical properties of self- compacting concrete (SCC) prepared using 
composite fly ash–cement binder. For this purpose, the mixture proportioning for SCC was based upon creating 

a high-degree of flowability by using High-Range Water-Reducing Admixtures (HRWRA) combined with 

Viscosity Modifying Admixture (VMA) to ensure homogeneity of the mixture. The flowability test results showed 
that the spread for all mixes was within the specified range recommended by EFNARC 2005 and EN 206. The J 

Ring height for all SCC mixes was observed to be between 17-20 mm, which was within the specified limits of 
EFNARC 2005.  A visual stability index has been provided to all SCC mixes for qualitative assessment of the 

flowability indexes. The cementing efficiency factor of fly ash, adopted in the presented work, restores the 

cementitious content in the mix. At 0.36 w/b ratio, the cube compressive strength at 28 days was almost 51MPa 
when 2.2% HRWRA with VMA was added to the mix. Through the different flowability test results, an effort has 

been made to develop a correlation between different flowability parameters using regression analysis in 
MINITAB software. An empirical formula in the form of basic equations suggested by CEB-FIP and ACI 363R 

-92 to express the relationship between split tensile strength and compressive strength of SCC has also been 

proposed. 
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1. INTRODUCTION 
Self-Compacting Concrete (SCC), first used in Japan in the late nineteen eighties (1) is a new kind of concrete 

that combines a high flowability and a high resistance to segregation obtained by a large amount of fine particles and 

the use of superplasticizers (2). Unlike ordinary vibrated concrete, SCC does not need any external compaction energy, 

eliminating possible problems caused by poor external compaction (3). There are numerous more focal points as far as 

innovation, working conditions and health monitoring is concerned (4).  

In general, the important performance indexes for SCC are good workability with high fluidity and high-

quality control (5). Viscosity Modifying Admixtures (VMA) which contain a water-soluble polymer, acrylic water-

soluble polymers or biological glue, helps resolve this problem (6–9). The viscosity of SCC mixes decreases with 

increase in water to binder ratio (w/b) ratio, while flowability increases and mechanical and durability properties 

decrease. According to Rao et al. 2010 (10), segregation and cohesiveness in fresh concrete are interrelated and can be 

enhanced by adding VMA along with  High-Range Water-Reducing Admixtures (HRWRA). According to Jayasree et 

al. 2011 (11), the reduction in water content is as much as 40% when polycarboxylate ether based superplasticizers 

(PCE SP) is used. 
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Further, with the help of this chemical admixture, any delay in the gain of strength of concrete is minimized. 

PCE SP, with its diverse molecular structure and mode of chemical activity, represents an improvement over sulfonate-

based HRWRAs by preventing flocculation of cement particles. Ozawa 1995 (12) and Khayat 1998 (7) concluded that 

VMA could enhance the viscosity and cohesiveness of SCC mixes through the addition of filler material like limestone 

powder.  They further concluded that the viscosity of concrete mixes can also be increased by decreasing the w/b ratio. 

High flowability requirement of SCC stimulates the utilization of mineral admixtures. Use of mineral 

admixtures such as Fly Ash (FA), Ground Granulated Blast Furnace Slag (GGBS), Rice Husk Ash (RHA), allcofine, 

and other similar fine powder additives, increases the fine materials in the concrete mixture and increases the flow of 

the mix (13,14). Utilization of mineral admixtures additionally reduces the cost of concrete by subsequently reducing 

the dosage of superplasticizers (15–20). The incorporation of mineral additives can improve particle-packing density 

and reduce inter-particle friction and viscosity because of its different morphology and grain-size distribution compared 

to cement (21). Yazici 2008 (22) in his study concluded that the use of FA could increase the slump flow of the SCCs 

mixes. Moreover, the need for viscosity-enhancing chemical admixtures is minimized. The Indian standard IS 456: 

2000 (23) permits the use of FA and silica fume for modifying the properties of concrete. The w/b ratio must be lower 

than the water to cement ratio, for FA mixture to be equivalent in strength to a plain cement mixture. This is acceptable 

due to the fact that FA acts like a water reducer.  

Smith 1967 (24) introduced the cementing efficiency factor for FA for effective utilization of this cementing 

material. For FA replacement up to 25 % in cement, a cementing efficiency factor k = 0.25 was further suggested. The 

German code (25) and the British code (26) adopted a value 0.3 for FA replacement up to 50% with cement. Cementing 

efficiency factor of 0.5 for water to cement ratio in the range of 0.5 to 0.65 was reported by Schiess 1991 (24). He 

further reported that for a w/c ratio between 0.5 and 0.65, a value of 0.5 is more appropriate for the cementing efficiency 

factor. The Danish standards further stipulated an efficiency value of 0.5 for FA.  

The explicit objective of the present research program was to obtain an optimum combination of w/b ratio and 

superplasticizer for achieving SCC. The scope of this experimental research program included an examination of the 

effect of chemical admixture and water binder ratio on SCC. For this purpose, PCE SP combined with stabilizing agents 

like VMA was utilized in the mixture composition of SCC to create a high-degree of flowability and to ensure 

homogeneity of the mixture. 
 

2. MATERIALS AND MIX PROPORTIONING 

2.1. Materials 
Ordinary Portland Cement (OPC) of grade 43 conforming to IS8112:1989 (27) was used in this investigation. 

The physical properties of cement were tested in accordance with IS 4031 (28). ASTM Class C FA obtained from 

Kahalgaon thermal power generation plant located in India was used in the present study for the partial replacement of 

OPC. Physical properties of the FA were tested in accordance with IS 3812-2003 (29). The physical properties of FA 

and cement are given in Table 1. 

 

Table 1: Physical Properties of Cement and Fly Ash 

Sl. No. Physical Properties 
Observed values for 

Cement 

Observed values for Fly 

Ash 

1 Specific Gravity 3.15 2.2 

2 Initial Setting 30 min - 

3 Final Setting 600 min - 

4 Soundness (autoclave expansion)  % 0.8 0.06 

5 Fineness (m2/g) 0.225 0.368 

 

River sand and crushed gravel obtained from local sources were used as fine aggregate and coarse aggregate, 

respectively. Physical properties of the aggregates were determined per IS 383:1970 (30) requirements. Selected 

properties of the aggregates are given in Table 2. Fig 1 presents the grain size distribution of aggregates used in the 

present work. Poly-carboxylic ether based Super plasticizers with and without inbuilt VMA was used in this study. The 

chemical admixtures used were supplied by BASF India limited with a brand name of Master Glenium SKY 8630/8632. 

The chemical and physical properties are presented in Table 3. The dosages of admixtures were varied to achieve the 

desired fresh concrete properties for the SCC mixtures. 
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Table 2: Physical Properties of River Sand and Coarse aggregate 

Sl. No. Parameters River sand Coarse aggregate 

1 Specific gravity 2.66 2.74 

2 Fineness modulus 2.60 - 

3 Water absorption 1.35 0.78 

4 Aggregate crushing value - 24% 

5 Aggregate impact value - 29% 

 

 
Fig 1: Particle Size distribution curve of aggregates 

 

Table 3: Properties of Chemical Admixture (BASF India Ltd.) 

Parameter Specifications 

(as per IS 9103) (31) 
Results 

Physical state Reddish brown liquid Reddish brown liquid 

Chemical name of active ingredient Polycarboxylate polymers Polycarboxylate polymers 

Relative density at 250C 1.06 ± 0.01 1.066 

PH ≥ 6 at 250 C 7.22 

Chloride ion content (%) < 0.2 < 0.1% 

Dry material content 18± 5% 18.42 

2.2. Mixture proportions 
Mix design calculations for SCC was done in accordance with IS 10262:2009 (32). Water adsorption for fine 

aggregate and coarse aggregate has been considered in mix design calculations. To convert the aggregates into saturated 

surface dry condition, extra water was added in the SCC mix. The amounts and percentage of the constituents utilized 

in the SCC mixes are given in Table 4.  This extra water is presented separately in column 9 of table 4 as it is not going 

to participate in the reaction mechanism of concrete. Further, a cementing efficiency factor, K, for fly ash has been 

considered in the mix design calculations. “The K value of fly ash relative to cement is measured as the number of parts 

of cement that may be replaced by one part of the ash without changing the property being investigated, generally the 

compressive strength (24)”. Thus for concrete containing fly-ash, the effective water/cement ratio is represented as 

𝑤

𝐶
=  

𝑤

𝐶1+𝑘𝐹𝐴
   ……………………………..………………………………………… (1) 
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where, w is water content;  C is cement content of control concrete, and C1 is the cement content of fly ash concrete. 

Based upon the previous work (33), in the present investigation, a cementing efficiency factor (k) of 0.30 has been 

considered for fly ash percentage replacement, less than 30% and 0.55 for fly ash percentage replacement greater than 

or equal to 30%. Four sets of SCC mixes with five different fly ash replacement percentages (0%, 10%, 20%, 30% and 

40%) were cast at different water to binder ratio with different chemical admixture dosage.  

2.3 TEST PROGRAM AND PROCEDURES 

2.3.1 Flowability Test 

 The fresh concrete properties were measured as per the acceptance criteria for self-compacting concrete given 

in EFNARC: 2005 (34) and EN 206 (35) to evaluate the flow and self-compacting behaviour of the concrete. The 

various flowability tests conducted in the lab were Slump Flow Test (T-500 time in sec), J- ring Test, L-box and V-

funnel Test. 

The slump flow test is a measure of the viscosity of SCC mixes. T-500 test measures the time taken for concrete 

to reach a spread diameter of 500mm from the moment the slump cone is lifted. A higher T-500 value indicates a more 

viscous mix. The L-box and J-ring test measures the passing ability of SCC mixes in congested reinforcement while 

the V-funnel test shows how quickly the SCC mixture passes through the constricted area. 

2.3.2 Strength Test 
A Digital Compression Testing Machine of 2000kN capacity was used for measuring the compressive strength 

of test specimens. Compressive strength was measured on 150 mm cubes in accordance with Indian Standard IS 516-

1959 (36).  

Cylindrical specimens of size 150mm x 300mm were cast to measure the splitting tensile strength in 

accordance with Indian Standard IS 5816,-1976 (37). The horizontal tensile stress is expressed as: 

 πDL

P2
=  Stress   Tensile Horizontal

……………………………………………..………………….. (2)  

where P = compressive load on cylinder L = Length of cylinder D = Diameter of cylinder 

For both, the tests, three test samples were tested, and the average values were obtained. 

2.3.3 Visual Stability Index (VSI) Rating 
The Visual Stability Index (VSI) is the qualitative measure of the fresh concrete ability to resist segregation 

(38,39). It can be used as the measure of the relative quality control of the mixed concrete. This test is subjective and 

its best used to relatively compare several similar SCC mixes. The VSI rating varies from 0 to 3. If SSCs mixes show 

no evidence of segregation and bleeding, then a rating of 0 is provided further, if there is evidence of segregation and 

bleeding, then a rating of 3 is provided to the SCC mixture. Further, a rating of 1 is indicative of slight bleeding with 

no mortar halo in the slump flow of the mix while a rating of 1.5 indicates noticeable bleeding with a just noticeable 

aggregate piling during the slump flow test. A VSI rating has been provided to all the mixes and is depicted in table 5.  

 

3. RESULTS AND DISCUSSIONS 
Twenty mixes with partial replacement of FA with cement were prepared. Three sets of experiments were 

conducted wherein the first set of the experiment; the PCE SP dosage for the ten mixes was fixed at 2.8% by weight of 

cement. For the first five mixes, the w/b ratio was fixed at 0.38, and for the next five, the water to binder ratio was 0.36. 

In the second set of the experiment, the w/b ratio was fixed at 0.36. The dosage of PCE SP was fixed at 2.4% by weight 

of cement. In the third set of experiment, another chemical admixture was used which contained PCE SP with inbuilt 

VMA. The dosage for this chemical admixture was fixed at 2.2% by weight of cement and water to binder ratio was 

fixed at 0.36. 
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Table 4: Mix Proportioning of Trial Mixes 

Mix 

No. 

Cement 

(Kg) 
Fly Ash (kg) 

% of Fly 

Ash 

Water/ 

powder ratio 

Coarse 

aggregate (kg) 

Fine aggregate 

(kg) 
Water (Liter) 

Extra 

Water 

(Liter) 

Chemical Admixture 

1 467 00 0 

0.38 

864 903 177.45 19.11 

2.8% of  PCE SP  by 

weight of Cement 

2 453 46 10 826 864 189.87 18.74 

3 439 92 20 789 825 202.29 18.38 

4 390 139 30 784 820 201.41 18.74 

5 364 185 40 757 792 209.39 18.62 

6 467 00 0 

0.36 

876 916 168.11 19.20 

2.8% of  PCE SP  by 

weight of Cement 

7 453 46 10 839 878 179.88 19.03 

8 439 92 20 803 839 191.65 18.69 

9 390 139 30 798 834 190.81 19.05 

10 364 185 40 772 807 198.37 18.94 

11 467 00 0 

0.36 

878 918 168.11 19.43 

2.4 % of  PCE SP  by 

weight of Cement 

12 453 46 10 842 880 179.88 19.08 

13 439 92 20 805 841 191.65 18.73 

14 390 139 30 800 836 190.81 19.09 

15 364 185 40 774 809 198.37 18.98 

16 467 00 0 

0.36 

880 920 168.11 19.45 

2.2 % of  PCE SP   + 

VMA by weight of  

Cement 

17 453 46 10 843 881 179.88 19.11 

18 439 92 20 806 843 191.65 18.76 

19 390 139 30 801 837 190.81 19.11 

20 364 185 40 775 810 198.37 19.00 
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3.1 Effect on Flowability Index 

The results of the various flowability tests of SCC with different percentage of FA are presented in Table 5. 

The viscosity of SCC mixtures was evaluated through the slump flow test. According to Nagataki and Fujiwara (40) 

and Khayat et al. (41), a slump flow ranging from 500 to 700 mm is considered as the slump required for concrete to 

be self-compacted. The stability of SCC mixtures was evaluated through the V- funnel test. Both the spread diameter 

and the V-funnel flow times are in good agreement to that of the values given by European guidelines (35) for a range 

of applications and different viscosity classes and were also within the specified range recommended in the literature 

(42). The L-box blocking ratio was also within the specified range laid down by EFNARC 2005 (34). The J-ring test 

extends common filling ability test methods to also characterize passing ability. It is also an estimation of susceptibility 

to blocking. The J Ring height for all SCC mixes was observed to be between 17-20 mm. The J-ring time was measured 

and is presented in Table 5. Slight bleeding and the noticeable aggregate pile were observed during the flowability test 

in few SCC mixes.  Based on the visual of the flow tests, a visual stability index rating has been provided to all SCC 

mixes and is presented in Table 5. 

At a higher dosage of PCE SP the spread diameter achieved was near maximum at same w/b ratio, in contrary, 

the spread diameter decreased with a reduction in w/b ratio for the same dosage of HRWR. At PCE SP dosage of 2.8% 

by weight of cement mass, the visual stability index achieved was 2 at both w/c ratios (0.38 and 0.36). High fluidity 

with bleeding was observed for SCC mixes with a PCE-SP dosage of 2.8% by weight of cement. The SCC mixes were 

unstable as a slight mortar halo was observed in the centre of concrete masses. Consistent viscosity with bleeding was 

observed in the case of mixes with PCE SP with VMA. As reported by Lachemi et al. (43), the mixes with an adequate 

concentration of PCE SP with VMA inhibits fluidity with increased viscosity. In such concrete mixes, the viscosity 

built up is promoted due to association and enlargement of polymer chains of VMA at the low shear rate. This property 

increases the stability of the concrete and reduces the risk of segregation. 

When cement is partially replaced by FA, the superplasticizer dosage decreases without compromising the 

filling ability of the SCC mixes, this can be seen from the results presented in Table 5. Bouzoubaa et al. (44) reported 

similar results. Bleeding reduced noticeably when PCE SP with inbuilt VMA was used and further there was a slight 

increase in V–funnel time. A similar report has been published by Khayat (7) owing to the fact that VMAs, reduces the 

segregation and bleeding and increases viscosity as it absorbs some free water present in the mix. More or less similar 

reasons for the reduction in bleeding and increase in viscosity has also been cited by Khayat et al. (7). The VSI rating 

provided to all the FA-induced SCC mixes indicates that despite the use of  PCE SP with inbuilt VMA, slight bleeding 

was observed along with air popping on the surface of concrete, but this effect was less when compared to SCC mixes 

without VMA. 

Fig. 2 represents the combined influence of w/b ratio and dosage of PCE SP on both spread diameter and V-

funnel time of SCC mixes. Both V-funnel time and spread diameter show a quadratic relation with the high correlation 

coefficient. Further Fig 3 and Fig 4 represent the effect of FA on V-funnel time and spread diameter of SCC mixes at 

w/b ratio 0.36. Here also both the flowability parameters viz., V- funnel time and spread diameter show a quadratic 

relation with FA replacement percentage with cement. From figures, it can clearly be interpreted that V- funnel time 

decreases with an increase in FA percentage, while spread diameter increases with an increase in FA percentage. Thus, 

concluding that FA lowers the viscosity of the SCC mixes. The SEM image shown in Fig 5 confirms the above finding 

that the increase in FA content increases flowability of SCC mixtures. The high fluidity of SCC having large FA content 

would be induced by the ball milling effect of FA particles, which is quite evident in Fig 5. The same findings have 

also been reported in the literature (44,45) and reasoned that due to its spherical shape, FA can disperse agglomeration 

of cement particles leading to a reduction in viscosity. From Fig 3 and 4, it can also be seen that the V funnel time and 

the spread diameter remained constant (the nature of the curve almost flattens) at replacement level more than 20%. 

Hence it can be concluded that the optimum level of fly ash replacement should be between 20% and 30%. The same 

has also been reported by Omar et al. 2018 (46).  

The equation presented in the figures indicates that the cementing efficiency factor of FA, adopted in the 

presented work, restores the cementitious content in the mix. The increase in percentage replacement of FA has little or 

no impact on the spread and v funnel value as evident from the intercept value of the equation which is a 2nd order 

polynomial equation in the form  

y= ax2 + bx + c……………………………………………………………………………………… (3) 
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Table 5: Flowability Test Results 

Mix 

No. 

w/b 

ratio 

Chemical 

Admixture 

% Fly Ash 

by weight 

of cement 

Spread 

diameter 

mm 

Slump Flow Test 

(time in sec) 
J Ring Test (time in sec) L Box Test 

V Funnel 

Test VSI 

300mm 500mm 700mm 300mm 500mm 700mm H2/H1 time in sec 

1 

0.38 

2.8% of PCE SP 

by weight of 

Cement 

00 743 0.8 3.2 6.2 1.0 3.8 6.6 0.84 9.4 2 

2 10 748 1.1 3.1 7.2 1.5 4.6 7.8 0.88 9.1 2 

3 20 752 0.8 2.5 6.9 1.2 4.3 7.5 0.85 8.6 2 

4 30 755 0.6 2.3 6.4 1.1 4.1 7.1 0.84 8.4 2 

5 40 760 0.5 2.4 5.9 0.8 3.9 6.7 0.83 8.2 2 

6 

0.36 

2.8% of PCE SP 

by weight of 

Cement 

00 732 1.0 3.2 6.6 1.4 4.2 7.1 0.82 9.6 2 

7 10 734 1.3 3.2 7.5 1.6 4.9 8.1 0.87 9 2 

8 20 741 0.9 2.9 7.0 1.4 4.5 7.9 0.80 8.4 1.5 

9 30 745 0.8 2.7 6.2 1.3 4.3 7.5 0.98 8.4 1.5 

10 40 747 0.7 2.3 6.0 1.1 4.2 7.1 1.00 8.2 2 

11 

0.36 

2.4% of PCE SP 

by weight of 

Cement 

00 715 1.7 3.5 7.9 1.8 5.9 9.1 0.85 10.5 1.5 

12 10 720 1.5 3.0 7.8 1.7 5.7 8.7 0.88 9.2 1.5 

13 20 724 1.4 3.2 7.5 1.7 5.4 9.2 0.90 9.0 1.5 

14 30 732 1.3 3.0 6.9 1.5 5.2 9.4 0.87 8.5 1.5 

15 40 729 1.1 2.8 6.4 1.4 5.1 9.6 0.89 8.6 1.5 

16 

0.36 

2.2% of PCE SP + 

VMA by weight 

of Cement 

00 652 1.5 4.4 - 1.7 5.6 - 0.84 11.4 1 

17 10 700 1.3 3.9 7.6 1.6 5.3 8.0 0.85 10.9 1 

18 20 710 1.0 3.7 7.0 2.0 5.0 9.0 0.84 10.5 0.5 

19 30 705 1.0 3.4 4.0 1.0 6.0 8.8 0.88 10.4 0.5 

20 40 725 0.8 3.3 5.0 1.9 6.0 8.4 0.90 10.2 1 
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Fig 2: Combined Influence of w/b Ratio and Dosage of HRWR on both Spread Diameter and V-funnel Time 

 

 

Fig 3: Influence of Fly Ash Percentage on Spread Dia at w/b = 0.36 
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Fig 4: Influence of Fly Ash Percentage on V-funnel Time at w/b = 0.36 

 

 

Fig 5: SEM Image Showing Ball Milling Effect of FA particles in SCC Mixture  

 

3.2 CORRELATION BETWEEN FLOWABILITY INDEX 

The test methods described in (34) are devised specifically for SCC and are mainly definitive. No 

correlation has yet been developed between the different flowability parameters to standardize these test methods. 

Many researchers in the past have used T-500 and V- funnel time as an indicator of viscosity in case of self-

compacting concrete, and have indicated co-relations between these two parameters. Through the different 

flowability test results, an effort has been made to develop a correlation between different flowability parameters 

using regression analysis in MINITAB software. All 20 experimental data irrespective of w/b ratio and dosage of 

superplasticizers were used to develop the correlation between different flowability parameters. A good correlation 

exists between V-funnel time and T-500 time for all SCC mixes with a correlation coefficient R2=0.84, as indicated 
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in Fig 6. Relationship between V-funnel time and T-500 time has also been reported in the past and is presented in 

Table 6.  

 

 

Table 6: Correlation equation between T-500 and VF time 

Author Correlation equation R2 value 

Beton & Wüstholz (47) 𝑇500 = 0.261 × 𝑉𝐹𝑇𝑖𝑚𝑒 + 0.523 0.77 

Felekoğlu & Sarıkahya (48)  𝑉𝐹𝑇𝑖𝑚𝑒 = 2.83 × (𝑇500)2.05 0.87 

Safiuddin, Salam, & Jumaat (49) 𝑉𝐹𝑇𝑖𝑚𝑒 = 2.7614 × 𝑇500 + 0.6247 0.92 

Savić & Aškrabić (50)  𝑉𝐹𝑇𝑖𝑚𝑒 = 1.666 × 𝑇500 + 7.457 0.86 

Present work  𝑉𝐹𝑇𝑖𝑚𝑒 = 6.073 + 0.403 × 𝑇500 + 0.2025(𝑇500)2 0.84 

Most of the authors have presented a linear correlation between V- funnel time and T-500 time however 

in the present work both quadratic and linear models were tried, and both the models were statistically significant 

with 95% confidence level (p<0.05). However, the quadratic model was chosen in the present work as the regression 

coefficient was more as compared to the linear model. The prediction plot at a 95% confidence interval is shown 

in Fig 7. 

 

 
Fig 6: Correlation between T500 and V Funnel Time 

 

 

 
Fig 7: Prediction Plot for V Funnel Time 
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Spread diameter, in the present work, has also been considered as an indicator of viscosity in case of self-

compacting concrete; hence correlation between spread diameter and V-funnel time and spread dia and T-500 time 

has also been developed and is shown in Fig 8 and Fig 9 respectively. Second order polynomial equation fitted best 

with high correlation coefficient.  

𝑉𝐹𝑇𝑖𝑚𝑒 = − 41.43 +  0.1796 Spread dia −  0.000151 (Spread dia)2 …………………………… (4) 

Spread dia = −20.43 + 0.08695𝑇500 − 0.000075(𝑇500)2  …….………………………….….… (5) 

Similar expressions between spread diameter and V- funnel time have been reported in the literature 

(16,51,52). The prediction plot at a 95% confidence interval is shown in Fig 10 and Fig 11, respectively. 

 
Fig 8: Correlation between V Funnel Time and Spread Diameter 

 

 

Fig 9: Correlation between T-500 and Spread Diameter 
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Fig 10: Prediction Plot for V Funnel Time with Spread Diameter 

 

 

Fig 11: Prediction Plot for T 500 with Spread Diameter 

3.3 EFFECT ON COMPRESSIVE STRENGTH 

Three different sets of mix proportion were cast to study the influences of the different parameter on the 

fresh and hardened properties of SCC. Table 7 presents the descriptive statistics of all 60 cube specimens prepared 

to evaluate the compressive strength at 28 days.  
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Table 7: Descriptive Statistics of the Test Samples 

w/b 
PCE-SP 

By Weight of Cement 
Sample Number Mean Std Dev 

Normality 

Test 
P Value 

0.38 2.80% 15 44.65 1.24 Pass 0.842 

0.36 2.80% 15 47.40 1.74 Pass 0.685 

0.36 2.40% 15 48.07 1.94 Pass 0.107 

0.36 2.20% 15 52.79 1.11 Pass 0.515 

The comparative analyses of the results of the cube compressive strength test at 14 days, 28 days and 56 

days are presented in Table 8. The compressive strength increased with a decrease in the percentage of the fly ash 

and the water-to-binder ratio. These observations are in agreement with the findings of Zhao et al. (53) and Güneyisi 

et al. (20). In case of the first set of experiments, where, the dosage of PCE SP was fixed at 2.8% by weight of 

cement, the cube compressive strength is on a higher side of w/b ratio 0.36 as compared with w/b ratio 0.38 at both 

28 and 56 days. Further, it can be inferred that in the same water to binder ratio, there was an increase in compressive 

strength when PCE SP with VMA was used in the trial mixes. The increase observed was almost 10% as compared 

to the strength of the trial mixes were only HRWR was used. 

From the results, it can be seen that at 56 days, the increase in compressive strength for all the mixes is 

almost 25% as compared to that at 28 days strength. This may be due to the slower pozzolanic reaction of the FA 

with the Ca(OH)2 of the hydrated cement at an early age. It has been reported (54,55) that at the age of 56 days, 

about 15% FA undergoes pozzolanic reaction, forming a gel-like calcium silicate hydrates (CSH) and consequently 

results in about 20% increase in compressive strength. From Fig 12 it can also be inferred that at 30% replacement 

of FA with cement, the compressive strength increased by about 7% as compared to 20% replacement of FA by 

weight of cement. However, the compressive strength increase is nominal at 40% replacement of FA as compared 

to 20% replacement of FA by weight of cement, i.e. the strength decreases by about 3% as compared to 30% 

replacement of FA with cement. The same conclusions were drawn in all three sets of experiments. 

 

Table 8:  Strength Test Results 

Mix 

No. 
w/b Chemical Admixture 

% of Fly Ash by 

Weight of 

Binder 

Compressive Strength  (MPa) 

14 Days 28 Days 56 Days 

1 0.38 

2.8% PCE SP  by  

wt of Binder 

0 38.50 46.38 57.85 

2 0.38 10 25.60 43.12 55.32 

3 0.38 20 24.80 44.26 56.25 

4 0.38 30 27.59 44.85 62.19 

5 0.38 40 26.15 44.63 58.26 

6 0.36 

2.8% PCE SP  by 

 wt of Cement 

0 38.92 47.97 58.63 

7 0.36 10 28.20 45.17 57.55 

8 0.36 20 29.60 46.32 59.80 

9 0.36 30 31.72 49.76 63.80 

10 0.36 40 27.60 47.79 61.20 

11 0.36 

2.4% PCE SP by  

wt of Cement 

0 36.36 47.48 61.34 

12 0.36 10 33.67 47.12 59.92 

13 0.36 20 33.90 47.37 60.23 

14 0.36 30 35.10 51.26 65.26 

15 0.36 40 33.50 47.13 60.12 

16 0.36 

2.2% PCE SP with  

VMA by wt of 

Cement 

0 37.87 53.26 67.52 

17 0.36 10 35.56 51.52 67.82 

18 0.36 20 35.77 51.82 68.56 

19 0.36 30 36.72 53.86 68.97 

20 0.36 40 36.65 53.46 67.76 
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Test results revealed that the main factor affecting the compressive strength of SCC was the w/b ratio. The 

incorporation of VMA did not affect compressive strength development. The results presented in Fig 12 shows that 

the SCC mixes with PCE-SP with VMA resulted in the least reduction in compressive strength as compared to SCC 

mixes with only PCE-SP. This may be attributed to the higher air content of the modified mixes.  The same has 

been reported by Isik et al. 2014 (56).  

The lower w/b ratio, together with the PCE SP with VMA to obtain adequate flowability, favours a more 

compact and homogeneous transition zone, which in turn, improves the microstructure of the concrete matrix and 

thus enhances the mechanical characteristic of the concrete. The SEM image of SCC mixture with FA shown in 

Fig 13 confirms the above observation. With the addition of FA, the mix becomes cohesive after the hydration, and 

after subsequent symbiotic pozzolanic action, the voids created during leaching was arrested with FA after the 

formation of C-S-H gel.  Also, the formation of voids is avoided since, in SCC, there is no need to apply external 

vibration, during pouring (57). 

 

 

 

Fig 12: Percentage Increase or Decrease in Strength at Same w/b Ratio 

 

 
 

Fig 13: SEM Image Showing Formation CSH Gel in SCC Mixture with 30% FA 
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3.4 EFFECT ON SPLIT TENSILE STRENGTH 
In the present study, the splitting tension of all SCC mixes was assessed, and the results are shown in Fig 

14. It clearly indicates that split tensile strength increases with a decrease in w/c ratio. The effect of VMA was most 

prominent on split tensile strength test results as VMA helped in increasing the cohesiveness of the SCC mixes. 

This is attributed to an improved bond between the aggregates and the paste in the SCC mixtures (57). 

 

 

Fig 14: Split Tensile Strength Test Results 

 

3.4.1 Relationship between Split Tensile Strength and Compressive Strength 

For serviceability of RC structures, the direct or indirect tensile strength of concrete should be used as an 

indication of cracking in concrete. The American standard test method (ASTM), (58,59) suggests an indirect 

method (splitting tensile strength) to measure tensile strength, however, ASTM has no recommendations for direct 

tension test for concrete, as it is challenging to ensure that uniaxial stress along the specimen is evenly applied. 

Further, in accordance with MC 2010 and EC 2 (60) the direct tensile strength (𝑓𝑐𝑡) can be converted into the 

splitting tensile strength( 𝑓𝑡𝑠) by using a conversion factor Asp, presented in Eq. (6): 

𝑓𝑐𝑡 = 𝐴𝑠𝑝 ×  𝑓𝑡𝑠 ……………………………………………………………………………….………..……….. (6) 

With: 

𝐴𝑠𝑝 = 0.9 for all concrete grades according to EC 2. 

𝐴𝑠𝑝 = 1.0 for all concrete grades, according to MC 2010. 

However, it is not quite clear whether these conversion factors can still be used for SCC. In the present 

work splitting tensile strength has been recorded in the lab and to establish the relationship between splitting tensile 

strength and cube compressive strength no conversion factor have been considered. Moreover, changes that affect 

SCC, such as variations in the mix design or higher fines content in the Cement-Fly or the placing of concrete, can 

also modify this relationship (61). 

The correlation between splitting tensile strength and cube compressive strength for SCC is reported in 

several kinds of literature (3,62–69).  Different concrete institutes and researchers have summarized the correlation 

between 𝑓𝑡𝑠and cube compressive strength (𝑓𝑐𝑘) by the following general equation: 

𝑓𝑡𝑠 = 𝑎0(𝑓𝑐𝑘)𝑎1…………………………………………………………….…………………….……………… (7) 
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where 𝑓𝑐𝑘 and  𝑓𝑡𝑠 are in MPa; a0 and a1 are regression coefficients. Logarithmic transformation was applied as 

the dependency in equation 6 is nonlinear. Equation 7 and equation 8 presents the relationship between 𝑓𝑐𝑘 and 

𝑓𝑡𝑠obtained after linear regression. 

log10( 𝑓𝑡𝑠) = −0.6925 + 0.760 log10(𝑓𝑐𝑘)…………………..…………………………….………..………… (8) 

Equation 7 was transformed  into a single variable power equation in the form 

𝑓𝑡𝑠 = 0.205(𝑓𝑐𝑘)0.76……………………………………………………………………..….………………..… (9) 

The proposed empirical formula (equation 8) to express the relationship between 𝑓𝑐𝑘 and 𝑓𝑡𝑠 of SCC is 

presented in Table 9. Table 9 also presents the correlation proposed by ACI 363R -92 (70), ACI 318-95 (71) and 

CEB-FIP (72). 

 

Table 9: Proposed Empirical Relationship between Split Tensile Strength and Compressive Strength for SCC 

Sl. No. Authors Correlation proposed Remarks Filler material 

1 ACI363R -92 (70) 𝑓𝑡𝑠 = 0.59(𝑓𝑐𝑘)0.5 Normal concrete - 

2 CEB-FIP (72) 𝑓𝑡𝑠 = 0.301(𝑓𝑐𝑘)0.67 Normal concrete - 

3 ACI 318 -95 (71) 𝑓𝑡𝑠 = 0.56(𝑓𝑐𝑘)0.5 Normal concrete - 

4 Felekoglu et al. 2007 (73) 𝑓𝑡𝑠 = 0.43(𝑓𝑐𝑘)0.6 SCC Limestone 

5 Parra et al. 2011 (74) 𝑓𝑡𝑠 = 0.28(𝑓𝑐𝑘)0.67 SCC Limestone 

6 Nikbin et al. 2014 (61) 𝑓𝑡𝑠 = 0.49(𝑓𝑐𝑘)0.5 SCC Limestone 

7 Aslani  and Nejadi (62) 𝑓𝑡𝑠 = 0.251(𝑓𝑐𝑘)0.712 SCC Fly ash 

8 Kim (75) 𝑓𝑡𝑠 = 0.52(𝑓𝑐𝑘)0.5 SCC Fly ash 

9 Present work 𝑓𝑡𝑠 = 0.205(𝑓𝑐𝑘)0.76 SCC Fly ash 

 

Fig 15 displays the fitted line plot of equation 7 at a 95% confidence interval. The residual plots shown in 

Fig 16 validate the proposed relation. Fig 17 compares the formulae proposed by different codes and researchers 

with Equation 8 proposed in the present work. The comparison demonstrates that the relation proposed in the 

present work is in the vicinity of the relations proposed by CEB-FIP (72), ACI 318 (71), ACI 363 (70) codes. 

Vilanova et al. (57) reported that ACI 318 relations can predict the values of the tensile strength of SCC with 

acceptable precision. From the results of this limited study, this code shows a noticeable underestimation of the 

SCC tensile strength when compared with the normal concrete. 

 

 
Fig 15: Relationship between Split Tensile Strength and Compressive Strength  
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Fig 16: Residual Plots for Proposed Relation 

 

 

 
Fig 17: Comparison of the Proposed Relation with ACI 363R -92 and CEB-FIP 

  

4. CONCLUSIONS 

Based on the results of this experimental work, the following conclusions can be drawn: 

1. The combined influence of w/b ratio and dosage of PCE SP on both spread diameter and V-funnel time 

of SCC mixes showed a quadratic relation with a high correlation coefficient. At a higher dosage of PCE 

SP the spread diameter achieved was near maximum at same w/b ratio, in contrary, the spread diameter 

decreased by a reduction in the w/b ratio for the same dosage of PCE SP. 

2. The cementing efficiency factor of FA, adopted in the presented work, restored the cementitious content 

in the mix. The effect of FA on spread diameter and V-funnel time also showed a quadratic relation with 

FA replacement percentage with cement which clearly indicated that V- funnel time decreases with 

increase in FA percentage, while spread diameter increases with increase in FA percentage. Thus, 

concluding that FA lowers the viscosity of the SCC mixes which results in segregation.  

3. Bleeding reduced noticeably when PCE SP with inbuilt VMA was used. The mixes with an adequate 

concentration of PCE SP with VMA inhibited fluidity with increased viscosity. In such concrete mixes, 

the viscosity built up is promoted due to association and enlargement of polymer chains of VMA at the 

low shear rate. This property increases the stability of the concrete and reduces the risk of segregation. 

4. A good correlation existed between V-funnel time and T-500 time for all SCC mixes with a correlation 

coefficient. Correlation between spread diameter and V-funnel time and spread diameter and T-500 time 
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has also been proposed. Although the models are based on a given set of materials, they can be easily 

used to predict the flowability parameters with low scattering between the measured and predicted values. 

5. The compressive strength increased with a decrease in the percentage of the fly ash and the water-to-

binder ratio. With the addition of fly ash, it can be seen that the compressive strengths of the SCC mixes 

were either almost the same or below that of the control mixes.  

6. The cube compressive strength was on a higher side at w/b ratio 0.36 as compared with w/b ratio 0.38 

for both 28 and 56 days at same PCE SP content. For the same w/b ratio there was an increase in 

compressive strength when PCE SP with VMA was used in the trial mixes. The increase observed was 

almost 10% as compared to the strength of the trial mixes were only PCE SP was used. This may be 

attributed to the fact that lower w/b ratio, together with the PCE SP with VMA, favours a more compact 

and homogeneous transition zone, which in turn, may have improved the mechanical characteristic of the 

concrete. 

7. The empirical formula proposed in the present work to express the relationship between compressive 

strength and split tensile strength of SCC is in close relation with the empirical relations proposed by 

different codes. The Residual Plots for Proposed Relation indicates that the proposed equation is a pretty 

good fit for the data. However, the values of split tensile strength achieved with the proposed equation 

were under predicted because of the effect of   FA addition in the SCCs mix. 

8. Proposed splitting tensile strength model for SCC mixtures show that there are small differences between 

proposed SCC models with normally vibrated concrete. 

Based on experimental investigations carried out on self-compacting concrete it is recommended to produce 

SCCs with FA, and HRWR with VMA coupled with w/b ratio 0.36. The use of fly ash as replacement of cement 

may be used up to 30% by weight of cement in SCC effectively. It is further recommended to concurrently use FA 

with other cementitious material like silica fume to achieve early gain in strength. Moreover, the higher powder 

content in SCC compared to normally vibrated concrete provides an opportunity to replace the Portland cement 

with different types of cementitious materials which can have potential economic and environmental advantages. 
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