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A Hybrid Model for Preference Data †

今泉　忠 ∗1

多摩大学経営情報学部 ∗1

Preference scores to n objects of N individuals is a popular data collected in Marketing, Be-
havior Science, etc. A vector model or an unfolding distance model have been used to analyze
these type of data matrix. However,it is difficult to understand what attributes contribute on
preference evaluation using these continuous mapping models as the decomposition of data
is not unique. The overlapping cluster models and methods such as ADCLUS (Shepard and
Arabie, 1979) have interesting features to find the attributes in similarity data. So we propose
a modified model of overlapping model, a hybrid model, to discover the hidden attributes of
objects by putting a decomposition constraints. And we also show an application to real data
set.
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1. Introduction

A number of different models have been proposed to account for individual differences

in preference data. Let si j be a preference score to object j, j = 1, 2, · · · ,n of individual

i, i = 1, 2, · · · ,N. And we assume a set of t dimensions of factors to be common to all objects

and all individuals. Two models are well-known to analyze the preference data, one is the

vector model and the other is the unfolding model.

si j = ŝi j + ei j, i = 1, 2, · · · ,N; j = 1, 2, · · · ,n, (1)

where ŝi j is a obtained preference score by the model, and ei j is error,respectively. We obtain

a t-dimensional score vector yi = [yi1, yi2, · · · , yiT] of individual i, and a T-dimensional score
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vector xi[xi1, xi2, · · · , xiT] such as

ŝi j =

T∑
t=1

yitx jt, (2)

in the vector model, where ei j denote the error term. And

ŝi j = −

√√
T∑

t=1

(yit − x jt)2, (3)

in the unfolding model. These N vectors of T-dimensionality yi, i = 1, 2, · · · ,N represent

the individual differences in common space. As these models give us the geometric repre-

sentation of N individuals and n objects, we can understand an overall relation among N

individuals and n objects. However it is difficult to understand what attributes contributes

on preference evaluation when we assume these continuous mapping models. On the other

hand, the overlapping cluster models and methods such as ADCLUS (Shepard and Arabie,

1979;Arabie and Carroll, 1980) have interesting features to find attributes in similarity data.

Chaturvedi and Carroll(1994) discussed on a generalzied INDCLUS model. Their model is

also applicable to analyzing two-mode preference scores as

si j =

T∑
t=1

wppitq jt, i = 1, 2, · · · ,N; j = 1, 2, · · · ,n (4)

where pit and q jt take one of {0, 1},

pit =

1 if individual i employ the attribute t
0 otherwise

, (5)

q jt =

1 if object j has the attribute t
0 otherwise

, (6)

This ADCLUS type models suggest us what attributes contribute on the similarity evalu-

ation process. ten Berg and Kier(2005) proposed an algorithm to obtain the SINDCLUS

model parameters. Baier, Gaul and Schader(1996) discussed on two-mode overlapping clus-

tering. And Krolar-Schwerdt and Wiedenbeck and (2006) investigated the properties of

two-mode ADCLUS type model. These models represent objects and individuals on quali-

tative dimensions. However it has some contradiction when similarity values or preference

scores are quantitative. And Chaturvedi and Carroll(2006) proposed a hybrid ADCLUS
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model,CLUSCAL, in which they assume a quantitative dimensions and qualitative dimen-

sions simultaneously.

si jk ≈
R∑

r=1

wkrxirx jr +

T∑
t=1

uktpitq jt + ck, (7)

whete k denote the k-th source or individuals. This model is an interesting one as the attributes

will be determinated uniquely, but, we need to check on the unique decomposition of data

matrix. By the way,it may natural for us to assume object having a quantitive property

rather than a qualitative since observed preference score are measured on a quantitive scale

in general. This suggests us each object would be represented as having quantitive scores

rather than having qualitative attributes. On the hand, Each individual will rate his or her

preference to objects independently. And individuals may be classified into one of several

groups for simplicity. So, we propose other hybrid model of ADCLUS model. We assume

• Each object is measured on quantitive dimensions.

• Preference scores are represented as a weighed sum of objects scores on these dimensions

which are common to all individuals

• Weight of each individual on these dimension is +1,0, or −1

2. A Hybrid Model

We want to analyze the preference score to n objects of N individuals. Let si j be an

observed preference score to object j, j = 1, 2, · · · ,n of individual i, i = 1, 2, · · · ,N. We

propose a hybrid vector model in which objects are represented as points in t dimensional

space,x j, j = 1, 2, · · · ,n. Let yit(i = 1, 2, · · · ,N) be one of {+1, 0,−1}. Then We assume si j are

represented by

si j =

t∑
t=1

pitx jt + ei j, i = 1, 2, · · · ,N; j = 1, 2, · · · ,n, (8)

where ei j is error term. This is a modified ADCLUS model includes the original ADCLUS

model as the special case with

wtq jt = x jt, t = 1, 2, · · · ,T. (9)

This modeling assumes that N individuals share T common dimensions, and that si j, j =

1, 2, · · · ,n for some individual i is embedded into subspace of T dimensional space. Some

individuals dislike some attribute property of object which some individuals like. So we
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assume that dimensional weight of individual i to the dimension t,pit takes negative value,

pit =


1 if individual i weights the attribute t positively
0 does not concern this attribute
−1 if individual i weights the attribute t negatively

, (10)

When pi3 = 0, thepre f erencescoreso f theindividualiareembeddedinsubspaceo f Rt. For example, in

the case of pi1 = 1, pi2 = −1, pi3 = 0, then

si j = x j1 − x j2 + ei j, (11)

And N individuals are grouped into one of 3t groups by assumption on P = [pit].

2.1 Metric Scaling

We must obtain X = [x jt],P = [pit], and t from observed preference scores, S = [si j] Let s̃i j

denote the computed preference score to the object j of the individual i.

ŝi j =

T∑
t=1

titx jt, i = 1, 2, · · · ,N; j = 1, 2, · · · ,n. (12)

As the degree of fitness of our model to the data, we adopt a least square criterion for given

dimensionality T

LSQ(X,P|T) =
N∑

i=1

n∑
j=1

(si j − ŝi j)2/
N∑

i=1

n∑
j=1

s2
i j, (13)

As the dimensional weights P take only one of three values +1, 0,−1, we must use two step

minimization procedure for LSQ(X,P|T)

2.2 Obtaining X matrix for given P and T

the conditional LSE of X will be given by

X = S′P(P′P)−1 (14)

2.3 Obtaning P by a Heuristic Optimization

We must update the individual weights pi, i = 1, 2, · · · ,N. One convenient method is a

discretization method which discretize a continuous P as being adopted by Shepard and

Arabie(1979). We will adopt another method, a heuristics method instead of a discretization

method.

(1) compute three vectors for the dimension t∗ in which

p̃0
iq =

piq if q , t∗

0 if q = t∗
, (15)
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of individual i.

p̃+iq =

piq if q , t∗

1 if q = t∗
, (16)

p̃−iq =

piq if q , t∗

−1 if q = t∗
, (17)

(2) And compute three sum of squares for each {p̃0
iq, p̃

+
iq, p̃

−
iq},

ssq0
it =

n∑
j=1

(si j −
T∑

t=1

p̃0
itx jt)2 (18)

ssq+it =
n∑

j=1

(si j −
T∑

t=1

p̃+itx jt)2 (19)

ssq−it =
n∑

j=1

(si j −
T∑

t=1

p̃−itx jt)2 (20)

(21)

(3) compare the above three sum of squares, and adopt one of p̃0
it, p̃
+
it and p̃−it which minimizes

sum of squares as new pit

3. Computational Procedure

For a given data matrix S, we obtain X and P which minimize LSQ(X,P|T) iteratively.

3.1 Initial Matrix of X and P

An initial matrix of P and X, P(0),X(0) are obtained by SVD of Preference score matrix S

where (0) indicates iteration number. S will be decomposed by using SVD,

S = U(ΛV)′, (22)

and the initial matrix of X(0) by

X(0) = (ΛV). (23)
(24)
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And p(0)
it will be obtained by discretizing U,

p0
it = 1 if uip > 0.334 (25)

p(0)
it = 0 if |uip| ≤ 0.334 (26)

p(0)
it = −1 if uip < −0.334 (27)

(28)

3.2 Updating matrix X

Matrix X will be updated by

X(l+1) = S′P(l)(P(l)′P(l))−1 (29)

3.3 Updating Individual Scores

Individual scores P will be updated the procedure in 2.3. if all values of individual i

were 0, i.e. pit = 0, t = 1, 2, · · · ,T, then ssq0
it =

∑T
j=1 s2

i j. And this supports one value of

ppt, t = 1, 2, · · · ,T is not 0.

3.4 Normalization of Preference Score

We assume to fit the proposed data to the collected data directly. And we do not include

the constant term c in our model. the supplemental dimension whose pis is 1 or −1 for all

individuals may be obtained. To avoid such situation, some pre-processing on data may be

useful.

• First one is that the mean of individual scores is set to 0,

s̄i =

n∑
j=1

si j = 0. (30)

• Second one is that sum of squares of individual scores is set to n

s2
i =

n∑
j=1

s2
i j/n = 1. (31)

4. Application

4.1 Application to Green & Rao Food Items Data

Green and Rao collected the preference ranking to 15 food items of 42 individuals. We

normalize this data to the mean of individual scores to 0. We show the joint plotting of

Object configuration and Individual configuration in Figure 1. We calculated a LSQ(X,U|2)
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for the results of MDPREF, and it’s value was 0.125 for T = 2. And we also applied the

proposed model to same data by setting T = 2 for the comparison. the obtained the value

of LSQ(X,Y |2) = 0.518. this value was 4 times of that of MDPREF. We show the joint

configuration in Figure 2. We added small jitter to the individual weights as we could

understand the number of individuals at each corner and the origin. We done another

analysis to the original data, and computed correlation coefficient between the each mean

of 15 food items and the obtained scores of objects, and it was 0.993. This suggests our

pre-processing on that data was suitable.

図 1 Joint Configuration of Green and Rao’s Preference Data to Food Items

Object Configuration looks to same to that by MDPREF. And We can classify individuals

from Figure 2 very easily.

4.2 Application to the Number of Children Data by Delbeke

Delbeke(1968) constructed a set of stimuli by systematically varying the number of boys

and the number of girls in a family. By factorially combining four levels (0 to 3) each of

the two variables, 20 combinations were constructed. 1D80 students responded his or her

preference to each number of children. We applied MDPREF and the proposed model to

the data matrix of deviates from mean of each individuals. The LSQ(X,V |2) by MDPREF
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図 2 Joint Configuration of Green and Rao’s Preference Data to Food Items

表 1 Combination of Boys and Girls

Number of No One Two Three Four Five

Boys Daughter Daughter Daughter Daughter Daughter Daughter

No Boy 1D 2D 3D 4D 5D

One Son 1S 1S1D 1S2D 1S3D 1S4D

Two Sons 2S 2S1D 2S2D 2S3D

Three Sons 3S 3S1D 3S2D

Four Sons 4S 4S1D

Five Sons 5S

was 0.035 and LSQ(X,U|2) by the proposed model was 0.164. The joint configuration by

MDPREF was shown in Figure 3. And Figure 4 shows the configuration obtained by the

proposed model.
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図 3 Joint Configuration by MDPREF

図 4 Joint Configuration by MDPREF

The lines added are connected between two points whose sex are same or the number of

children are same. Both figures look very similar though the factorial lattice structure will

be more recovered in Figure 4 and we can guess the student preference to the number of

children easily.
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5. Conclusion

We proposed a hybrid model and method for analyzing a preference data matrix. This

model assumes that N individuals share the common space in preference scoring and some

individuals ignore some dimensions in his or her preference scoring. However, we can

assume the different decomposition of data matrix. We assume the qualitative attributes of

objects, and individuals differently weight to these attributes. Then the model

si j =

T∑
t=1

yitq jt + ei j (32)

will be more reasonable. The external analysis approach as in PREFMAP(Carroll,1972) will

be suitable when we assume this modeling.
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