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I.  INTRODUCTION 

As early as the beginning of the 20th century, difficulties and problems appeared in classical 

electrodynamics. They are known. In connection with the rapid development of quantum 

electrodynamics and in connection with the progress in this field, it seemed that this theory would 

help eliminate problems in classical electrodynamics. However, with the passage of time, these 

hopes gradually faded, until they turned into illusions. Quantum electrodynamics itself is faced with 

problems. But most of these problems have classical roots. 

In this article we have collected materials concerning mathematical ambiguities and 

misconceptions in classical electrodynamics. Not all ambiguities and misconceptions are 

considered. But the most important of them are included in the article. Where it was possible, we 

corrected ambiguities and gave new explanations for the problems. In the article we do not put 

forward hypotheses. We are just clearing the field for further research. The task is extremely 

necessary, but ungrateful. Not everyone is ready to part with their delusions. We tried to write 

concisely, but give detailed, evidentiary explanations. 

II.THE GENERALIZED POYNTING’S LAW OF ENERGY-MOMENTUM 

CONSERVATION 

II.1.The derivation of the Poynting’s energy conservation law and the problem “4/3” 

The proof, proposed by Poynting, is very simple. We briefly reproduce it for the convenience 

of the subsequent discussion. We write the Maxwell equations 

rot 𝐇 = 휀
𝜕𝐄

𝜕𝑡
+ 𝐣 ,                                                       (II. 1.1) 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Scitech Research Journals

https://core.ac.uk/display/267834988?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.scitecresearch.com/


                                                                                                        Boson Journal of Modern Physics (BJMP)  

                                                                                                                                                  ISSN: 2454-8413   

 
Volume 4, Issue 2 available at www.scitecresearch.com/journals/index.php/bjmp                                      385|                                           

rot 𝐄 = −𝜇
𝜕𝐇

𝜕𝑡
 ,                                                           (II. 1.2) 

div𝐄 =
𝜚

휀
,                                                                 (II. 1.3) 

div𝐇 = 0 .                                                                (II. 1.4) 

Multiplying expression (II.1.1) by 𝐄, and expression (II.1.2) by 𝐇 and adding up the results, after 

simple transformations we obtain 

div𝐒 +
𝜕𝑤

𝜕𝑡
+ 𝑝 = 0 ,                                                        (II. 1.5) 

where 𝐒 =  𝐄 × 𝐇  is the energy flux density of an electromagnetic wave, 𝑤 = 휀𝐄2  2 + 𝜇 𝐇2  2    

is the electromagnetic wave energy density,𝑝 = 𝐣𝐄is the power density of external forces. The 

following circumstance is striking: two equations (II.1.3) and (II.1.4) were not used in the 

derivation of the Poynting’s conservation law (II.1.5).We are talking about this, because the 

Poynting vector often gives a "misfire". For example, for more than 100 years there is a known 

problem of "4/3". 

In accordance with the well-known formula 𝐸 = 𝑚𝑐2, the electromagnetic mass of a resting 

particle can be determined in a dual way: either through the square of the electric charge field, or 

through the space charge density and its potential 

𝑚𝑒 =  
휀 grad 𝜑 2

2𝑐2 𝑑𝑉 =  
𝜚𝜑

2𝑐2 𝑑𝑉,                                          (II. 1.6) 

where 𝜚 and 𝜑 are, respectively, the space charge density and the potential of this charge. 

In classical mechanics, the inertial mass of a particle 𝑚 is related to its momentum 𝐏 by the 

relation 𝐏 = 𝑚𝐯. The same relation holds (Umov's law) for the energy density of a particle or a 

material medium 𝑤 with an energy flux density 𝐒: 𝐒 = 𝑤𝐯. It can be assumed (Thomson, 1881) that 

the same properties should have the density of the electromagnetic energy of the charge field 

𝐒𝑒 = 𝑤𝑒𝐯  ,                                                             (II. 1.7) 

where 𝑤𝑒 = 휀 grad𝜑 2 2 isthe energy density of the electromagnetic mass. 

The problem of the electromagnetic mass arose after unsuccessful attempts to connect the 

electromagnetic mass of a charged particle with its electromagnetic momentum and kinetic energy, 

just as it is done in classical mechanics. Establishing such a connection could confirm the 

electromagnetic nature of matter. 

Indeed, the electromagnetic momentum of the charge field 𝐏𝑒  can be calculated by relying on 

the Poynting vector 𝐒, and the kinetic energy of the field 𝐾𝑒  can logically be related to 

the energy of the magnetic field, since the magnetic field is absent in a stationary charge. The 

magnetic field of the charge arises when the charge moves. It would seem that each element of a 

moving charge, having a velocity v, must have an electromagnetic momentum directed along the 

velocity vector. However, the researchers on this path encountered difficulties, which at that time 

could not be solved. Calculations for a charged particle with a uniform distribution of the space 

charge over the surface led to the following relationships that are not characteristic of mechanics: 

𝐏𝑒 =  
 𝐄 × 𝐇 

𝑐2 𝑑𝑉 =
4

3
𝑚𝑒𝐯 ;    𝐾𝑒 =  

𝜇𝐇2

2𝑐2 𝑑𝑉 =
4

3
𝑚𝑒

𝐯2

2
.                             (II. 1.8) 

As we see, a strange "4/3" coefficient appeared in the formulas instead of one. For this reason, the 

problem of electromagnetic mass was called "problem 4/3". 
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Formulas (II.1.8) give integral relations for a charge model in which the entire charge is 

distributed in a thin surface layer. The coefficient 4/3 in expressions (II.1.8) was obtained precisely 

for such a model. With a uniform charge distribution in a spherical volume, we will have a different 

factor. In order to "correct" this factor and connect electrodynamics with mechanics, a hypothesis 

was proposed about the existence of a non-electromagnetic mass charge in a charge. This mass 

should be responsible for the stability of the charge "torn" by the Coulomb repulsion forces. As a 

result, the sum of the electromagnetic and non-electromagnetic "masses" should give the classical 

inertial mass of the particle. 

However, this was not a solution to the problem, since the "plus-defectiveness" of the 

electromagnetic mass is compensated by the "minus-defectiveness" of the non-electromagnetic 

mass. 

II.2. Confusion with Poynting vector 

Not knowing how to solve the problem, sometimes substitute for a verbal "surrogate" solution, 

creating the appearance of a solution. Let us analyze a detailed picture of the particle flux density 

with a uniform charge distribution, relying on the Poynting vector. 

Consider a charge moving with a constant velocity 𝑣 along the 𝑧 axis. This means that any 

element of the charge has the same velocity v (see Fig. 1a). However, as shown in the same figure 

(see Fig. 1b), for local charge points the local Poynting vectors 𝐒 have different values and 

directions. At points furthest from the 𝑧 axis, the density of the vector 𝐒 is maximal, and on the 

center line it is zero, since there is no magnetic field here.The direction of the Poynting vector 

resembles the displacement of a rubber torus worn on a stick. The inner layers of the torus do not 

move due to friction about the stick, as shown in Fig. 1c. Therefore, to move the torus it is 

necessary to "twist" the upper layers of the torus. In this case, the cross-sectional layers of the torus 

(having the form of a circle, as shown in Fig. 1c) are rolled along a stick. Their instantaneous center 

of velocities (ICV) is located on the surface of the stick. The instantaneous center of velocities for a 

moving charge is the segment (see 1b), where the Poynting vector is zero (𝐒 = 0). 

That is where the questions arise. Why does the direction of the Poynting vector not coincide 

with the velocity vector of the motion of the charge parts? Why is there no circular motion of the 

Poynting vector in the reference system, where the charge is stationary, and in the moving system 

there is a circular flow of the electromagnetic pulse (in accordance with the Poynting vector)? Why 

are the different charge points having the same velocity vector and the same density giving a 

different contribution to the total electromagnetic charge momentum? 

 

Fig,1  Moving charge: a)distribution of velocities in a moving charge; b) the distribution of the Poynting 

vector in this charge; c) moving the rubber torus along a wooden stick; ICV is the instantaneous center of 

velocities. 
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The absurdity of the picture is confirmed by the theorem (L. D. Landau) [1], according to which the 

motion of the body can always be represented as the sum of two independent motions: translational 

and rotational. Consequently, if there is a rotational motion in one inertial frame of reference, then 

it must exist in any other inertial system. If there is no rotational motion, then it should not be in 

other inertial systems. Here it is a clear discrepancy (disagreement) between mechanics and 

electrodynamics. The situation is aggravated by the following circumstance. We assumed that the 

charge is spherically symmetric. But this is a hypothesis. The shape of the charge is unknown to us. 

With the same success, we can assume that the charge has the shape of an ellipsoid with a uniform 

charge distribution. In this case, we have a paradoxical result. The scalar electromagnetic mass 

assumes a "tensor" character 

𝑃𝑖 = 𝑚𝑖𝑘𝑣𝑘  ,                                                      (II. 2.1) 

where 𝑃𝑖  is the electromagnetic charge pulse, 𝑚𝑖𝑘  is the electromagnetic mass tensor; 𝑣𝑘  is the 

velocity vector.This is really embarrassing! For sure, many have come across this result. So what is 

next? Further on, they took for granted erroneous positions of modern electrodynamics. 

As we have seen, the Poynting vector can not be used to describe the electromagnetic mass. It 

can be assumed that some kind of incorrectness (error) was made in the derivation of the Poynting 

conservation law. Indeed, the proof proposed by Poynting is not the only one. The Poynting 

conservation law can be obtained in other ways. Let us try one of them. 

II.3.  The density of the Lagrange function for an electromagnetic field 

It is strange, why does not the mathematical formalism well developed by mechanics and 

mathematicians be used to prove the Poynting theorem? For example, in the textbook [1] (§32. 

Energy-momentum tensor), a technique is given for obtaining the energy-momentum tensor, from 

which the conservation laws in a generalized form easily follow. To do this, it suffices to correctly 

write down the Lagrange function of the system. 

As is known, the Lagrange function is not single-valued. But it must have a form that is 

invariant under the Galileo transformation (classical theory) or Lorentz (relativistic version). In [1] 

(§33) the following expression is given for the density of the Lagrange function 

Λ = −
1

16𝜋
𝐹𝑘𝑙𝐹

𝑘𝑙 = −
1

16𝜋
 
𝜕𝐴𝑖

𝜕𝑥𝑘
−

𝜕𝐴𝑘

𝜕𝑥𝑖
 

2

.                                (II. 3.1) 

However, it is inconvenient for us to use this kind of density of the Lagrange function. 

In the textbook [1], the construction of the theoretical fundamentals of electrodynamics 

proceeds from the Lagrange function for the charge. Then the electromagnetic field tensor 𝐹𝑘𝑙  is 

obtained. From it go to the energy-momentum tensor of the electromagnetic field, to the Maxwell 

equations and the Poynting theorem. 

We will carry out the analysis in the reverse order and start with the density of the Lagrange 

function for the electromagnetic field of the wave, moving to the charge fields. We write this 

expression for the density of the Lagrange function 

Λ =
1

𝜇
 −

 𝐹𝑖𝑘 
𝟐

4
+ 𝜇𝑗𝑖𝐴𝑖 = −

1

4𝜇
  

𝜕𝐴𝑘

𝜕𝑥𝑖
 

2

− 2
𝜕𝐴𝑖

𝜕𝑥𝑘

𝜕𝐴𝑘

𝜕𝑥𝑖
+  

𝜕𝐴𝑖

𝜕𝑥𝑘
 

2

 +
𝑗𝑖𝐴𝑖

4𝜇
.          (II. 3.2) 

Since the Lagrange function is not uniquely determined, we transform expression (II. 3.2) and 

give it another form of the Lagrange function, using the action integral 
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𝑆 =  Λ𝑑Ω =  
1

𝜇
 −

 𝐹𝑖𝑘 
𝟐

4
+ 𝜇𝑗𝑖𝐴𝑖 𝑑Ω ,                               (II. 3.3) 

 

where 𝑑Ω = 𝑑𝑥1𝑑𝑥2𝑑𝑥3𝑑𝑥4; 𝑗𝑖 = 𝑐𝜚𝑢𝑖  is 4-vector of current density; 𝑢𝑖 = 𝑑𝑥𝑖 𝑑𝑠  is 4-vector of 

speed; 𝜚 is space charge density. 

We expand the integrand, transform and integrate by parts 

 

𝑆 =  
1

𝜇
 −

1

2
 
𝜕𝐴𝑖

𝜕𝑥𝑘
 

2

+
1

2

𝜕

𝜕𝑥𝑘
 𝐴𝑖

𝜕𝐴𝑘

𝜕𝑥𝑖
 + 𝜇𝑗𝑖𝐴𝑖 𝑑Ω

=  
1

𝜇
 −

1

2
 
𝜕𝐴𝑖

𝜕𝑥𝑘
 

2

+ +𝜇𝑗𝑖𝐴𝑖 𝑑Ω +  
1

2𝜇
𝐴𝑖

𝜕𝐴𝑘

𝜕𝑥𝑖
𝑑𝑆𝑘  .

                     (II. 3.4) 

 

In the second integral of the final expression (II. 3.4), the limits of integration are infinity, where the 

field disappears when integrating over the coordinates. When integrating with respect to time, the 

initial and final points of variation are fixed, and there the variation of the integral is zero. 

Consequently, the last integral in expression (II. 3.4) vanishes. Thus, we obtain a new very simple 

expression for the density of the Lagrange function 

 

Λ = −
1

2𝜇
 
𝜕𝐴𝑖

𝜕𝑥𝑘
 

2

+ 𝑗𝑖𝐴𝑖  .                                           (II. 3.5) 

 

This kind of density of the Lagrange function can be found in textbooks on quantum 

electrodynamics [2].The expression (II. 3.5) is completely equivalent to the expression (II. 3.1). 

II.4 Maxwell's equations in the Lorentz gauge 

Now we can get the "equations of motion", i.e. equations for finding the potentials of the 

electromagnetic field generated by the 4-vector of the current 𝑗𝑘 . To this end, we write the 

functional (the action integral), which we will vary. 

𝛿𝑆 =   −
1

𝜇

𝜕𝐴𝑖

𝜕𝑥𝑘

𝜕𝛿𝐴𝑖

𝜕𝑥𝑘
+ 𝑗𝑖𝛿𝐴𝑖 𝑑Ω .                                (II. 4.1) 

 

Integrating by parts, we obtain 

𝛿𝑆 = −
1

𝜇
  

𝜕𝐴𝑖

𝜕𝑥𝑘
𝛿𝐴𝑖 𝑑𝑆𝑘 +  

1

𝜇
 
𝜕2𝐴𝑖

𝜕𝑥𝑘
2 + 𝜇𝑗𝑖 𝛿𝐴𝑖𝑑Ω = 0.       (II. 4.2) 

The first integral over the hypersurface 𝑆𝑘  vanishes for the same reasons as the last integral in 

(VI.4). Thus, we obtain the final system of equations for the 4-potential 𝐴𝑖  

 

𝜕2𝐴𝑖

𝜕𝑥𝑘
2 = −𝜇𝑗𝑖  ,                                                  (II. 4.3) 
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to which the continuity equations should be added: 

𝜕𝐴𝑖

𝜕𝑥𝑖
= 0    and

𝜕𝑗𝑖
𝜕𝑥𝑖

= 0.                                       (II. 4.4) 

 

The system of equations (II. 4.3)-(II. 4.4) represents the Maxwell equations in the Lorentz gauge: 

 

𝜕2𝐀

𝜕𝑥2
+

𝜕2𝐀

𝜕𝑦2
+

𝜕2𝐀

𝜕𝑧2
−

1

𝑐2

𝜕2𝐀

𝜕𝑡2
= −𝜇𝐣

𝜕2𝜑

𝜕𝑥2
+

𝜕2𝜑

𝜕𝑦2
+

𝜕2𝜑

𝜕𝑧2
−

1

𝑐2

𝜕2𝜑

𝜕𝑡2
= −

𝜚

휀

div𝐀 +
1

𝑐2

𝜕𝜑

𝜕𝑡
= 0

div𝐣 +
𝜕𝜚

𝜕𝑡
= 0 .

                               (II. 4.5) 

Thus, a new expression for the Lagrangian density leads to the correct equations of electrodynamics 

(the Maxwell equations in the Lorentz gauge). It remains unclear why this simple and 

mathematically correct approach is not used to describe the equations of electrodynamics? 

II.5 Energy-momentum tensor and conservation laws 

Analytical mechanics provides a way to construct the energy-momentum tensor from a given 

Lagrange function. The method is described in [1]. The energy-momentum tensor is 

 

𝑇𝑖𝑘 = 𝛿𝑖𝑘Λ −  
𝜕𝐴𝑙

𝜕𝑥𝑖
𝑙

∂Λ

𝜕  
𝜕𝐴𝑙

𝜕𝑥𝑘
 

 ,                                        (II. 5.1) 

where 

 

Λ = −
1

2𝜇
 
𝜕𝐴𝑖

𝜕𝑥𝑘
 

2

.                                                 (II. 5.2) 

 

The calculations yield the following result 

 

𝑇𝑖𝑘 =
1

𝜇

𝜕𝐴𝑙

𝜕𝑥𝑖

𝜕𝐴𝑙

𝜕𝑥𝑘
−

1

2𝜇
𝛿𝑖𝑘  

𝜕𝐴𝑙

𝜕𝑥𝑖
 

2

.                                   (II. 5.3) 

 

It is not difficult to see that the energy-momentum tensor is symmetric:𝑇𝑖𝑘 = 𝑇𝑘𝑖 . It is known that 

the 4-divergence of this tensor for free space (when the fields are described outside sources) is zero, 

i.e. 𝜕𝑇𝑖𝑘 𝜕𝑥𝑘 = 0 . 
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From this expression follows the laws of conservation of energy and momentum of the wave. 

We will write down the results for a space free from the sources of the fields. 

The law of conservation of the energy flux density 𝐒 of the electromagnetic wave field 

 

𝜕𝐒

𝜕𝑡
+

1

𝑐2
grad 𝑤 = 0 .                                              (II. 5.4) 

 

The law of conservation of the energy density 𝑤 of the electromagnetic wave field 

 

div𝐒 +
𝜕𝑤

𝜕𝑡
= 0,                                                (II. 5.5) 

where 

 

𝐒 = −
1

𝜇

𝜕𝐀

𝜕𝑡
div𝐀 −

1

𝜇

𝜕𝐀

𝜕𝑡
× rot𝐀 + 휀  grad 𝜑

𝜕𝜑

𝜕𝑡
 ;                       (II. 5.6) 

 

𝑤 =
1

2𝜇
  div𝐀 2 +  rot𝐀 2 +  

𝜕𝐀

𝜕𝑡
 

2

 −
휀

2
  grad 𝜑 2 +  

𝜕𝜑

𝜕𝑐𝑡
 

2

  .           (II. 5.7) 

 

We analytically have obtained generalized Poynting conservation laws that describe not only 

the law of conservation of the energy density of an electromagnetic wave, but also the law of 

conservation of the energy flux density. 

Let us now represent the vector potential 𝐀 in the form of a sum of a rotational 𝐀1  and an 

irrotational 𝐀2 potential. 𝐀 = 𝐀1 + 𝐀2. 

From the obtained relations, very interesting conclusions follow: 

1) In the general case, the Maxwell equations in the Lorentz gauge describe three different 

types of energy flows: 

The first energy flow is a known flux of transverse electromagnetic waves, described by the 

Poynting vector. Its density is 

𝐒1 = −
1

𝜇

𝜕𝐀1

𝜕𝑡
× rot 𝐀1 = 𝐄 × 𝐇 , (II. 5.8) 

 

where 𝐄 and 𝐇  are curl components of electromagnetic fields. 

The second energy flow is a stream of longitudinal electric waves of the vector potential 𝐀2. 

Its density is 

𝐒2 = −
1

𝜇

𝜕𝐀2

𝜕𝑡
div𝐀2 .                                              (II. 5.9) 
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The third energy flow is stream of longitudinal waves formed by a scalar potential 𝜑. Its 

density is 

𝐒3 =
𝜕𝜑

𝜕𝑡
grad 𝜑.                                                      (II. 5.10) 

 

2)The energy density and flux densities𝐒1 and 𝐒2 formed by the vector potential 𝐀 are positive, 

and the energy density and the flux density 𝐒3 created by the scalar potential 𝜑 are negative. This is 

not a new fact. This is known to some experts on quantum field theory. But this fact, as usual, is 

little known to physicists who specialize in other areas. 

3)A new interesting consequence follows from the expressions (II. 5.4) and (II. 5.5). In the 

free space, the flux density and energy density must satisfy the wave equation, i.e. the flux density 

and energy density are also retarded, similar to the potentials of the fields of an electromagnetic 

wave: 

∆𝐒 −
1

𝑐2

𝜕2𝐒

𝜕𝑡2 = 0;           ∆𝑤 −
1

𝑐2

𝜕2𝑤

𝜕𝑡2 = 0 .                              (II. 5.11) 

 

This means that the solution of some problems, for example, by diffraction of waves associated 

with the solution of vector wave equations, can be reduced to the same problems, but described by 

the wave equation for the scalar energy density 𝑤.In other words, in principle, sometimes it is 

possible to reduce the cumbersome calculations when solving similar problems. 

4)  The results obtained can easily be extended to any wave processes described by the wave 

equation. We have obtained conservation laws for electromagnetic waves in free space. The 

Poynting energy conservation law can be generalized by including the power density of the field 

sources. The results are listed in Table 1. 

5)  The limiting transition from wave phenomena to quasi-static phenomena is impossible in 

principle because of the negative energy of the field of the scalar potential. At the same time, it is 

impossible to solve the electromagnetic mass problem within the framework of retarded potentials. 

These fundamentally new results change a lot in understanding the phenomena of electrodynamics 

and allow you to get rid of misconceptions and prejudices. 

Table 1 

Transverse waves of the vector potential 

𝐒1 = −
1

𝜇

𝜕𝐀1

𝜕𝑡
× rot 𝐀1 𝑤1 =

1

2𝜇
  rot𝐀1 

2 +  
𝜕𝐀1

𝑐𝜕𝑡
 

2

  𝑝1 = −𝐣1
𝜕𝐀1

𝜕𝑡
 

Longitudinal waves of the vector potential 

𝐒2 = −
1

𝜇

𝜕𝐀2

𝜕𝑡
div𝐀2 𝑤2 =

1

2𝜇
  div𝐀2 

2 +  
𝜕𝐀2

𝑐𝜕𝑡
 

2

  𝑝2 = −𝐣2

𝜕𝐀2

𝜕𝑡
 

Longitudinal waves of the scalar potential 

𝐒3 = 휀
𝜕𝜑

𝜕𝑡
grad𝜑 𝑤3 = −

휀

2
  grad𝜑 2 +  

𝜕𝜑

𝜕𝑐𝑡
 

2

  𝑝3 = 𝜚
𝜕𝜑

𝜕𝑡
 

 



                                                                                                        Boson Journal of Modern Physics (BJMP)  

                                                                                                                                                  ISSN: 2454-8413   

 
Volume 4, Issue 2 available at www.scitecresearch.com/journals/index.php/bjmp                                      392|                                           

II.6 The condition for the absence of longitudinal waves 

It is obvious that longitudinal waves will not exist if there are no sources that excite these waves. 

To solve this problem, we need to consider the right-hand side of the Maxwell equations in the Lorentz 

gauge for the potentials 𝐀2 and 𝜑 creating longitudinal waves. We write down the necessary equations 

for analysis. 

  ∆𝐀2 −
1

𝑐2

𝜕2𝐀2

𝜕𝑡2 = −𝜇𝐣2;   rot𝐀2 = 0; rot𝐣2 = 0;                       (II. 6.1) 

 

∆𝜑 −
1

𝑐2

𝜕2𝜑

𝜕𝑡2 = −
𝜚

휀
;                                              (II. 6.2) 

 

div𝐀2 +
1

𝑐2

𝜕𝜑

𝜕𝑡
= 0 .                                     (II. 6.3) 

 

Let us use here the idea of L. D. Landau. [1] on the possibility of eliminating one of the four 

equations (see Chapter 3, paragraph 18, "Gradient Invariance"). For example, we can eliminate the 

equation for the scalar potential in order to bring two wave equations (II. 4.5) to one vector 

equation.For this purpose, in (II. 6.1) we differentiate the equation for 𝐀2 in time, and in (II. 6.2) we 

apply the gradient operator to all the terms. And then we summarize the results. We obtained the 

wave equation for the longitudinal electric field 𝐄𝐿 

 

∆𝐄𝐿 −
1

𝑐2

𝜕2𝐄𝐿

𝜕𝑡2 = ∆  −
𝜕𝐀2

𝜕𝑡
− grad 𝜑 

−
1

𝑐2

𝜕2

𝜕𝑡2  −
𝜕𝐀2

𝜕𝑡
− grad 𝜑 = 𝜇

𝜕𝐣2

𝜕𝑡
+

1

휀
grad 𝜚 .

                     (II. 6.4) 

 

Thus, the electric field that determines the longitudinal waves of the vector 𝐄𝐿 is described by 

the expression (II. 6.4). On the right side there are sources of longitudinal electric field. 

In order to the field 𝐄𝐿 = 0, it is necessary that the sources of this field are absent, i.e. it 

is necessary that 

𝜇
𝜕𝐣2

𝜕𝑡
+

1

휀
grad 𝜚 = 0.                                             (II. 6.5) 

 

Besides, we can use the continuity equation for the irrotational current component 

div 𝐣2 +
𝜕𝜚

𝜕𝑡
= 0 .                                                   (II. 6.6) 

 

Both conditions (II. 6.5) and (II. 6.6) lead to the following final wave equations 
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∆𝐣2 −
1

𝑐2

𝜕2𝐣2

𝜕𝑡2 = 0    and    ∆𝜚 −
1

𝑐2

𝜕2𝜚

𝜕𝑡2 = 0.                (II. 6.7) 

 

We found an interesting fact: the absence of longitudinal waves will be if and only if the 

charge density and the density of the irrotational current component satisfy the wave equation, i.e. 

are "late" or "outstripping"! 

II.7 Discussion of the results of Chapter II 

The conclusions that we have obtained have a rigorous mathematical confirmation. We have to 

comprehend them. This is important, since standard textbooks on field theory (on electrodynamics) 

give completely different results. Let us start in order. 

1. We have established that the Maxwell equations in the Lorentz gauge can describe three 

types of flows: 𝐒1 is the standard flux density of a transverse electromagnetic wave; 𝐒2 is the flux 

density of the longitudinal wave of the vector potential; 𝐒3 is the flux density of the longitudinal 

wave of the scalar potential. 

2. There are two problems. The first problem: how does the flow of longitudinal waves 

correlate with the Maxwell equations in the Coulomb gauge, where there exist only transverse 

waves (flux density 𝐒1)? The second problem is the problem of matching experiments. Until now, in 

nature, no longitudinal waves have been observed experimentally, although in order of magnitude 

these waves should have the same order of magnitude as the longitudinal waves of the vector 

potential. All this casts doubt on "gauge invariance". 

3.  The condition for mutual cancellation of longitudinal waves of the scalar and vector 

potential gives hope that gauge invariance should occur under certain conditions. As we have seen, 

this is not always possible. 

4. The condition for the absence of longitudinal waves imposes stringent conditions on the 

densities of external currents and charges. They should be functions of advanced and retarded 

potentials. For this reason, we would call them "non-inertial". As a consequence, the fields of 

inertial charges should be described (strange as it may seem) by other equations within the 

framework of Maxwell's equations. Recall that we do not change the mathematical formalism of 

classical electrodynamics. We rethink it and give a new interpretation, eliminating mistakes and 

prejudices. 

5. We have established that the Poynting vector has applicability limits. It can not be used to 

describe charge fields. For example, the electromagnetic charge mass is negative, since the field 

energy of the scalar potential is negative. 

We will continue to discuss all these questions in other Chapters. Perhaps the results presented 

above were received by someone earlier. But we have not found them in the scientific and technical 

literature. 

III. THEFORGOTTEN CONSERVATION LAW OF UMOV 

III.1  The Umov Vector 

In the previous chapter, we obtained results that should be stated simultaneously with the new 

ones, since they are connected by a single logic. We list the outlined problems. 

1. The problem of the electromagnetic mass of an inertial charge. 

2. Conditions for the validity of gauge invariance. 

3. Inertial and non-inertial charges and currents. 
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Obviously, the solutions that we find will generate new questions that require an answer. In 

this chapter, we will mainly deal with mathematical problems. Questions of interpretation, 

questions related to the Lorentz transformation, we will consider later. Now we will continue to 

seek a solution to the problem of the electromagnetic mass of inertial charges, as well as to analyze 

the mathematical features of the solutions of Maxwell's equations. 

Let us prove the Umov conservation law for inertial charges. We write the Maxwell equations 

in the Lorentz gauge 

𝜕2𝐴𝑖

𝜕𝑥𝑙
2 = −𝜇𝑗𝑖  ,                                                  (III. 1.1) 

 

𝜕𝐴𝑖

𝜕𝑥𝑖
= 0    and

𝜕𝑗𝑖
𝜕𝑥𝑖

= 0.                                       (III. 1.2) 

 

where𝑢𝑖 = 𝑑𝑥𝑖 𝑑𝑠 , 𝑗𝑖 = 𝑐𝜚𝑢𝑖 , 𝐴𝑖 = 𝜑𝑢𝑖 𝑐 , the values of 𝜚 and 𝜑 are taken in the reference frame 

associated with the charge (v= 0). 

We show that the law of conservation of Umovimplies from Eq. (III.1.1).To prove this, we 

multiply the right and left parts of the equation (III.1.1) by −𝑐 2𝜇 ∙ 𝜕𝐴𝑘 𝜕𝑥𝑖  and transform the 

result obtained. 

The right part will be 

 

𝑐

2
𝑗𝑖

𝜕𝐴𝑘

𝜕𝑥𝑖
=

1

2
𝑐2𝜚𝑢𝑖

𝜕𝐴𝑘

𝜕𝑥𝑖
=

𝑐2𝜚

2

𝜕𝜑𝑢𝑘

𝜕𝑥𝑖
𝑢𝑖 =

𝑐2

2
𝜚𝜑

𝑑𝑢𝑘

𝑑𝑠
= 0.            (III. 1.3) 

 

So, the right-hand side vanishes, since the potential 𝜑 is taken in its own frame of reference, where 

it does not depend on time, and the external forces do not act on the charge, and it does not 

experience acceleration 𝑑𝑢𝑘 𝑑𝑠 = 0 . 

The left part will be 

 

 −
𝑐

2𝜇

𝜕𝐴𝑘

𝜕𝑥𝑖

𝜕2𝐴𝑖

𝜕𝑥𝑙
2 = −

𝑐

2𝜇

𝜕

𝜕𝑥𝑖
 𝐴𝑘

𝜕2𝐴𝑖

𝜕𝑥𝑙
2  =

𝑐

2

𝜕

𝜕𝑥𝑖
 𝐴𝑘𝑗𝑖 = 𝑐

𝜕

𝜕𝑥𝑖
 
𝜚𝜑

2
𝑢𝑘𝑢𝑖 = 0.        (III. 1.4) 

 

Thus, we obtained on the left-hand side an expression for the divergence of the energy-flux density 

tensor for the charge field. If the components of this tensor are divided by the square of the speed of 

light and are integrated over the spatial volume, we obtain an expression for the energy-momentum 

tensor𝑇𝑖𝑘  of a relativistic particle with the electromagnetic mass 𝑚𝑒 . 4-divergence of the tensor 𝑇𝑖𝑘  

is determined by the expression: 

𝜕

𝜕𝑥𝑖
 𝑇𝑖𝑘 =

𝜕

𝜕𝑥𝑖
 𝑚𝑒𝑐𝑢𝑖𝑢𝑘 = 0.                                    (III. 1.5) 
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It follows from the expression obtained that the relativistic momentum of the electromagnetic mass 

is constant. This is obvious, since the forces do not act on the charge, and the charge moves at a 

constant speed (𝜕𝐏𝑒 𝜕𝑡 = 0). 

From (III.1.4) follows the Umov law of conservation of energy, which has the standard form: 

 

div𝐒𝑢 +
𝜕𝑤

𝜕𝑡
= 0,                                                    (III. 1.6) 

 

where 𝐒𝑢 =
𝑤𝐯

 1− 𝑣 𝑐  2
, 𝑤 =

𝜚𝜑

 1− 𝑣 𝑐  2
is the flux density and the energy density of the charge field. 

It is not difficult to see that the expression obtained corresponds to the classical expression up 

to a relativistic factor. And why do Maxwell's equations correspond to two different energy-

momentum conservation laws? The answer is simple: each law corresponds to a specific functional 

solution (one law for retarded potentials, the other for instantaneous potentials within the Maxwell 

equations). 

Umov’s law describes the conservation of the energy of instantaneously acting potentials, and 

Poynting’slaw of conservation of the energy is applicable only for retarded potentials! This 

circumstance is key to understanding the phenomena of electrodynamics. Instantaneous potentials 

are "hidden" in the equation 𝐴𝑖 = 𝜑𝑢𝑖 𝑐  and condition (III.1.2). 

 

III.2Some remarks about instantaneous action at a distance 

 

Thus, in Maxwell's equations (even in the Lorentz gauge), the wave (retarded and advanced) 

potentials and the instantaneously acting potentials realizing actio in distans (action-at-the-distance) 

"get along". 

O.D. Khvolson writes in his "Course of Physics" [3] (§ 4. Actio in distans): “The term “actio 

in distans”, i.e. “Action at a distance” denotes one of the most harmful teachings that have ever 

dominated in physics and hindered its development: it is a doctrine that allowed the direct action of 

something (A) to something else (B), which is from him on a certain and so a great distance, that 

there cannot be any contact between A and B .... 

... The disciple of Newton, Cotes, in the preface to the second edition of Principia, which 

Newton did not read before it was printed, first clearly expressed the idea of "actio in distans", that 

the bodies are directly attracted. On the one hand, the certainty that the view expressed in the 

preface to his book is approved by Newton, on the other - the grandiose development of celestial 

mechanics based entirely on the law of universal gravitation, as a fact, and not requiring any of its 

explanations, made scientists forget about the pure descriptive character of this law and see in it 

the complete expression of a really occurring physical phenomenon ...  

... The idea of action in the distant past, which prevailed in the last century, received new food, 

was further strengthened when, at the end of the century, it turned out from Coulomb's experiments 

that both magnetic and electrical interactions can be reduced to interactions of special hypothetical 

substances (two electricity and two magnetisms), which occurs directly in the distance and 

according to laws, quite analogous to Newton's law. ... In the first half of this century (XIX century 

- our note), actio in distans dominated science in full. .... 
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... At the present time, it has become common to believe that actio in distans should not be 

allowed into any area of physical phenomena. But how to drive it out of the doctrine of universal 

gravitation?” 

History really develops in a spiral. What was previously perceived as a natural explanation 

later turned into an absurdity. Now we are back to instantaneous action at a distance. And this is 

natural. Physicists have not analyzed to the end possible solutions to the Maxwell equations. It 

seemed to them (the intuition had let slip!) that the retarded potentials exhausted all sorts of 

interactions. Now we have to take a "step back" to go further. 

In Chapter II, we obtained a result that actually denies the possibility of electrostatic 

(magnetostatic) interaction of inertial charges due to the negative magnitude of the electromagnetic 

mass that results from retarded potentials. The point is not even in quantitative relationships, 

but in a qualitative difference: the interaction energy has a negative sign! This leads to the 

fact that the charges of the same sign should be attracted, and the opposite signs must be repelled! 

This is absurd. 

Above we strictly deduced the Umov’s law of conservation, of which is associated with 

instantaneous action at a distance! The circle of the spiral ends. 

III. 3Some remarks about causality and the concept of “interaction” 

Now we have to describe the model of instantaneous interaction at a distance and connect this 

interaction with the principle of causality. 

Let us quote GSE [4] (namely, the article "Interaction in physics"): “INTERACTION in 

physics, the impact of bodies or particles on each other, leading to a change in the state of their 

motion. In the mechanics of Newton, the mutual action of bodies on each other is quantitatively 

characterized by force. A more general characteristic of I. is the potential energy. Initially, in 

physics, the idea was established that I. between bodies can be carried out directly through an empty 

space, which does not take any part in the transfer of I.; while I. moves instantly.... This was the so-

called. the concept of long-range action ...It has been proved that I. electrically charged bodies is 

not instantaneously realized and the displacement of one charged particle leads to a change in the 

forces acting on other particles, not at the same instant, but only after a finite time. ... Accordingly, 

there is a "mediator" that carries out the I. between the charged particles. This mediator was called 

an electromagnetic field. .... There was a new concept - the concept of short-range action, which 

was then extended to any other I.” 

Let us give our interpretation of this concept. "INTERACTION" is a philosophicalcategory 

that reflects the spatially-temporal process of mutual influence of the material objects under 

consideration. So, the elementary interaction is a process (!), which proceeds in an elementary 

volume for a small time interval. The total interaction consists of the sum of the elementary ones. 

We want to emphasize once again that interaction is not a field, a substance or a material 

object. Any local interaction is a process that can be characterized by intensity in the chosen local 

volume, but not by the velocity of displacement of an elementary volume in space. The volume itself 

can move relative to the observer, but this displacement is not the "speed of propagation of 

interaction"!Interaction is impossible without mutual contact between objects. "Mutual contact" at a 

given point in space belongs to two objects at the same time. Therefore, the concept of "the speed of 

propagation of interactions" loses its physical meaning. 

So, the process is not a material object. Consequently, the concept of "the speed of 

propagation of interactions" has no basis. This is an empty, meaningless concept (a concept 

that has no physical meaning). To illustrate, let us consider an example. Let two charges be 

at a great distance from each other. Coulomb instantaneous forces we neglect. We will 
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consider the interaction with the help of retarded potentials. Let us assume that the first 

charge was acted upon by an object that changed the position of the first charge in space. 

The first charge emits a perturbation wave, which after a while will reach the second charge 

and will affect it. 

Question: where can this "speed of spreading of interactions" be “inserted” here? Which part 

of the described process is the answer to this term? There is no such speed in nature! The described 

process of interaction consists of three parts: 

1. The interaction of the first charge with an object and the appearance of a perturbed wave 

propagating from the charge. 

2.  The propagation of an electromagnetic wave from the first charge to the second. The usual 

process of wave propagation is flowing, and there are no interactions! 

3. Then the interaction of the second charge with the disturbed wave begins. 

The question of cause-effect relations in classical electrodynamics was considering detail by O. 

D. Jefimenko in [5]. Note that there are many different paradoxes, somehow related to cause-

effect relations in classical electrodynamics (see, for example, [6]). 

Now it is useful to consider the physical model of interaction at a distance. Imagine that the 

platform descends from the hill, and after striking it strikes the other, standing in its way. Such a 

collision refers to a "point" contact type. We put an elastic spring between the carts. If the spring 

has a mass, then when the moving cart is struck along the spring along the spring, a compression 

wave will propagate. The speed of this wave will depend on the rigidity and mass of the spring. 

 

Fig. 2 Collision of carts. 

 

Suppose now that the mass of the spring is zero. In the limit, the velocity of propagation of a 

wave from a moving cart to a stationary one and back will be infinite. The collision of the carts will 

no longer be a "point", since the carts are separated by a spring. However, the interaction will retain 

its contact character. Such an interaction was called a contact interaction of a point type. 

Now we can consider the case of interaction of electric or gravitational charges. There are two 

possible explanations. The electromagnetic mass of a resting charge is determined by the formula 

 

𝑚 =  
𝜚𝜑

2𝑐2 𝑑𝑉.                                                     (III. 3.1) 

 

According to this approach, the inertial charge mass is concentrated in the charge itself. 

Consequently, the electric field surrounding the charge has no inertial properties. It is like an 

inertial spring, considered earlier. An analog of this field is the lines of force, which have elastic 

properties. They determine the contact nature of the interaction. Thus, the instantaneous action at a 
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distance does not contradict the principle of causality and has its analogue interaction of a contact 

type. 

III.3a  Special results 

Below we present the results of the research by Dr. M.V. Korneva (Physical faculty, 

department of electronics, Voronezh State University, Russia). She allowed us to use them in our 

article. 

Speed of propagation of interactions. We have already written that interaction is a process. 

An obligatory condition for interaction is the presence of contact between objects. If there is direct 

contact, then interaction is possible. If there is no contact, then there is no interaction. An example 

of the lack of interaction in the presence of a contact is the intersection of two waves that go in 

different directions. The interaction of waves is absent due to the principle of superposition in 

classical electrodynamics. Direct contact is an area common to two objects. Therefore, the term 

“propagation speed of interactions” should belong to two objects at once or not. This is the main 

reason for the lack of a strict definition of the concept of “the speed of the spread of interactions.” 

Generally speaking, this term has no physical meaning. 

Class of transformations. However, the problem of speed limits is preserved by the 

relativistic factor 1  1 − 𝑉2 𝑐2  . It turns out that the Lorentz transformation is not the only 

transformation preserving the invariance of the Maxwell equations. We will show this. We shall 

seek a class of transformations of 4-coordinates for which the wave equations retain their shape in 

accordance with the Galileo-Poincaré principle. 

Consider two inertial reference frames 𝐾 and 𝐾0, which move relative to each other with 

velocity 𝑉 along the 𝑥-axis. The space-time coordinates of the system 𝐾 𝑥, 𝑦, 𝑧, 𝑐𝑡 must be related 

to the corresponding coordinates𝐾0 𝑥0 , 𝑦0 , 𝑧0, 𝑐𝑡0 using the transformation matrix 𝑻 𝑉 𝑐   . 

 

 𝑿0 =  𝑻 𝑉 𝑐    𝑿 ,                                                    (III. 3a. 1) 

 

where   𝑿 and  𝑿0 are vector columns of 4-coordinates,  𝑻 𝑉 𝑐    is the matrix of  transformation, 

depending only on the speed of the relative motion of the compared inertial systems. 

The following requirements are imposed on the matrix  𝑻 : 

1)the determinant of the matrix must be equal to one det 𝑻 = 1; 

2) there must exist an inverse transformation matrix from 𝐾0 to 𝐾, i.e. the matrix  𝑻 𝑉 𝑐   −1; 

3) the matrix of the inverse transformation must be obtained by replacing 𝑉 by −𝑉. This 

follows from the equality of inertial reference systems 𝑻 𝑉 𝑐   −1 =  𝑻 −𝑉 𝑐   . The 

product 𝑻 𝑉 𝑐   ∙  𝑻 −𝑉 𝑐   =  𝑬 , where  𝑬  is the unit diagonal matrix. 

 

From these conditions it is possible to determine the general form of the matrix of transformations 

of coordinates and time preserving the invariant form of the wave equations. Equations 

corresponding to (III.3a.1) can be written in the following form: 

 

𝑥0 = 𝑥 1 + 𝑓2 𝑉 𝑐  − 𝑉𝑡;𝑦0 = 𝑦;  𝑧0 = 𝑧;   𝑐𝑡0 = 𝑐𝑡 1 + 𝑓2 𝑉 𝑐  − 𝑥 𝑉 𝑐 ,       (III. 3a. 2) 

 



                                                                                                        Boson Journal of Modern Physics (BJMP)  

                                                                                                                                                  ISSN: 2454-8413   

 
Volume 4, Issue 2 available at www.scitecresearch.com/journals/index.php/bjmp                                      399|                                           

where 𝑓 𝑉 𝑐   is an odd function relative to 𝑉 𝑐 , 𝑉 is the relative velocity of the inertial 

systems.The conditions listed above are not sufficient, unfortunately, to determine the explicit form 

of the function 𝑓 𝑉 𝑐  . It can be 𝑉 𝑐 , or sin 𝑉 𝑐  , or sinh 𝑉 𝑐  , etc.At low velocities, when the 

function 𝑓 𝑉 𝑐  = 𝑉 𝑐  is much less than one, we have the general result: 

 

𝑥0 = 𝑥  1 +
 𝑉 𝑐  2

2
 − 𝑉𝑡; 𝑦0 = 𝑦;  𝑧0 = 𝑧;   𝑐𝑡0 = 𝑐𝑡  1 +

 𝑉 𝑐  2

2
 − 𝑥 𝑉 𝑐 .     (III. 3a. 3) 

 

We give some special cases: 

 

A) If 𝑓 𝑉 𝑐  = 𝑣  𝑣2 − 𝑐2  then we have the Lorentz transformation 

 

𝑥0 =
𝑥 − 𝑣𝑡

 1 −  𝑣 𝑐  2
;𝑦0 = 𝑦;  𝑧0 = 𝑧;   𝑐𝑡0 =

𝑐𝑡 − 𝑥 𝑣 𝑐 

 1 −  𝑣 𝑐  2
,                        (III. 3a. A) 

 

where 𝑣 is the velocity entering into the Lorentz transformation. 

B)If 𝑓 𝑉 𝑐  = 𝑉 𝑐 then we have a modified transformation  

𝑥0 = 𝑥 1 +  𝑉 𝑐  2  − 𝑉𝑡; 𝑦0 = 𝑦;  𝑧0 = 𝑧;   𝑐𝑡0 = 𝑐𝑡 1 +  𝑉 𝑐  2 − 𝑥 𝑉 𝑐 .        (III. 3a. B) 

We see that the speed V in the modified transformation is related to the speed 𝑣 in the Lorentz 

transformation by the relation𝑉 𝑐 = 𝑣  𝑣2 − 𝑐2  . 

C)If 𝑓 𝑉 𝑐  = sinh 𝑉 𝑐  then we have 

𝑥0 = 𝑥 ∙ cosh 𝑉 𝑐  − 𝑐𝑡 sinh 𝑉 𝑐  ;
𝑦0 = 𝑦;  𝑧0 = 𝑧;

 𝑐𝑡0 = 𝑐𝑡 ∙ cosh 𝑉 𝑐  − 𝑥 ∙ sinh 𝑉 𝑐  .
                                      (III. 3a. C)

 

We believe that direct measurements are necessary to determine the form of the function 

𝑓 𝑉 𝑐  . 

Group transformation properties. To each function 𝑓 𝑉 𝑐  in expression (III.3a.2),there 

corresponds a transformation that forms a group. Such a group is non-commutative. This property 

creates insurmountable difficulties in describing phenomena. We illustrate this with elementary 

examples. 

Let the light source 𝑆 move along the x-axis with the velocity V, as shown in Fig. 3.We need to 

find a reference system where this source is at rest. 
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Fig. 3 

The observer N sees this source at an angle 𝜃. We can go to the correct system of the report in 

several ways. For example, we can expand the vector V by the sum of two orthogonal components. 

One component𝑉1 = 𝑉 cos 𝜃 is directed towards the observer N; the other component 𝑉2 = 𝑉 sin 𝜃 

has an orthogonal direction. 

We can, for example, first use the transformation 𝐓 𝑉 cos 𝜃 𝑐   , and then apply the 

transformation  𝐓 𝑉 sin 𝜃 𝑐   . The general transformation then has the form: 

 𝑻  
𝑉

𝑐
  =  𝑻  

𝑉 cos𝜃

𝑐
  ∙  𝑻  

𝑉 sin𝜃

𝑐
   .                     (III. 3a. 4) 

But we can swap the transformation matrices: 

  𝑻  
𝑉

𝑐
  =  𝑻  

𝑉 sin 𝜃

𝑐
  ∙  𝑻  

𝑉 cos 𝜃

𝑐
   .                                 (III. 3a. 5) 

 

Using the expression (III.3a.4) or (III.3a.5), we find an inertial system in which the light source S is 

at rest: 

 𝑿0 =  𝑻 𝑉 𝑐    𝑿 and  𝑿 0 =   𝑻  𝑉 𝑐    𝑿  ,                            (III. 3a. 6) 

 

where  𝑿  is a 4-matrix column  𝑥, 𝑦, 𝑧, 𝑖𝑐𝑡 .Obviously, we will get two different results, that is, we 

will find two different frames of reference 𝑿0 ≠   𝑿 0 . This is the first difficulty caused by the 

noncommutativity of the group. 

Let us now consider the second difficulty. We will try, with the help of the inverse 

transformation, to return the particle back to our frame of reference. It is possible to quickly find the 

matrix of the inverse transformation if in the matrix of the direct transformation we replace the sign 

of the velocity 𝑉 by the opposite one: 

 𝑻  
𝑉

𝑐
  

−1

=  𝑻  
−𝑉

𝑐
  .                                                 (III. 3a. 7) 

 

However, because of noncommutativity, we cannot return the source to our frame of 

reference to the same point. 
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 𝑻  
𝑉

𝑐
  ×  𝑻  

𝑉

𝑐
  

−1

=  𝑻  
𝑉

𝑐
  ×  𝑻  

−𝑉

𝑐
  

=  𝑻  
𝑉 cos 𝜃

𝑐
  ∙  𝑻  

𝑉 sin𝜃

𝑐
  ×  𝑻  

−𝑉 cos 𝜃

𝑐
  ∙  𝑻  

−𝑉 sin𝜃

𝑐
  ≠  𝐄  ,

          (III. 3a. 8) 

 

where  𝑬  is the unit diagonal matrix. 

Now we can state a hypothesis and answer the question: Why did not Poincaré defend his 

priority in creating the STR? We assume that Poincaré saw the non-commutative character of the 

Lorentz group. He understood that the direction he had previously had no prospects. Poincaré lost 

interest in this idea and did not defend his priority. Perhaps he was looking for a new solution, but 

premature death violated plans. 

We are sincerely grateful to Dr. M.V. Korneva for providing interesting materials and for the 

possibility of placing them in our article. 

III.4  Instant interaction and the Lorentz transformation 

In the first section of this chapter, we found that Maxwell’s equations describe instantaneously 

acting potentials in addition to retarded potentials. Further we showed that the instantaneous action 

at a distance does not contradict the causality principle and is based on the “contact type” 

interaction model. 

Now we need to understand the nature of “duality” of potentials in Maxwell's equations using 

the example of a scalar potential. We want to answer the questions: why can the wave equations 

(the Lorentz gauge) give solutions in the form of potentials of an instantaneous nature and do not 

such potentials conflict with the Lorentz transformation? We will conditionally call a charge whose 

potential is a retarded, virtual charge. “Non-inertial charges” is a special case of virtual charges. A 

virtual charge can have any speed, and the velocity of a non-inertial charge is fixed and equal to the 

speed of light. However, both types of charges create a retarded potential. 

Let the virtual charge be a sphere on whose surface the charge with a surface density 𝜎 =
𝑞 4𝜋𝑎2 , where 𝑎 is the radius of the sphere, is uniformly distributed. The charge is stationary. The 

equation for the potential of the virtual charge field has the form: 

 

 ∆𝜑 −
1

𝑐2

𝜕2𝜑

𝜕𝑡2
= −

𝑞

4𝜋휀𝑎2
𝛿 𝑟 − 𝑎 .                             (III. 4.1) 

 

The potential at 𝑟 = 0 must be limited. Assume that the virtual charge is born at the initial time 

(𝑡 = 0). To solve the wave equation, we must give the initial conditions. We choose the initial 

conditions to be zero.Here there are two prejudices that we need to show. First, the conviction that 

Maxwell's equations are not capable of describing the "birth" of charges is sufficiently firmly 

entrenched in the minds of those who professionally deal with problems of electrodynamics. 

However, the presence of "initial conditions" refutes this fact. The wave equation describes 

potentials starting from the instant 𝑡 = 0. The right-hand side of the wave equation (by virtue of 

this) is identically zero for 𝑡 < 0.All processes up to the time 𝑡 = 0 are “compressed and captured” 

precisely in the initial conditions. Thus, the process of "appearance" ("birth") of a charge does not 

contradict the mathematical description. Immediately note that this process responds to virtual 

charges and currents. 
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Fig. 4 

In addition, the process of "birth" of a single charge contradicts the law of conservation of charges. 

We show that the linearity of the Maxwell equations allows us to bypass this fact. Consider two thin 

coaxial charged cylinders inserted into each other, as shown in Fig. 4. Due to the fact that charges 

uniformly distributed over the surface have opposite signs and are equal in magnitude, the field 

outside these cylinders (excluding edge effects) will not be observed. Now we move one cylinder 

along the common axis by a very small distance ∆𝑥. Then an “excessive” charge of the negative 

sign will appear to the left of the system edge, and to the right – a positive charge equal in 

magnitude to negative. Thus, in accordance with the law of conservation of charge, we obtained at a 

great distance from each other two dissimilar charges. 

The Maxwell equations in the Lorentz gauge are linear differential equations. For this reason, 

we can use the superposition principle to describe the appearance of potentials of charge fields. In 

other words, we can give a separate description of the “birth” of each of the charges and a 

description of the potential of each of these two charges. Below we do this for a positive charge. 

Potentials of a negative charge can be described in a similar way. 

We will not describe the decision procedure. The potential described by Eq. (III.4.1) is equal to 

the sum of two potentials (Fig. 4), one of which moves from 𝑎 to infinity along the radius, and the 

second to the center and, reflecting from the origin with phase loss by 𝜋 (hard "core" ), moves from 

the center, subtracting from the first for 𝑟 > 𝑎 (Fig. 5). The potential 𝜑 for 𝑟 > 𝑎 is retarded. 

 

Fig.5 

For a point virtual charge (for𝑎 → 0), the potential has the form (𝑟 > 0): 

𝜑 =
𝑞

4𝜋휀𝑟
𝜂 𝑐𝑡 − 𝑟 ;   where𝜂 𝜉 =  

1 𝜉 ≥ 0
0 𝜉 < 0

  .                             (III. 4.2) 

Now we can relate the moment of "birth" of a charge at an infinitely remote time. The charge 

potential in magnitude will be constant, not depending on time. This does not mean that the 
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potential is "static". In each consecutive infinitesimal intervals of time, thin layers of potential "bud 

off" from the charge and are carried one after the other to infinity, decreasing inversely proportional 

to the distance from the charge 𝑟−1.Due to the fact that the resultant charge potential is the 

difference between the retarding potential that is direct and reflected from the "core", it is pointless 

to talk about the presence of a Poynting flow associated with the motion of potentials. 

Let us return to the wave equation (III.4.1). In this equation is “inserted” the Poisson equation 

of the form 

∆𝜑 = −
𝑞

4𝜋휀𝑎2 𝛿 𝑟 − 𝑎  .                                               (III. 4.3) 

It describes the instantaneously acting potential, “generated” by an inertial charge. We do not 

change the designation of the charge (𝑞), although we will now consider the potential of a not 

virtual but an inertial charge. We hope that this will not lead anyone astray. It seems that equations 

(III.4.1) and (III.4.3) formally coincide if we assume that the charge is at rest and exists for an 

infinitely long time. However, the solution of equation (III.4.3), which is equal to 

𝜑 =
𝑞

4𝜋휀𝑟
                                                             (III. 4.4) 

differs from the solution (III. 4.2) by a factor which for 𝑡 → ∞  tends to 1.But this is not the same, 

since the potential boundary (III.4.2) and, consequently, the potential of the virtual charge 

themselves exist only in the part of space for𝑟 < 𝑐𝑡 (the factor 𝜂 𝑐𝑡 − 𝑟 ), while the potential 

(III.4.4) of the inertial charge realizes instantaneous action at a distance and exists arbitrarily long in 

the entire free space. 

The Maxwell equations in the form (III.4.3) do not describe the process of "birth" of 

instantaneous acting potentials when an inertial charge occurs. Such a potential and its source exist 

arbitrarily long ago and are connected by an instantaneous connection in all points of space. Recall 

that the signs of the energies of the potentials (III.4.2) and (III.4.4) are opposite! 

It seems that there is a limiting transition from retarded potentials (III.4.1) to instantaneous 

potentials (III.4.3). To do this, it is sufficient to set the speed of light c to infinity in equation 

(III.4.1). But this is an illusion. In the wave equation, the quantity c is the parameter of the equation 

having the dimension of the square of the velocity! 

To see this, we write down the potentials of a moving virtual charge using the Lorentz 

transformation. Using the Lorentz transformation or solving the equation "in the forehead," it is not 

difficult to show that the retarded potential 𝜑∗ of a moving virtual charge is 

𝜑∗ =
𝑞

4𝜋휀𝑅0 1 −  𝑣 𝑐  2
𝜂 𝑐𝑡 − 𝑅0 ,                                       (III. 4.5) 

where 

𝑅0 =
  𝑥 − 𝑣𝑡 2 +  1 − 𝑣2 𝑐2   𝑦2 + 𝑧2 

 1 −  𝑣 𝑐  2
 .                                            

We did not abuse the strokes over independent variables. The coordinates and time refer to the 

observation point separated from the radiation point by the distance 𝑅0. We pay attention to the 

factor 𝜂, which cannot be omitted even for a very long lifetime of the charge! This error is typical 

for all textbooks, without exception. The authors carefully copy each other, not bothering to check 

themselves and ignoring the physical content of the formulas. 

Usually, the Galilean transformation is applied to the equation (III.4.5), which is not entirely 

correct. If we are guided by the invariance of the wave equation with respect to the observer's 
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transition from one inertial frame of reference to another, then simultaneously we transform not 

only the wave equation, but also the Poisson equation "hidden" in it. 

Uniform motion of the inertial charge creates a potential 𝜑0. Under the transformation, the 

coordinates change, and the form of the Poisson equation for this potential also changes. In the new 

frame of reference, it acquires the form 

∆𝜑0 −
𝑣2𝜕2𝜑0

𝑐2𝜕𝑥2 = −
𝑞

4𝜋휀𝑎2 1 −  𝑣 𝑐  2
𝛿 𝑥 − 𝑣𝑡, 𝑦, 𝑧 

or

𝜕2𝜑0

𝜕𝑥2  1 −
𝑣2

𝑐2 +
𝜕2𝜑0

𝜕𝑦2 +
𝜕2𝜑0

𝜕𝑧2 = −
𝑞

4𝜋휀𝑎2 1 −  𝑣 𝑐  2
 .

            (III. 4.6) 

The solution of Eq.  (III.4.6) is well known: 

𝜑0 =
𝑞

4𝜋휀𝑅0 1 −  𝑣 𝑐  2
=

𝑞

4𝜋휀  𝑥 − 𝑣𝑡 2 +  1 − 𝑣2 𝑐2   𝑦2 + 𝑧2 
 .     (III. 4.7) 

A similar result will be obtained if the Lorentz transformation to expression (III.4.4) is 

applicable. The whole problem is that until now all textbooks state that expression (III.4.7) is a 

retarded (!) potential! In fact, it resembles a retarded shape, but is instantaneously acting at a 

distance potential. Once again I want to repeat: “The authors of the textbooks diligently copy each 

other, not bothering to check themselves, and do not delve into the physical content of the 

formulas!” 

Let us now consider the influence of the Lorentz gauge on the solution of the wave equation. It 

can be established that the potential φ0 is instantaneous in another way. The scalar potential 𝜑0 of a 

moving charge satisfies equation 

     ∆𝜑0 −
𝜕2𝜑0

𝜕𝑡2 = −
𝑞

4𝜋휀𝑎2 1 −  𝑣 𝑐  2
𝛿 𝑥 − 𝑣𝑡, 𝑦, 𝑧 .                (III. 4.8) 

In turn, the vector potential of a uniformly moving charge is related to the scalar potential by a 

relation that can be written in the form 

𝐀0 = 𝜑0𝐯 𝑐𝟐 .                                                (III. 4.9) 

There is, in addition, the Lorentz gauge condition 

div 𝐀0 +
1

𝑐2

𝜕𝜑0

𝜕𝑡
 .                                           (III. 4.10) 

If we substitute the expression for the vector potential in the Lorentz gauge condition, then these 

additional conditions jointly give the continuity equation for the scalar potential 𝜑 

div 𝐯𝜑0 +
𝜕𝜑0

𝜕𝑡
= 0.                                      (III. 4.11) 

It follows from (III.4.11) that the derivative of the potential in time (which we can regard as the 

initial condition for 𝑡 = 0) cannot be given arbitrarily. For example, it cannot be zero, as in the 

solution of the wave equation (III.4.1). Moreover, we can, using (III.4.11), calculate the second 

derivative of the potential with respect to time and exclude it from the wave equation. When a point 

inertial charge moves along the 𝑥 axis, the following expressions can be found: 
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𝜕𝜑0

𝜕𝑡
= −div 𝐯𝜑0 = −𝑣

𝜕𝜑0

𝜕𝑥
;

𝜕2𝜑0

𝜕𝑡2 = −
𝜕

𝜕𝑡
 𝑣

𝜕𝜑0

𝜕𝑥
 = −𝑣

𝜕

𝜕𝑥

𝜕𝜑0

𝜕𝑡
−

𝜕𝜑0

𝜕𝑥

𝜕𝑣

𝜕𝑡
= 𝑣2

𝜕2𝜑0

𝜕𝑥2 −
𝜕𝜑0

𝜕𝑥

𝜕𝑣

𝜕𝑡
.

                (III. 4.12) 

If the motion is uniform, then expression (III.4.12) is simplified: 

𝜕2𝜑0

𝜕𝑡2 = −
𝜕

𝜕𝑡
 𝑣

𝜕𝜑0

𝜕𝑥
 = 𝑣2

𝜕2𝜑0

𝜕𝑥2 .                                              (III. 4.13) 

Taking (III.4.13) into account, it is easy to reduce the wave equation to a Poisson equation (to an 

equation of elliptic type): 

𝜕2𝜑0

𝜕𝑥2  1 −
𝑣2

𝑐2 +
𝜕2𝜑0

𝜕𝑦2 +
𝜕2𝜑0

𝜕𝑧2 = −
𝑞

4𝜋휀𝑎2 1 −  𝑣 𝑐  2
𝛿 𝑥 − 𝑣𝑡, 𝑦, 𝑧 .         (III. 4.14) 

Pay attention to the following fact. Now we do not need to specify the initial conditions, since the 

time derivative of the potential 𝜑0 in equation (III.4.14) is absent!Next, we make the change  

𝜉 =
𝑥

 1 −  𝑣 𝑐  2
 

and turn expression (III.4.14) into the Poisson equation 

𝜕2𝜑

𝜕𝜉2
+

𝜕2𝜑

𝜕𝑦2
+

𝜕2𝜑

𝜕𝑧2
= −

𝑞

휀
𝛿  𝜉 1 −  𝑣 𝑐  2 − 𝑣𝑡, 𝑦, 𝑧 .                    (III. 4.15) 

The solution of this equation is the Lorentz potential, which is long-range (Poisson’s equation!) 

𝜑𝐿 =
𝑞

4𝜋휀  𝑥 − 𝑣𝑡 2 +  1 − 𝑣2 𝑐2   𝑦2 + 𝑧2 
 .                               (III. 4.16) 

The potential (III.4.16) satisfies the equations (III.4.1) and (III.4.14) simultaneously. As already 

mentioned, the potential (III.4.16) is not retarded. He describes the instantaneous action at a 

distance, because it is the solution of equation (III.4.15). 

From this follows the possibility of removing another prejudice: the Lorentz-covariance of the 

equations of physics is not a guarantee of the absence of instantaneous action at a distance! The 

Lorentz transformation is an ordinary algebraic transformation. It does not turn the retard potentials 

into instantaneous ones and back! 

IV. ANALYSIS OF THE RELATIVISTIC INTERACTION OF CHARGES 

IV.1 The action integral for two charges 

In the previous chapter, we showed that the mass of a charge is of an electromagnetic nature 

(Umov's law). This allows us to state a consistent theory of the interaction of electric charges. As is 

known, the action integral for a free relativistic particle is: 

𝑆 =   −𝑚𝑐 

𝑠2

𝑠1

𝑑𝑠.                                                           (IV. 1.1) 

Substituting the expression (III.1.6) into the expression (IV.1.1), we obtain 



                                                                                                        Boson Journal of Modern Physics (BJMP)  

                                                                                                                                                  ISSN: 2454-8413   

 
Volume 4, Issue 2 available at www.scitecresearch.com/journals/index.php/bjmp                                      406|                                           

𝑆 =     −
𝜚𝜑

2𝑐
 𝑑𝑉 

𝑠2

𝑠1

𝑑𝑠 =    
𝜚𝜑

2𝑐
𝑢𝒊

2 𝑑𝑉 

𝑠2

𝑠1

𝑑𝑠 =
1

2𝑐
   𝑗𝑖𝐴𝑖𝑑𝑉 

𝑠2

𝑠1

𝑑𝑠 ,        (IV. 1.2) 

where𝑗𝑖 = 𝑐𝜚𝑢𝑖 is 4-vector of current density, 𝐴𝑖 = 𝜑𝑢𝑖 𝑐  is 4-potential of the charge. The 

potential𝐴𝑖 = 𝜑𝑢𝑖 𝑐  is instantaneous. The expression (IV.1.2) uses the identity 𝑢𝒊
2 = −1. 

Let our charge be divided into two charges (𝑒 = 𝑒1 + 𝑒2). Let us investigate the case when the 

distance between charges is much larger than the dimensions of the charges. As an aid, we write the 

electric dipole moment of the charge. The integrand of expression (IV.1.2) is 

𝑗𝑖𝐴𝑖𝑑𝑠𝑑𝑉 = 𝐴𝑖𝑐𝜚𝑢𝑖𝑑𝑠𝑑𝑉 = 𝐴𝑖𝑐𝜚𝑑𝑥𝑖𝑑𝑉 = 𝐴𝑖𝑑𝑃𝑖
𝑒𝑑𝑉 .                     (IV. 1.3) 

The value 𝑑𝑃𝑖
𝑒 = 𝑐𝜚𝑑𝑥𝑖 is the differential of the electric dipole moment of the charge. Let us 

assign a numerical index for potentials of charges, for charge fields, etc. Parameters of the first 

charge have the index 1 or (1), the parameters of the second charge have the index 2 or (2). We now 

consider the expression (IV.1.3) for two charges: 

𝑆 =
1

2𝑐
   𝑗𝑖𝐴𝑖 𝑑𝑉 

𝑠2

𝑠1

𝑑𝑠 =  
1

2𝑐
  𝑑𝑃𝑖

𝑒 2 
+ 𝑑𝑃𝑖

𝑒 1 
 

𝑠2

𝑠1

 𝐴𝑖
 1 

+ 𝐴𝑖
 2 

 𝑑𝑉.     (IV. 1.4) 

4-potentials have the following physical meaning. 𝐴𝑖
 2 

 is the vector potential acting on the charge 

𝑒1. This potential is generated by the charge 𝑒2 in a place where there is a charge 𝑒1. The potential 

𝐴𝑖
 1 

 is determined in the same way. 

𝑆 =  
1

2𝑐
  𝑑𝑃𝑖

𝑒 1 
+ 𝑑𝑃𝑖

𝑒 2 
 

𝑠2

𝑠1

 𝐴𝑖
 1 

+ 𝐴𝑖
 2 

 𝑑𝑉

=  
1

2𝑐
  −𝜚1𝜑1𝑑𝑠 − 𝜚2𝜑2𝑑𝑠 + 𝑐𝜚1𝑢𝑖

 1 
𝐴𝑖

 2 
𝑑𝑥𝑖

 1 
+ 𝑐𝜚2𝑢𝑖

 2 
𝐴𝑖

 1 
𝑑𝑥𝑖

 2 
 

𝑠2

𝑠1

𝑑𝑉.

   (IV. 1.5) 

Now we integrate each term of the integrand over an infinite volume V, taking into account the 

expressions for the electromagnetic masses of the charges: 

 
𝜚1𝜑1

2𝑐2 𝑑𝑉 = 𝑚1and 
𝜚2𝜑2

2𝑐2 𝑑𝑉 = 𝑚2  .                    (IV. 1.5a) 

Now consider the third term in expression (IV.1.5). The dimensions of the charges are much smaller 

than the distance between the charges. This condition allows us to consider the potential of the first 

charge𝐴𝑖
 2 

 as a constant. 

1

2𝑐
 𝑗𝑖

 1 
𝐴𝑖

 2 
𝑑𝑉 =

1

2𝑐
𝜑2𝑢𝑖

 1 
𝑢𝑖

 2 
 𝜚1 𝑑𝑉 =

𝑒1

2𝑐
𝜑2𝑢𝑖

 1 
𝑢𝑖

 2 
=

𝑒1

2
𝑢𝑖

 1 
𝐴𝑖

 2 
,    (IV. 1.6) 

where 

𝑒1 =  𝜚1𝑑𝑉 and     𝐴𝑖
 2 

=
𝜑2𝑢𝑖

 2 

𝑐
 .                     (IV. 1.6a) 

Similarly, the fourth term of expression (IV.1.5) can be integrated. So, we get the following result: 
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𝑆 =   −𝑚1𝑐𝑑𝑠 +
1

2
𝑒1𝑢𝑖

 1 
𝐴𝑖

 2 
𝑑𝑠 +

1

2
𝑒2𝑢𝑖

 2 
𝐴𝑖

 1 
𝑑𝑠−𝑚2𝑐𝑑𝑠 

𝑠2

𝑠1

 .            (IV. 1.7) 

Now we use the following expressions:𝑢𝑖
 1 

𝑑𝑠 = 𝑑𝑥𝑖
 1 

 and𝑢𝑖
 2 

𝑑𝑠 = 𝑑𝑥𝑖
 2 

. 

𝑆 =   −𝑚1𝑐𝑑𝑠 +
1

2
𝑒1𝐴𝑖

 2 
𝑑𝑥𝑖

 1 
+

1

2
𝑒2𝐴𝑖

 1 
𝑑𝑥𝑖

 2 
−𝑚2𝑐𝑑𝑠 

𝑠2

𝑠1

 .                 (IV. 1.8) 

We can give other forms to the expression (IV.1.8), if we use identities 

−𝑑𝑠 =  𝑢𝑖
 1 

 
2
𝑑𝑠 = 𝑢𝑖

 1 
𝑑𝑥𝑖

 1 
= 𝑢𝑖

 2 
𝑑𝑥𝑖

 2 
and    𝑒1𝜑2 = 𝑒2𝜑1 .                 (IV. 1.8a) 

These action integrals are convenient for obtaining equations of charge motion. 

𝑆 =   −𝑚1𝑐𝑑𝑠 + 𝑒1𝐴𝑖
 2 

𝑑𝑥𝑖
 1 

−𝑚2𝑐𝑑𝑠 

𝑠2

𝑠1

,                                 (IV. 1.9) 

𝑆 =   −𝑚1𝑐𝑑𝑠 + 𝑒2𝐴𝑖
 1 

𝑑𝑥𝑖
 2 

−𝑚2𝑐𝑑𝑠 

𝑠2

𝑠1

.                                 (IV. 1.10) 

IV.2  Equation of motion of one charge in the field of another charge 

Now, from equation (IV.1.9), we can derive the equation of motion for the first charge 𝑒1, 

provided that the position and velocity of the charge 𝑒2 are "frozen" (𝛿𝑥𝑖
 2 

= 0, 𝛿𝑢𝑖
 2 

= 0). We 

change the coordinates of the first charge (see [2]): 

𝛿𝑆 =   −𝑚1𝑐𝛿𝑑𝑠 + 𝑒1𝐴𝑖
 2 

𝛿𝑑𝑥𝑖
 1 

+ 𝑒1𝛿𝐴𝑖
 2 

𝑑𝑥𝑖
 1 

 

𝑠2

𝑠1

.                                 (IV. 2.1) 

Using [2], we can write the final expression: 

𝛿𝑆 =   −𝑚1𝑐
𝑑𝑢𝑖

 1 

𝑑𝑠
+ 𝑒1  

𝜕𝐴𝑘
 2 

𝜕𝑥𝑖
 1 

−
𝜕𝐴𝑖

 2 

𝜕𝑥𝑘
 1 

 𝑢𝑘
 1 

 𝛿𝑥𝑖
 1 

𝑑𝑠 = 0

𝑠2

𝑠1

.                (IV. 2.2) 

From (IV.2.2), due to the arbitrariness of the variation𝛿𝑥𝑖
 1 

, we obtain the equation of motion of the 

first charge: 

𝑚1𝑐
𝑑𝑢𝑖

 1 

𝑑𝑠
= 𝑒1  

𝜕𝐴𝑘
 2 

𝜕𝑥𝑖
 1 

−
𝜕𝐴𝑖

 2 

𝜕𝑥𝑘
 1 

 𝑢𝑘
 1 

.                                      (IV. 2.3) 

If we remove indices 1 and 2, we obtain the standard equation of motion, which is given in all 

textbooks on electrodynamics. Similarly, it is easy to obtain the equation of motion for the second 

particle using expression (IV.1.10). We can also obtain the equation of motion of the second 

particle by replacing the indices 1 by 2 and 2 by 1 in the expression (IV.2.3). 

Here we see an amazing fact. Physicists use instantaneous potentials, not fully understanding 

this! 
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It is easy and convenient to show the physical meaning of the results obtained using examples 

of the classical interaction of charges, when 𝑣 is much smaller than 𝑐. 

V. THE AMBIGUITIES IN DESCRIBING THE INTERACTION OF INERTIAL 

CHARGES 

V.1 Preliminary remarks 

Attention is drawn to the similarity of the laws of quasi-static electrodynamics for inertial 

charges, obeying the Coulomb law, and the law of universal gravitation of Newton. Considering in 

this Chapter electrodynamics errors, we will keep in mind this analogy. Classical mechanics is built 

on the principle of relativity of Galileo, who argues that the fundamental laws of physics are the 

same in all inertial systems. In classical mechanics, the realization of this principle is obvious (for 

example, the law of universal gravitation, Coulomb's law, etc.). In the above laws, the interaction is 

determined by the relative distance between the two bodies 𝐑12 = 𝐑1 − 𝐑2. The observer's 

transition to a new inertial system preserves the relative distance between the two bodies. 

In standard textbooks, the nonrelativistic expression for charge interactions is derived 

carelessly (for example, [1], [9], etc.). The Lagrange function responsible for the interaction is 

written as follows [1]: 

𝐿int = 𝑐𝑒𝑢𝑖𝐴𝑖 ≈ −𝑒𝜑 + 𝑒𝐯𝐀.                                               (V. I. 1) 

This is an incorrect (erroneous) result. It can be assumed that this “inference” is, in fact, an 

elementary fit to obtain the Lorentz formula for two nonrelativistic interacting charges. To show the 

error, we will write the expression (V.I.1) in detail 

𝐿12 =
𝑐𝑒1𝑢𝑖1𝑒2𝑢𝑖2

4𝜋휀𝑟12
=

𝑐𝑒1𝑒2𝑢12

4𝜋휀𝑟12
  ,                                          (V. I. 2) 

where𝑢12 = 𝑢𝑖1𝑢𝑖2 is the true scalar invariant under the Lorentz transformation: 

𝑢12 ≈ −  1 +
 𝐯1 − 𝐯2 

2

2𝑐2  = − 1 −
𝐯1𝐯2

𝑐2 +
𝑣1

2 + 𝑣2
2

2𝑐2   .                         (V. I. 3) 

The terms in the brackets (right-hand side (V.I.3)), satisfy condition 

𝑒1𝑒2 𝑣1
2 + 𝑣2

2 

8𝜋휀𝑐2𝑟12
≪

𝑚1𝑣1
2

2
+

𝑚2𝑣2
2

2
 .                                    (V. I. 4) 

It seems that we can, based on (V.I.4), neglect members in (V.I.2) to obtain (V.I.1). But this is a 

mistake. It had a negative impact on the development of physics. In addition to the incorrect 

mathematical result, a epistemological error entered the physics simultaneously. Thanks to it, work 

and power ceased to be invariant quantities, not only with respect to the Lorentz transformation, but 

also with respect to the Galilean transformation. 

V.2  Interaction of two charges 

We will correct errors in describing the interaction of inertial charges. Recall that we must 

reject the requirement of the Lorentz-covariance of the equations. Now we are not limited by this 

requirement in the choice of the interaction Lagrangian. The only condition is its invariance under 

the Galileo transformation. Such an interaction Lagrangian should depend on the relative distance 

between the charges and the relative velocity of their motion. 

Let us write down the general form of the charge interaction Lagrangian: 

𝐿int = −𝑒1𝑒2

𝑓  
𝑣12

2

𝑐2  

4𝜋휀𝑟12
  ,                                                  (V. 2. 𝐿) 
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where 𝑓  
𝑣12

2

𝑐2  can be 1 +  
𝑣12

𝑐
 

2

, or  ch  
𝑣12

𝑐
 , or

1

 1 −  
𝑣12

𝑐
 

2

etc.                 

The relative velocity is 𝑣12 =  𝐯1 − 𝐯2 . The modern technique allows experimentally to establish 

the form of the function 𝑓for both small and large velocities. 

We write the action integral: 

𝑆 =   
𝑚1𝑣1

2

2
−

𝑒1𝑒2

4𝜋휀𝑟12
𝑓  

𝑣12
2

𝑐2  +
𝑚2𝑣2

2

2
 𝑑𝑡 .                              (V. 2.1) 

For the convenience of analysis and the simplicity of the calculations, we confine ourselves to small 

relative velocities. The proliferation of conclusions for high velocities does not present fundamental 

difficulties. We write down the action integral 𝑆 for 𝑣 ≪ 𝑐: 

𝑆 ≈   
𝑚1𝑣1

2

2
−

𝑒1𝑒2

4𝜋휀𝑟12
 1 +

 𝐯1 − 𝐯2 
2

2𝑐2  +
𝑚2𝑣2

2

2
 𝑑𝑡 .                   (V. 2.2) 

As we see, this expression corresponds to the formula (V.I.3). We can give the expression (V.2.2) 

the standard form: 

𝑆 ≈   
𝑚1𝑣1

2

2
− 𝑒1𝜑2 −

1

2
𝑒1𝐯12𝐀2 +

𝑚2𝑣2
2

2
 𝑑𝑡 ,                 (V. 2.3) 

where 𝐯12 = 𝐯1 − 𝐯2,𝐀2 = 𝜑2𝐯12 𝑐2  is the vector potential acting on the charge 𝑒1, which is 

created by the charge 𝑒2moving relative to the charge 𝑒1.From the action integral (V.2.3) follows 

the equation of motion for the first charge, provided that the charge 𝑒2 is “frozen” (𝐑2 and 𝐯2 are 

constant): 

𝑚1

𝑑𝐯1

𝑑𝑡
= −𝑒1grad 𝜑2 − 𝑒1

𝑑𝐀2

2𝑑𝑡
−

1

2
𝑒1 𝐯1 − 𝐯2 × rot𝐀2 .           (V. 2.4) 

The equation of motion of the second charge can be obtained in the same way: 

𝑚2

𝑑𝐯2

𝑑𝑡
= −𝑒2grad 𝜑1 − 𝑒2

𝑑𝐀1

2𝑑𝑡
−

1

2
𝑒2 𝐯2 − 𝐯1 × rot𝐀1 ,                   (V. 2.5) 

where 𝐀1 = 𝜑1 𝐯2 − 𝐯1 𝑐2  .It seems that the factor 1/2 in expression (V.2.5) contradicts the 

modern point of view. However, no direct experiments were performed to directly verify the 

interaction of two charges at low velocities 𝑣 ≪ 𝑐. We consider below the interaction of a charge 

with a current and show the correctness of our calculations. 

Expressions (V.2.4) and (V.2.5) are invariant under the Galileo transformation. The interaction 

of charges does not depend on the choice of the inertial system by the observer. The third Newton 

principle (the action is equal to the counteraction) is always fulfilled: 𝐅12 = −𝐅21. 

V.3 Interaction of a charge and a conductor with a current 

We will assume that the individual positive and negative charges of the conductor are much 

larger than the free charge 𝑞, and we will not take into account its effect on the conductor. At the 

point where the charge q moves, the positive charge of the conductor creates a potential 𝜑1, and the 

negative potential 𝜑2 as shown in Fig. 6. The conductor is quasineutral, i.e. the total scalar potential 

outside the conductor is equal to zero 𝜑1 + 𝜑2 = 0. 
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We write the Lagrange function, taking into account that it is equal to the sum of Lagrangians 

of charge interaction with positive and negative charges of the conductor. 

𝐿 =
𝑚𝑣2

2
− 𝑞𝜑1  1 +

 𝐯1 − 𝐯  2

2𝑐2  − 𝑞𝜑2  1 +
 𝐯2 − 𝐯  2

2𝑐2   .                       (V. 3.1) 

Taking into account the quasineutrality of the conductor, we can write the Lagrange function in the 

following form: 

𝐿 =
𝑚𝑣2

2
− 𝑞𝜑1

 𝐯1 − 𝐯2  𝐯 −
 𝐯1+𝐯2 

2
 

𝑐2   .                            (V. 3.2) 

 

Fig. 6Notation: 𝐯1 is speed of positive charges of a conductor (ions); 𝐯2 is the velocity of conduction 

electrons of the conductor; v is the free charge, 𝐯21  = 𝐯2 − 𝐯1 is the average velocity of the conduction 

electrons in the conductor. 

The expression (V.3.2) can be given the standard form after the introduction of the following 

notation: 

 ∎𝐀 = 𝜑1 𝐯1 − 𝐯2 𝑐2  is a vector potential of the conductor at the charge point 𝑞, 

 ∎𝐯0 =  𝐯1 + 𝐯2 2   is  a base frame velocity, 

          ∎𝐯𝑟 = 𝐯 − 𝐯0 is a velocity of charge q in the base system. 

The basic frame of reference is an inertial system in which the positive charges (ions) of the 

conductor and the conduction electrons move at opposite speeds in equal directions. This is a kind 

of “center of inertia” of conductor charges. The expression (V.3.2) can now be written in “standard” 

form: 

𝐿 =
𝑚𝑣2

2
+ 𝑞𝐯𝑟𝐀 .                                                 (V. 3.2a) 

It is known that the average velocity of conduction electrons in a conductor  𝐯1 − 𝐯2  is very 

small. Therefore, the potential 𝜑1 is practically a function  𝐑 − 𝐯0𝑡 ≈  𝐑 − 𝐯1𝑡 . In other words, 

we can assume that the reference frame of the conductor is connected with the conductor itself. 

Taking this into account, we can write the equation of charge motion, on the right-hand side of 

which there is a Lorentz force 

𝑚
𝑑𝐯

𝑑𝑡
= −𝑞

𝜕𝐀

𝜕𝑡
+ 𝑞𝐯𝑟 × rot𝐀 .                                     (V. 3.3) 

Expression (V.3.3) can be written in another form: 
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𝑚
𝑑𝐯

𝑑𝑡
= 𝑞𝐄′ − 𝑞

𝜕𝐀

𝜕𝑡
+ 𝑞𝐯 × rot𝐀 ,                              (V. 3.3a) 

where𝐄′ = −𝐯0 × rot𝐀 = −𝐯0 × 𝐁. 

This is a known result of the conversion of a magnetic field using the Lorentz transformation 

applied to a charge moving in the reference frame. In the base system, as it was said, the positive 

and negative charges of the conductor have the same speed, but move in opposite directions. The 

charge reference system moves relative to the base system with a velocity 𝐯0 [7], [9]. 

Let us return to the expression (V.3.3) and replace in it the vector potential by the scalar 

𝑚
𝑑𝐯

𝑑𝑡
= 𝑞 grad 𝜑1

 𝐯1 − 𝐯2 𝐯𝑟

𝑐2   .                                       (V. 3.4) 

It follows from (V.3.4) that the charges do not interact with the conductor if: 

1) 𝐯1 − 𝐯2 = 0: trivial case of absence of current in the conductor; 

2)  𝐯 − 𝐯0 = 0:  the charge rests in the base reference system of the conductor; 

3)   𝐯1 − 𝐯2 𝐯𝑟 = 0, but 𝐯1 − 𝐯2 ≠ 0 and 𝐯𝑟 ≠ 0,The point charge moves in the base system 

perpendicular to the conductor. If we were to consider a spherical extended charge, then with this 

motion, it would begin to rotate. 

Usually the average velocity of conduction electrons is small. Therefore, it is possible to 

assume approximately that the basic reference frame of a conductor is connected with a conductor. 

If the moving charge crosses the lines of force of the magnetic field, then the force acts on the 

charge. If the charge is at rest in the base system, then there are no magnetic forces. We can extend 

the concept of the "reference frame" to closed circuits with current, electromagnetic and magnets. A 

magnet, an electromagnet, etc. there are basic reference frames. 

V.4  Work and force. Errors of interpretation 

Let us now find out the content of the concepts “force” and “work”. Incorrect interpretation of 

these concepts gives rise to paradoxes and errors in explaining the phenomena of electrodynamics. 

Especially many such errors in the explanation of magnetic phenomena. We will discuss them in the 

next chapter (Chapter VI). 

The concept of “force” can be given in classical mechanics the following definition: Force is 

the property of a material object (the source of a given property), which manifests itself in the 

interaction of material objects and leads to a change in the state of the interacting objects 

(momentum, trajectory, etc.) 

Note that the force is the property of the object, and not a certain material object. “Naked” 

force, i.e. forces without a source (as properties without an object) do not happen. Power always has 

its source. The sources of forces can be a variety of material objects: a charge with its own field, an 

electromagnetic wave that carries its own property - a force characteristic, i.e. tension of its field, 

etc. Force manifests itself only in interaction, i.e. in mutual action. The mutuality of action in 

classical mechanics is reflected by Newton's third principle. For the manifestation of strength, at 

least two objects are needed that must interact. 

Work is the second side (energy characteristic) of interaction. We give the following definition: 

Work is an objective quantitative characteristic of a qualitative change in the motion of matter that 

characterizes the energy side of interaction. Work is an objective concept. The work is determined 

in mechanics by the relative motion of material objects and does not depend on the position of the 

observer. This property determines the invariance of the work with respect to the Galilean 
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transformation; independence of work from volitional choice by the observer of the inertial frame of 

reference. Below we will consider examples to explain the characteristic errors of interpretation. 

Example 1. Consider two interacting bodies. The equations of motion of these bodies have the 

form: 

𝑚1

𝑑𝐯1

𝑑𝑡
= −𝐅12and𝑚2

𝑑𝐯2

𝑑𝑡
= −𝐅21  .                           (V. 4.1) 

Let us calculate the differential of the work. 

𝑑𝐴 = 𝐅12 𝐯1 − 𝐯2 𝑑𝑡 = 𝐅12𝑑𝐑12 = 𝐅21𝑑𝐑21  .                            (V. 4.2) 

The work done by each particle is 

𝑑𝐴1 =
𝑚2

𝑚1 + 𝑚2
𝐅12𝑑𝐑12and𝑑𝐴2 =

𝑚1

𝑚1 + 𝑚2
𝐅12𝑑𝐑12 .                     (V. 4.3) 

Expressions (V.4.3) do not depend on the choice of the inertial frame of reference. Often in 

textbooks you can find the following expression for the work done by bodies: 

𝑑𝐴1
 = 𝐅12𝐯1𝑑𝑡   and  𝑑𝐴1

 = 𝐅12𝐯1𝑑𝑡 .                        (V. 4.4) 

Expression (V.4.4) can be regarded as a standard epistemological error. Power is always a property 

of the interacting body. This property is mistakenly detached from the particle and transformed into 

some kind of independent substance that rests in the observer's reference frame. As a result of this 

approach, “work” appears, which depends on the subjective choice of the inertial frame of reference 

(virtual work) by the observer. It can not be regarded as a real work [7]. 

Example 2. In textbooks, one can read that 

𝑑𝐴 = 𝑑
𝑚2

2
= 𝑒𝐯𝐄𝑑𝑡 .                                         (V. 4.5) 

We must limit the use of this expression to the following condition. Expression (V.4.5) is valid only 

if the source of the field 𝐄is at rest in the observer's reference frame. In the general case, expression 

(V.4.5) is incorrect, since it does not take into account the motion of the source of the electric field. 

Example 3. Another example of epistemological error. A description of the so-called 

"convection" potential is given in the textbook [7]. Let the charges rest. The Coulomb forces of two 

fixed charges are balanced by mechanical forces. An observer who moves past charges with a 

constant speed, it will seem that the moment of forces acts on the charges. 

Briefly expound the explanation given in [7] (pp. 348-349): 

Two electrons moving parallel to each other at the same speed 𝐮 interact with each other. The 

strength of the interaction is determined by the expression for the Lorentz force 

𝐅 = 𝑒 𝐄 + 𝐮 × 𝐁 ,                                                             (V. 4.6) 

which, by expansion of the vector product, becomes 

 𝐅 = −
𝑒2

4𝜋휀
∇ 

1 − 𝑢2 𝑐2 

𝑠
 = −∇𝜓,                                            (V. 4.7) 

where 𝜓 is called the convection potential.We draw your attention to the fact that the convective 

potential is instantaneous, not delayed. Further we quote [7] (p. 349): “… we would conclude that 

the force 𝐅2exerted by the electron 𝑒1 at  𝑥1 , 𝑦1, 𝑧1  on the electron 𝑒2 at  𝑥2 , 𝑦2 , 𝑧2  is 

perpendicular to the ellipsoid 

𝑠 =   𝑥1 − 𝑥2 
2 +  1 − 𝑢2 𝑐2    𝑦1 − 𝑦2 

2 +  𝑧1 − 𝑧2 
2  = constant,          (V. 4.8) 



                                                                                                        Boson Journal of Modern Physics (BJMP)  

                                                                                                                                                  ISSN: 2454-8413   

 
Volume 4, Issue 2 available at www.scitecresearch.com/journals/index.php/bjmp                                      413|                                           

as shown in Fig. 8 (Fig. 19-3 in [7]).” However, we will continue quoting [7]: “On the other hand, 

the reaction force𝐅1on the electron 𝑒1 is perpendicular to the corresponding ellipsoid (shown by the 

dashed line in the figure) referred to the co-moving electron 𝑒2. Hence, except when the line 

between the electrons is parallel or perpendicular to the direction of motion, the forces of action and 

reaction do not appear be collinear. Therefore if the two electrons were connected by a rigid bar 

there would be a couple acting about an axis perpendicular to the plane of the line joining the 

electrons and the direction of motion. This will be recognized as the torque also predicted by 

Ampe re’s law when current elements are substituted for the moving charges, and which Trouton 

and Noble attempted to measure. The paradox produced by the observation of a null effect indicates 

the difficulties in interpreting the velocity of moving charges in pre-relativistic electrodynamics. 

 

Fig. 7 

The torque predicted here is real enough to an observer moving with a velocity 𝐮 relative to the 

two charges, and should in that case be measurable if there were no mechanical considerations 

involved. We have already noted that the assumption of a “rigid” bar is not consistent with the 

theory of relativity… The problem as a whole is similar to that in which the torque is balanced by 

the gain in angular momentum: in every case equilibrium is a property invariant under a Lorentz 

transformation.” 

It is clear that here we are not dealing with an explanation of the physical phenomenon 

predicted by SRT, but with a declaration about the “invariance” of equilibrium in any inertial frame 

of reference (“in every case equilibrium is a property invariant under a Lorentz transformation”[7]) 

Let us, however, try to find out the cause of the paradox. We will not now consider the 

formalism of relativistic formulas. We will be interested only in the epistemological 

(epistemological) error of explanation. The error is due to the existing definition of the field 

strength. 

In numerous textbooks one can read (see, for example, [11]):“The electric field intensity is 

defined as the force per unit positive charge that would be experienced by a stationary point charge, 

or test charge, at a given location in the field:𝐄 = 𝐅 𝑞𝑡 .”A similar definition was adopted in 

[12]:“The electric field strength at a given point in space is numerically equal to the force acting on 

a single positive point charge (test charge)”.However, the definitions given are incomplete and, 

therefore, they are erroneous. The test charge must rest at the point 𝑃 𝑥, 𝑦, 𝑧 , where the field (the 

observer's reference frame) is measured. This is very important! If the charge moves through the 

point 𝑃 𝑥, 𝑦, 𝑧  at a velocity𝐮, then another force 𝐅′ ≠ 𝐅 will act on the charge.For this reason, the 

explanation in [7] contains an error. The author attributes the force to the moving charge, which 
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would act on a stationary test charge. As a consequence, we calculate the torque that does not exist 

in reality. We recall that the force is invariant under the Galileo transformation. Let us give our 

definition of the electric field strength 𝐄, which is suitable for relativistic and classical variants. 

Definition. The electric field strength (at a given point in space and at a given instant of time) 

is the force characteristic of this field, numerically equal to the force acting on a unit positive 

charge (ie, on a test charge), at rest at this point, and having a direction, coinciding with the 

direction of the force vector. 

 

This definition is correct: First, the philosophical side of the definition of “force 

characteristics” allows us not to perceive tension as an independent kind of matter. It reflects one of 

the properties of a phenomenon such as an electromagnetic field. We note that the “energy 

characteristic” of the electric field is the potential (including convectional), since it is defined 

through the concept of “work”. Force is one of the properties of a wave or material body. Without 

the introduction of such refinements, confusion is possible. For example, some researchers 

mistakenly try to consider force as an independent “material object”, existing as it were, regardless 

of the source that creates this force. The charges interact, and the forces arising between them are 

the properties of the charges (the sources of these forces).Secondly, we want to draw attention to 

the appearance in the definition of the concept of “strength” of the word “at rest”. The point is that 

at a given moment of time at a given point in space we can “place” a moving single charge in the 

field under investigation. Naturally, another force will act on it from the field side (another field 

strength will be measured), different from the one that would act on the charge at rest. 

Let us give an example. Let us have a homogeneous magnetic field of a magnet, which is at 

rest in our reference frame. If the test charge is at rest, then the magnetic field will not act on it. The 

intensity of the electric field acting on the test unit charge is zero. But if the charge moves with a 

speed 𝐯 relative to the magnet, then, according to the Lorentz formula, the force will act on it and, 

the electric field intensity proportional to it will exist 

 

𝐄 = 𝐅 𝑒 = 𝐯 × 𝐁 .                                                      (V. 4.9) 

 

Let us now consider the case when this magnet with its field moves with a constant velocity 𝐮 

in our frame of reference. Sometimes it is possible to find assertions that in this case also the 

magnetic field will not influence the resting charge. At the same time supporters of this point of 

view “nod” to the above Lorentz formula. Indeed, if the velocity of the charge is zero, then the force 

(the strength of the electric field) must be zero. But this is an erroneous point of view. A moving 

magnetic field generates an electric field strength equal to 

𝐄′ = −𝐮 × 𝐁 .                                                        (V. 4.10) 

 

This tension creates a force that will affect the test charge at rest in our inertial reference frame. 

Under its influence, the free charge starts to move at an accelerated rate, i.e. to do work. Now, 

relying on the definition of the electric field strength, we can give a consistent explanation for the 

“convection potential.” 

So, let us turn to Fig. 8 and consider the field strength created by the first charge 𝑒1, which 

exists at the point in space where the moving charge 𝑒2 is at the moment. For this purpose (in 

accordance with the definition of the concept of “electric field strength”), we place a fixed test 

charge at a given point in space at the time corresponding to the flight of the second charge. 
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Naturally, this resting charge will be acted upon by a force determined by the Lorentz formula. But 

will the same force act on a moving charge? The answer to this question should generally be 

negative. The moving charge will be acted upon by a different force than the one we measured with 

a stationary test charge. 

 

But let us return to the paradox in question. What do we have? And we have a substitution of 

forces, if we speak from the point of view of physics. We illegally substitute the force that acts on 

the moving charge, the other by the force that acts on the charge that is stationary in our reference 

frame. If we calculated the forces calculated for a fixed charge by real forces, then we would not 

find any paradox related to the appearance of the torque. 

Interaction in modern mechanics has an objective character, as is the case in Newtonian 

mechanics. It cannot depend on the choice of an inertial frame of reference by the observer. 

V.5  Interaction of two conductors   

Consider the interaction of two conductors with currents. We can represent the conductor in 

the form of an ionic lattice of positive charges and conduction electrons. Let the first conductor (i.e. 

its positive ion array) move with velocity𝐯1, and the second conductor move with velocity 𝐯3, as 

shown in Fig. 8. 

The Lagrange function is determined by the sum of the pair interactions of positive and 

negative charges of two conductors. We select the volume 𝑑𝑉 in the second conductor. In this 

conductor, 𝜚3 and 𝜚4 are the densities of positive and negative charges, respectively. Let in this 

volume positive charges of the first conductor create a potential𝜑1, and negative ones 𝜑2. 

 

Fig. 8 The notation in the figure is as follows: 𝐯1 isthe velocity of positive charges of conductor 1; 𝐯2 is 

the average velocity of negative charges of conductor 1; 𝐯3 isthe velocity of positive charges of conductor 2; 

𝐯4 is the average speed of negative charges of conductor 2; 𝐯21 = 𝐯2 − 𝐯1 is the average velocity of 

negative charges in conductor 1 relative to positive ones; 𝐯43 = 𝐯4 − 𝐯3  is  the average velocity of negative 

charges in conductor 2 relative to positive. 

We regard both conductors as quasineutral systems: 𝜚3 + 𝜚4 = 0; 𝜑1 + 𝜑2 = 0.The density of 

the interaction Lagrangian is 
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Λ = −
𝜑1𝜚3

𝑐𝟐  1 +
 𝐯1 − 𝐯3 

2

2𝑐𝟐  −
𝜑1𝜚4

𝑐𝟐  1 +
 𝐯1 − 𝐯4 

2

2𝑐𝟐  

−
𝜑2𝜚3

𝑐2  1 +
 𝐯2 − 𝐯3 

2

2𝑐2  −
𝜑2𝜚4

𝑐𝟐  1 +
 𝐯2 − 𝐯4 

2

2𝑐2  =
𝜑1𝐯12

𝑐2 𝜚3𝐯34 = 𝐣𝐀 ,

                (V. 5.1) 

 

where 𝐣 = 𝜚3𝐯34  is the current density in conductor 2,𝐀 = 𝜑1𝐯12 𝑐2 = 𝜑2𝐯21 𝑐2  is the vector 

potential created by the conductor 1 in the volume 𝑑𝑉 of the conductor 2.We see that the density of 

the Lagrange function coincides with the known function. However, this is only an outward 

resemblance. The form of the function (V.5.1) is a consequence of the complete compensation of 

the Coulomb potentials in quasineutral systems. This is not a relativistic effect. The expression 

(V.5.1) is invariant under the Galileo transformation. 

To obtain the Lagrange function, it is necessary (V.5.1) to integrate over the entire volume 

containing the conductors: 

𝐿 =  𝐣𝐀𝑑𝑉.                                                                       (V. 5.2) 

 

Let the elements of the length of the conductors 𝑑𝑙1 and 𝑑𝑙2 and the dimensions of their cross 

sections 𝑠1 and 𝑠2 be small in comparison with the distance 𝑅12 between these conductors. Then we 

can write the vector potential of the first conductor in a known form: 

𝐀 =
𝜇

4𝜋

𝐼1𝑑𝐥1

𝑅12
,                                                                     (V. 5.3) 

 

where𝐼1 is the current flowing through the cross section of the first conductor,𝐼1 =  𝜚2𝐯21 𝑑𝐬1.We 

substitute the expression (V.5.3) into the formula (V.5.2). 

 

𝐿 =  
𝜇

4𝜋
𝐣
𝐼1𝑑𝐥1

𝑅12
𝑑𝑉 .                                                              (V. 5.4) 

The volume 𝑑𝑉is small. The vector potential 𝐀 can be considered constant in this volume. Taking 

this into account, expression (V. 5.4) takes the final form 

 

𝐿 =
𝜇

4𝜋
𝐣
𝐼1𝑑𝐥1

𝑅12
 𝐣 𝑑𝑉 =

𝜇

4𝜋

 𝐼1𝑑𝐥1 ∙ 𝐼2𝑑𝐥2 

𝑅12
 ,                                          (V. 5.5) 

 

where 𝐼2 =  𝜚4𝐯43 𝑑𝐬2.Note that expression (V.5.5) is invariant under the Galileo transformation. 

Now, based on (V.5.5), we can consider the interaction of two infinitesimal conductors with 

currents, i.e. interaction of two elementary currents. 

 

In order to clarify the features of the interaction of elementary currents, we write down the 

action integral, relying on (V.5.5): 
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𝑆 =  𝐿 𝑑𝑡 =  
𝜇

4𝜋

 𝐼1𝑑𝐥1 ∙ 𝐼2𝑑𝐥2 

𝑅12
𝑑𝑡  .                                        (V. 5.6) 

 

We can vary only two values: 𝐑12vector distance between the two conductors and 𝛗 𝐥1, 𝐥2  the 

angle of mutual orientation of the current element.We will vary 𝐑12  at a constant angle 𝛗 𝐥1, 𝐥2 : 

 

𝛿𝑆 = 𝛿  
𝜇

4𝜋

 𝐼1𝑑𝐥1 ∙ 𝐼2𝑑𝐥2 

𝑅12
𝑑𝑡 =

𝜇

4𝜋
  𝐼1𝑑𝐥1 ∙ 𝐼2𝑑𝐥2 𝛿  

1

𝑅12
 𝑑𝑡

=  
𝜇

4𝜋

 𝐼1𝑑𝐥1 ∙ 𝐼2𝑑𝐥2 

𝑅12
3 𝐑12𝛿𝐑12𝑑𝑡 =  𝐅12 𝛿𝐑12𝑑𝑡 = 0.

        (V. 5.6a) 

 

It follows from this that 

 

𝐅12 =
𝜇

4𝜋

 𝐼1𝑑𝐥1 ∙ 𝐼2𝑑𝐥2 

𝑅12
3 𝐑12 = − 𝐅21  .                                (V. 5.7) 

 

As we see, Newton’s third law is fulfilled.Now we will vary the angle of mutual orientation of the 

current elements 𝛃 𝐥1, 𝐥2  with the unchanged distance 𝐑12 : 

 

𝛿𝑆 =  𝛿
𝜇

4𝜋

 𝐼1𝑑𝐥1 ∙ 𝐼2𝑑𝐥2 

𝑅12
𝑑𝑡 =  

𝜇𝐼1𝐼2

4𝜋𝑅12
  𝑑𝐥1 × 𝛿𝛃 𝐥1, 𝐥2   𝑑𝑡

= − 
𝜇𝐼1𝐼2

4𝜋
  𝑑𝐥1 × 𝑑𝐥2 𝛿𝛃 𝐥1, 𝐥2  𝑑𝑡

=  𝐌21 𝛿𝛃 𝐥1, 𝐥2 𝑑𝑡 = − 𝐌12 𝛿𝛃 𝐥1, 𝐥2 𝑑𝑡 = 0.

         (V. 5.6b) 

 

It follows from this that 

𝐌21 =
𝜇

4𝜋

 𝐼1𝑑𝐥1 × 𝐼2𝑑𝐥2 

𝑅12
= −𝐌12 .                                  (V. 5.8) 

 

The results (V.5.7) and (V.5.8) completely describe the phenomena associated with the interaction 

of two elementary currents. The third law of Newton is not violated. The correctness of the 

derivation can be confirmed by using the expression for the Lorentz force in the absence of 

electrostatic Coulomb forces (𝑞 are charges in the corresponding conductors in Fig. 9): 

𝐅12 = −𝑞2

𝜕𝐀1

𝜕𝑡
+ 𝑞2𝐯2 × rot𝐀1 .                                                  (V. 5.9) 

 

Let us calculate the values: 
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𝐀1 =
𝜑1𝐯1

𝑐2 = 𝜇
𝑞1𝐯1

4𝜋𝑅12
;    𝑞2

𝜕𝐀1

𝜕𝑡
= 𝑞2

𝐯1

𝑐2

𝜕𝜑1

𝜕𝑡
= −

𝜇

4𝜋𝑅12
3 𝑞1𝐯1 𝑞2𝐯2𝐑21 ;

𝑞2𝐯2 × rot𝐀1 = −
𝜇

4𝜋𝑅12
3 𝑞2𝐯2 ×  𝐑21 × 𝑞1𝐯1 .

                (V. 5.9a) 

 

Substituting these expressions into Eq. (V.5.9), we obtain 

 

𝐅12 =
𝜇𝐑21 𝑞1𝐯1 ∙ 𝑞2𝐯2 

4𝜋𝑅12
3 = −𝐅21 .                                                (V. 5.10) 

 

In its form, the expression obtained corresponds to the expression (V.5.7).Indeed, if 𝑞1𝐯1 

corresponds to 𝐼1𝑑𝐥1, and 𝑞2𝐯2 corresponds to 𝐼2𝑑𝐥2, then we come to the expression (V.5.7), which 

was to be shown. 

VI.  PROBLEMS IN EXPLAINING MAGNETIC PHENOMENA 

VI.1 Unipolar induction 

Conventional classical electrodynamics could never give a correct explanation to the 

phenomenon of the unipolar induction (see, for example, [10]). The unipolar generator based on this 

phenomenon first was developed by Michael Faraday in 1831 as one of his explorations of the 

phenomena of induced EMF. Here we give a new explanation to this phenomenon in the framework 

of Newton's classical mechanics. A qualitative explanation does not present fundamental 

difficulties. However, a quantitative example, as a rule, involves cumbersome calculations, for 

which its clarity is lost. This is the first reason that made us look for the simplest models for 

analysis. The second reason was to find the most universal model on which we could explore 

different models of unipolar generators. The model of a unipolar generator is shown in Fig. 9. The 

device contains a current ring equivalent to a magnet, and a conductive disk with a sliding contact. 

The ring and disk can rotate independently of each other with different angular velocities. Such a 

device is universal and allows modeling unipolar generators of different types. For example, if the 

disk and the current ring rotate at the same angular velocity, we have a unipolar generator with a 

rotating magnet. If the current ring is stationary, but the disk rotates, then we are dealing with 

another type of unipolar generator. 

Let us consider the operation of a unipolar generator in the general case. We assume that 

 ≪ 𝑎 (see Fig. 10). In other words, the rotating disk, the current ring and the AVC chain lie in the 

same plane 𝑧 = 0. 
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Fig. 9.  1 is  conducting disk; 2  is a ring with a current; 3 is sliding contact. 

Let us make some preliminary remarks. The EMF of the induction is generated by the current 

ring in two parts of the closed circuit AVCOA. In the first fixed part of the ABC circuit, the EMF of 

induction 𝑈1 is excited. If the ring with the current is stationary, the EMF 𝑈1 = 0. The second 

section, where the induction EMF occurs, is the OC section on the disk. Here, the EMF of 𝑈2 is 

induced. The total EMF in the AVCOA circuit is  

𝑈 = 𝑈1 − 𝑈2 .                                                          (VI. 1.1) 

When 𝜔1 = 0, the whole chain of AVCOA is at rest and the total EMF is zero, 𝑈 = 0. 

The procedure for calculating EMF 𝑈 is simple. We will calculate the total field strength at 

some point D on the 𝑥 axis. The value of 𝑈 is obtained as a result of integration of the total field 

strength. We single out the element 𝑑𝑙 on the ring with current. It can be regarded as an element of 

a current that moves with velocity 𝐯0. 

1. Let the point D of the fixed chain AVC be located at a distance 𝑅 from the 𝑧 axis. It is easy 

to see that the field strength at the point D is
1
 

𝑑𝐄1 = −𝑔𝑟𝑎𝑑 𝑑𝜙 = −
 𝐯12𝐯0 

𝑐2

𝑑𝑞1

𝑑𝜑

𝐑

4𝜋휀𝑅3 𝑑𝜑 ,                           (VI. 1.2) 

where 𝑞1 is the total positive charge of the rotating ring with current, 𝑅 is the distance between 𝑑𝑙 
and the point D,  𝐯0 is the speed of the reference frame of the element with the current dl  𝑣0 , 𝑣12 ≪
𝑐, 

𝑅 =  𝑟2 + 𝑎2 − 2𝑎𝑟 cos 𝜑  .                                            (VI. 1.3) 

                                                             
1
In this chapter, we denote by the symbol 𝜑 the angle of the cylindrical coordinate system, and denote the 

scalar potential by the symbol 𝜙. 
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2. We now consider the point D on a rotating disc. The velocity of the displacement of point D 

is: 

𝑣 = 𝜔2𝑟 .                                                               (VI. 1.4) 

The field strength at this point D is 

𝑑𝐄2 = −
 𝐯12 𝐯0 − 𝐯  

𝑐2

𝑑𝑞1

𝑑𝜑

𝐑

4𝜋휀𝑅3 𝑑𝜑 .                                    (VI. 1.5) 

Let us consider the physical meaning of the equation (VI.1.5). Obviously, the field strength can be 

represented as the sum of the strengths: 

𝑑𝐄2 = 𝑑𝐄2
′ + 𝑑𝐄2

′′ ,                                                          (VI. 1.6) 

where 

𝑑𝐄2
′ = −

 𝐯12𝐯0 

𝑐2

𝑑𝑞1

𝑑𝜑

𝐑

4𝜋휀𝑅3
𝑑𝜑                                               (VI. 1.6a) 

is the field strength, which is excited under the condition that the ring with the current rotates, and 

the conducting disk is stationary, and 

𝑑𝐄2
′′ =

 𝐯12𝐯 

𝑐2

𝑑𝑞1

𝑑𝜑

𝐑

4𝜋휀𝑅3 𝑑𝜑                                                  (VI. 1.6b) 

is the field strength, which is excited under the condition that the conducting disk rotates, and now 

the ring with the current is fixed. 

3.  The total field strength is equal to the difference in the field strengths: 

𝑑𝐄2 = 𝑑𝐄1 − 𝑑𝐄2 .                                                          (VI. 1.7) 

It is easy to see that the components 𝑑𝐸1  and 𝑑𝐸2
′  cancel each other, and we obtain the following 

components of the general field strength𝑑𝐄 : 

𝑑𝐸𝑟 = −𝜇
 𝐯12𝐯 

𝑐2 cos 𝜑
𝑑𝑞1

𝑑𝜑

 𝑎 − 𝑟 cos 𝜑 

𝑅3 𝑑𝜑 ,                          (VI. 1.8) 

𝑑𝐸𝜑 = −𝜇
 𝐯12𝐯 

𝑐2 cos 𝜑
𝑑𝑞1

𝑑𝜑

𝑎 sin𝜑

𝑅3 𝑑𝜑.                                (VI. 1.9) 

The total field strength created by the entire current ring is calculated by integrating these 

expressions in the range from 0 to 2𝜋. It is obvious that in the total field strength 𝐄 only the radial 

component is conserved, because of the parity of 𝑑𝐸𝑟  and the oddity of 𝑑𝐸𝜑 . 

𝑑𝐸𝑟 = −𝜇
𝐼𝑎𝑟𝜔2

4𝜋
 

cos 𝜑  𝑎 − 𝑟 cos 𝜑 

𝑅3 𝑑𝜑

2𝜋

0

;    𝐸𝜑 = 0,                       (VI. 1.10) 

where     𝐼 = 𝑣12

𝑑𝑞1

𝑑𝑙
 , 𝑑𝑙 = 𝑎𝑑𝜑 . 

Now, integrating𝐸𝑟  over 𝑟, we calculate the EMF of induction 𝑈. 

𝑈 =  𝐸𝑟𝑑𝑟 = − 𝜇
𝐼𝑎𝑟𝜔2

4𝜋
  

cos 𝜑  𝑎 − 𝑟 cos 𝜑 

𝑅3
𝑑𝜑

2𝜋

0

 𝑑𝑟.

𝐶

0

𝐶

0

                      (VI. 1.11) 

It can be seen from the formula that this EMF does not depend on the angular velocity 𝜔1. 
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4. Now we show that the EMF (VI.1.11) can be calculated in another way, for example, using 

the Faraday law. 

𝑈 = −
𝑑Φ

𝑑𝑡
 .                                                             (VI. 1.12) 

Consider points C and C*, which are located, as shown in Fig. 10. Point C is located on the 

fixed sliding contact, and C* on the rotating disk.At the initial time 𝑡 the coordinates of these points 

are equal. At the next instant 𝑡 + ∆𝑡  the point C* will move and take the position C**. The total 

flow Φ that flows through the ACC** sector is equal to 

Φ =    𝑟𝐵 𝑟 

𝐶

0

𝑑𝑟 

𝜑 𝑡 

0

𝑑𝜑  .                                              (VI. 1.13) 

This flux Φ does not depend on the angular velocity 𝜔1. Using the expression (VI.1.12), we find the 

EMF 𝑈: 

𝑈 = −
𝑑Φ

𝑑𝑡
= −𝜔2  𝑟𝐵 𝑟 

𝐶

0

𝑑𝑟 ,                                               (VI. 1.14) 

where𝜔2 = 𝑑𝜑 𝑡 𝑑𝑡 . 

 

Fig. 10 

Now, using the Bio-Savart law, we calculate the magnetic field induction 𝐵 𝑟 . 

𝐵 𝑟 =  𝜇
𝐼𝑎

4𝜋

cos 𝜑  𝑎 − 𝑟 cos 𝜑 

𝑅3 𝑑𝜑

2𝜋

0

.                                  (VI. 1.15) 

If we compare equations (VI.1.14) and (VI.1.15) with the expression (VI.1.11), then it turns out that 

they are equivalent. 

Thus, we carried out a detailed analysis of unipolar induction. 

VI.2Marinov Motor 

The principle of the action of the Marinov motor was described in [13], and experiments 

confirming the experiment of Marinov in [14], [15]. One of the realizations of this motor is shown 

in Fig. 11. 
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Fig. 11 

Two horseshoe magnets are connected by opposite poles. In the plane that passes through the 

connection of the poles of the magnets, a circular conducting coil is located. As a turn, Marinov 

used mercury. After two sliding contacts to the mercury ring, a current source is connected, which 

creates a current 𝑖 in each of the halves of the ring. 

According to the Lorentz formula, the force acting on any element 𝑑𝐥 of this ring is:𝑑𝐅= 𝑖𝑑𝐥 ×
𝐁, where 𝑖 is the current; 𝐁 is the magnetic field induction; 𝑑𝐥 is the element of the conducting 

ring.It must act perpendicular to the element 𝑑𝐥. Such a force can not create a torque acting on the 

ring. However, this rotation was not only observed experimentally, but the magnitude of the 

rotational moment was measured [14], [15]. An explanation of this phenomenon was proposed. 

 

Fig. 12 

We give an explanation based on the Newtonian theory. A simplified scheme of the Marinov 

motor is shown in Fig. 12. A permanent annular magnet, whose magnetic field lines are 

perpendicular to the plane of the figure, is represented by two closed ring currents𝑖1. The outer 
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conductor ring is provided with two sliding contacts connected to the DC source. All the elements 

mentioned are in the same plane. 

Consider the current element 𝑑𝐥, located at position 1 in Fig. 12. The force 𝑑𝐅  𝑎 ≪ 𝑟 , which 

acts on this element of the current from the side of the ring current, is directed along the line 

connecting 𝑑𝐥 with the ring current in accordance with the principle of equality of action and 

counteraction. This force has two projections. The first projection of the 𝑑𝐅𝑁 is directed along the 

radius 𝑅. The second projection 𝑑𝐅𝑇  is directed along the tangent to the circle with the current 𝑖. 
This force creates the angular momentum𝑑𝐌. 

𝑑𝐌 = 𝑅𝑑𝐅𝑇 = 𝑅𝑑𝐅 sin 𝜃 .                                       (VI. 2.1) 

The other three current elements, arranged symmetrically, as shown in Fig. 13, create exactly the 

same torque moments. The total moment acting on the ring with current 𝑖 is: 

𝐌 = 4𝑅  
𝑑𝐅

𝑑𝜑
sin 𝜃𝑑𝜑 .

𝜋

0

                                                 (VI. 2.2) 

At the same time, according to the Lorentz theory, the force acting on a conductor with a 

current is always perpendicular to the conductor with this current and the torque acting on the ring 

with current 𝑖 must be zero. The explanation of magnetic phenomena from the position of 

Newtonian mechanics has no difficulties and allows us to obtain correct explanations for these 

phenomena. 

VII.  CONCLUSION 

Modern classical theories (mechanics, electrodynamics) at the beginning of the 20th century 

were undeservedly considered “outdated theories” in relation, for example, to quantum theories. 

However, scientists have found that this view is erroneous. The development of new theories now 

depends on solving the problems of classical theories. 

To date, many critical articles have been published and hypotheses have been proposed for 

eliminating problems in classical theories. Among the critics there are many well-known scientists 

[16].Unfortunately, scientists analyze special cases, considering electrodynamics to be a "complete 

theory". This view was held by R. Feynman. He wrote [11]: “... I must say right away that all the 

rest of the physics is not as well tested as electrodynamics …” 

The aim of our study was, just, electrodynamics. We got interesting results that are unknown in 

the scientific world. So, 

1. In ChapterII we analyzed the problem of the electromagnetic mass and showed that the 

solution to this problem does not exist within the framework of retarded potentials. Using the 

Maxwell equations in the Lorentz gauge, we have rigorously proved the generalized Poynting law. 

We found the condition for the absence of longitudinal waves in electrodynamics and showed that 

electromagnetic waves are radiated by charges that have no inertia.However,for the sake of 

objectivity, we must refer the reader to an article where it is shown that massless particlesdo not 

radiate [17]. 

2. In Chapter III we got an amazing result. It turned out that the second law of conservation of 

energy-momentum takes place in the framework of Maxwell’s equations in the Lorentz gauge. This 

is the law of conservation of Umov in the relativistic form. Umov’s law solves the problem of 

electromagnetic mass. In the same Chapter, we showed that instantaneous action at a distance can 

also take place within the framework of the Lorentz transformation.Moreover, Dr. M. Korneva 

discovered that the Maxwell equations are invariant with respect to a large class of transformations. 
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Some of these transformations do not prohibit superluminal velocities. We believe that an 

experimental verification of the Lorentz transformation in the future is necessary. 

3. The obtained solution of the electromagnetic mass problem allowed to give a rigorous 

description of the relativistic interaction of electric charges (Chapter IV). 

4. In Chapter V we  found a standard transition to a description of the interaction of charges in 

the framework of classical representations. It turned out that the classical Lagrange function is 

invariant under the Galileo transformation. The interaction of a charge with a current and the 

interaction of two currents were described. Some errors in the interpretation of magnetic 

phenomena were corrected. 

5.  Chapter VI is devoted to explaining two phenomena where a stable point of view has not 

yet been formed. The results of the previous chapters allowed us to give a logically rigorous 

explanation of the phenomenon of unipolar induction of Faraday and describe the principle of the 

action of the Marinov motor. 

We believe that interesting results have been obtained and not only theoretical but also 

experimental studies in these fields of science are needed in the future. 
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