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ON THE APPROXIMATION OF THE WALLIS RATIO
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Abstract. In this review article, we study the recent investigations and developments on the Wallis ratio.
Some best constants for the approximation of the Wallis ratio are introduced. Some double inequalities
for bounding the Wallis ratio are also introduced.
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1. RECENT DEVELOPMENTS ON THE WALLIS RATIO

Let N be the set of all positive integers. For n € N, the double factorial n!! is
defined by
l(n—1)/2]
= J[ (n—20), (1)

i=0
where in (1) the floor function |#| denotes the largest integer less than or equal to ¢.

For our own convenience, in what follows, we denote the ratio of two neighbouring

double factorials by
o (@n-1)N
W, — =T
" (2n)N

which is called Wallis ratio in literature.

. neN, (2)

Counsider the Wallis ratio IW,,, defined by (2). This quantity is important in the
probability theory — for example, the three events, (a) a return to the origin takes
place at time 2n, (b) no return occurs up to and including time 2n, and (c¢) the path
is non -negative between 0 and 2n, have the common probability W,,. And the two
events, (a) the first return to the origin takes place at time 2n, (b) the first passage
through —1 occurs at time 2n — 1, have the common probability W,,/(2n —1). For
details of these interesting results one may see [1, Chapter III].

The Wallis ratio W,, can be represented as follows (see [2, p. 258]):

o @) 1 f2m\ T (n+1)
Hn - W - 22?1(?1_) - \/EFT-I?]_) (3)
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where in (3) I'(x) is the classical Euler’s gamma function defined for « > 0 by
[(z) = / ==t d. (4)
0
Also note that [2, p. 258]
i w2 -1
Wh = {Qn. +1) / sin®"*! ;r:d:rf] (5)
0

-1

- {Qra—l—l)/ os?" 1y J.] (6)

and the Wallis sine(cosine) formula

9 /2
W, == ] sin®" xdx (7)
™ Jo
2 /2
== / cos®™ xdx. (8)
T Jo

The Wallis ratio W, is closely related to the Wallis formula:

2 S n—12n+1
_:H( )( )

9)

™o (2n)2
In fact, since [3, pp. 181-184]
2n—1)2n+1)
H (2n)? = ]1111 (213 +1)W? (10)

n=1

another important form of the Wallis formula is

lim (20 + )W = % (11)

For the approximation of the Wallis ratio W, in [4] the authors proved

Theorem 1. For alln € N,

1 1
ﬁ u';n < '
Vrn+2—-1) Vrn+ 1)

In [5], the following result was established:

(12)

Theorem 2. For alln € N,

1 —1/2

T — 3

The authors [5] also proved that
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Theorem 3. Forc e (0. 3),

1 -1/2
W, <|nm |14 —F— . n>nt, 14
n {nr( +4n—%—|—c)] . > nt, (14)

where n* is the maximal root of the following equation on n:

32en® + 4c%n 4 32en — 1Tn + 4% — 1 = 0.
In [6] the author showed that

Theorem 4. For all n € N,
—1/2
(1 + L ) / < W, < { (1+ L H_UQ
T i 3 4% nimw T 1 1§ .
n—5+t e dn—5+ 15

In [7] the authors proved the result below.

Theorem 5. For alln € N,
. M 7
Vi - (2n) 43 (16)

= _ < ;
2v/n+ % -1 (2 + 1M 2y /n+ %

which is equivalent to the following:

2 /n+3 2 /n+ % 1
Low,c % (17)

Gt Ve S T

The following several results for the approximation of the Wallis ratio are in the

form:

C1 P, < W, < CyF,, (18)
where in (18) the constants C'y > 0 and C > 0 are best possible - which mean that
the constant €7 in (18) can not be replaced by a number which is greater than 4
and the constant (s in (18) can not be replaced by a number which is less than (5.

In [8] the authors showed

Theorem 6. For alln € N,

I Cld Vi) Lt (3)3/2 =12 (19)

VT (n+1/2)m172 (n+1/2)74172°

The constants % and (%)3/2 in (19) are best possible.

2

In [9] the authors proved the following result:
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Theorem 7. For alln > 2,

e 1\"vn—1 .4 L\"vVn—1
(1= ) X - w1 —) XY -~
T (1 271.) n <Was< 3 (1 2-}1) n (20)

The constants \/< and % in (20) are best possible.
In [10] the authors established

Theorem 8. For alln > 2,

9 %/2 1\"t3 3\ "7 c 1\"2 3\ "2
z = —2) <w, 1=~ n—2) .
(3) (1 Qﬂ,) (n 2) <W, < - (1 Qn) (n 2) (21)

The constants (%)3/2 and /< in (21) are best possible.

2. CONCLUSION

In this review article, we introduced the recent investigations and developments
on the Wallis ratio. Some best constants for the approximation of the Wallis ratio
are introduced. Some double inequalities for hounding the Wallis ratio are also

introduced.
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