Solving Machine Scheduling Problem under Fuzzy Processing Time using the Simulated Annealing Method

Al-zuwaini Mohammed Kadhim ${ }^{1}$, Shaker K. Ali ${ }^{2}$, Marwa Mohammed Kassim ${ }^{3}$
${ }^{1}$ University of Thi-Qar, mkzz50@yahoo.com
${ }^{2}$ University of Thi-Qar, shaker@utq.edu.iq
${ }^{3}$ University of Thi-Qar, mm8764270@gmail.com

Abstract

In this paper, we describe the problem of sequencing a set of n jobs on single machine was considered to minimize multiple objectives function (MOF). The objective is to find the approximate solutions for scheduling n independent jobs to minimize the objective function consists from asum of weighted number of earlyjobs and weighted number of tardy jobs with fuzzy processing time.This problem is denoted by: ($1 / / \sum_{j=1}^{n} N_{h_{j} E_{j}}+\sum_{j=1}^{n} N_{w_{j} T_{j}}$). To resolve it we proposed the Average High Ranking (AHR) method to obtain a processing time generated from fuzzy processing time, calculate the costs and reach to total penalty cost. Since our problem is Strongly NP-hard in normal form, we used Simulated Annealing. It solved the problem with up to 12000 jobs in 30 seconds.

Keywords: Scheduling; Single machine; Fuzzy processing time; Simulated Annealing Heuristics; Weighted number of early jobs; Weighted number of tardy jobs.

1. Introduction

In this paper, processing of fuzzy-time is regarded in three conditions that are ranging from best to worse conditions as follows; high or favorable one, medium or normal one, and finally thebad or worst one[1]. Meaning that the number of tardy criterion is considered to be a normal method for assessing performance with due dates, even though this criterion disregards penalties with jobs that are early completed. Baker and Scudder (1990) [2] has investigated the sequences that possesses penalties of both tardiness and earliness in an environment with JIT scheduling, the jobs which finish earlier are saved with completed decent record while waiting for their due date to end. On the other hand, jobs which finish late with the assigned due dates can initiate shutdown operation with the client. For that reason, optimal scheduling refers to any completed job with its allocated due date. This may be interpreted to a scheduling objective by numerous means.
The best apparent objective is to decrease deviations in job completion time (JCT) nearby these due dates with indeterministic time. In penalizing notion tardiness and earliness has both to be produced with novel and fast evolving stream of studies in the scheduling area of research. Since usage of penalties in tardiness and earliness with fuzzified environment promises an irregular measure of performance, it paved the way towards novel operational topics in the enterprise of solution procedures.

Scheduling of independent n jobs in a single machine will be regarded here to minimize bi-criteria. The aim lies in finding a schedule minimization to the summation of weighted number of early jobsin
addition to weighted number of tardy jobs under fuzzy processing time, in employing local search algorithm Simulated Annealing (SA). This problem is denoted by ($1 / / \sum_{j=1}^{n} N_{h_{j}} E_{j}+\sum_{j=1}^{n} N_{w_{j} T_{j}}$)

Where h_{j}, w_{j} are weighted of early job j , weighted of tardy job j respectively.

$$
\begin{align*}
& N_{E_{j}}=\left\{\begin{array}{cc}
1 & \text { if } c_{j}<d_{j} \\
0 & \text { otherwise }
\end{array}\right\} \tag{1}\\
& N_{T_{j}}=\left\{\begin{array}{cc}
1 & \text { if } c_{j}>d_{j} \\
0 & \text { otherwise }
\end{array}\right\} \tag{2}
\end{align*}
$$

The problem in normal case (that is without fuzzy processing time) was considered by H. Soroush (2007)[3] and he show that it is NP-hard. We used simulated Annealing method to find approximate solutions, for our problem solved approximately with up to 12000 jobs.

2. Formulation of the problem

Single machine scheduling models seem to be very important for understanding and modeling multiple machines models. A set $\mathrm{N}=\{1,2, \ldots, \mathrm{n}\}$ of n independent jobs has to be scheduledon a single machine in orderto minimize a given criterion. This study concerns the one machine scheduling problem with multiple objectives function which is denoted by (1/ / $\sum_{j=1}^{n} N_{h_{j} E_{j}}+N_{w_{j} T_{j}}$).

In this problem, preemption is not allowed, no precedence relation among jobs is assumed and all jobs are available at the time zero, (that is $r_{j}=0 \forall j$). Each job j has fuzzy processing time a_{j}, b_{j}, c_{j}, due dated d_{j}, weighted of early job $\mathrm{j} h_{j}$ and weighted of tardy job $\mathrm{j} w_{j}$.

The start time of job j is denoted by t_{j}, where $t_{1}=0$ and $t_{j}=\sum_{i=1}^{j-1} p_{i}$ and its completion time by C_{j}, ($C_{j}=t_{j}+p_{j}$), if job j completed befor it's due date $\left(C_{j}<d_{j}\right.$ then $N_{E_{j}}=1$) and job j is said to be early otherwise ($C_{j} \geq d_{j}$, then $N_{E_{j}}=0$), and job j is said to be tardy job or just in time, for each job j can be calculate the slack time $S l_{j}=\left|A_{j}-d_{j}\right|$. In this paper, next jobs are scheduled in increasing order of their slack time. Consider the processing time in fuzzy environment ($\mathrm{a}, \mathrm{b}, \mathrm{c}$), which is integer numbers. We calculate the Average High Ranking (AHR) Method to generate a processing time from a fuzzy processing time.

$$
\begin{equation*}
A H R=[3 b+(c-a)] / 3 \tag{3}
\end{equation*}
$$

Where a, b, cis fuzzy processing time.
For a given schedule we can calculate weighted number of early $\operatorname{jobs} N_{h_{j} E_{j}}$, as follow:
$N_{h_{j} E_{j}}=\left\{\begin{array}{lll}h_{j} & \text { if } & d_{j}>C_{j} \\ 0 & \text { if } & d_{j} \leq C_{j}\end{array}\right.$
And weighted number of tardy jobs $N_{w_{j} T_{j}}$:
$N_{w_{j} T_{j}}=\left\{\begin{array}{lll}w_{j} & \text { if } & C_{j}>d_{j} \\ 0 & \text { if } & C_{j} \leq d_{j}\end{array}\right.$
The objective is to find the schedule $\pi=(\pi(1), \pi(2), \ldots, \pi(n))$ of the jobs that minimize the total cost R which is formulated in mathematic form as:

$$
\left.\begin{array}{cc}
\min R=\min _{\pi \in \delta}\left\{\sum_{j=1}^{n} N_{h_{j} E_{j}}+\sum_{j=1}^{n} N_{w_{j} T_{j}}\right\} \\
\text { subject to } & j=1,2, \ldots, n \\
C_{\pi(j)} \geq p_{\pi(j)} & \\
C_{\pi(j)}=C_{\pi(j-1)}+P_{\pi(j)} j=2,3, \ldots, n \tag{H}\\
N_{E_{\pi(j)}} \in\{0,1\} & j=1,2, \ldots, n \\
N_{T_{\pi(j)}} \in\{0,1\} & j=1,2, \ldots, n \\
p_{\pi(j)}>0, \quad d_{\pi(j)}>0, & w_{\pi(j)}>0, h_{\pi(j)}>0
\end{array}\right\}
$$

Where δ the set of all feasible solutions, $\pi(\mathrm{j})$ denoted the positionofjin the ordering π.

3. Algorithm

Step 1: Determine Average High Ranking (AHR) of the fuzzy processing time ($\mathrm{a}, \mathrm{b}, \mathrm{c}$) of all the jobs.
Step 2: Determine the slack time of all the jobs $S l_{j}=\left|A_{j}-d_{j}\right|$.
Step 3: Ordered the jobs in MST rule. If more than job have the same slack time then breaking ties the sequence by EDD rule.
Step 4: Using the sequence obtained in step 3 find thepenalty cost of all the jobs using weighted of early jobs $\left(h_{j}\right)$ and weighted of tardy jobs $\left(w_{j}\right)$.
Step 5:END.

Example 3.1

Consider four jobs having fuzzy processing time, single machine,due dates, weighted early jobs $\left(h_{j}\right)$ and weighted tardy jobs $\left(w_{j}\right)$ are given.

Table (1): The initial data for example 3.1

Job	p_{j}	d_{j}	h_{j}	w_{j}
$\mathbf{1}$	124	5	2	3
$\mathbf{2}$	389	11	4	6
$\mathbf{3}$	578	25	7	9
$\mathbf{4}$	7810	30	10	12

Solution:

Table (2): The calculated Average High Ranking (AHR) and Slack time for example 3.1

$\mathbf{J o b}$	p_{j}	$(\mathbf{A H R})=$ P_{j}	d_{j}	$S l_{j}$	h_{j}	w_{j}
$\mathbf{1}$	124	3	5	2	2	3
$\mathbf{2}$	389	10	11	1	4	6
$\mathbf{3}$	578	8	25	17	7	9
$\mathbf{4}$	7810	9	30	21	10	12

Then MST rule gives the sequence:
$S=2-1-3-4$
The table (3) shows the flow time of the system and penalty cost.
Table (3): The calculated penalty cost for example 3.1

$\mathbf{J o b}$	P_{j}	d_{j}	c_{j}	h_{j}	w_{j}	cost
$\mathbf{2}$	10	11	10	4	6	4
$\mathbf{1}$	3	5	13	2	3	3
$\mathbf{3}$	8	25	21	7	9	7
$\mathbf{4}$	9	30	30	10	12	0

Penalty cost is $=14$

4. Simulated Annealing (SA) Heuristics

The simulated annealing algorithm is a way of finding solutions to problems which have a large set of possible solutions, in an analogous fashion to the physical annealing of solids to attain minimum internal energy states. The basic idea is to create a path through the solution space, from one solution to another nearby solution, leading ultimately to the optimum solution. In generating this path, solutions are chosen from the locality of the preceding solution by a probabilistic function of the improvement gained by this move. So, stages are not strictly required to produce improved solutions, but each stage has a certain probability of leading to improvement; at the start, all stages all equally likely, but as the algorithm progresses, the tolerance for solutions worse than the current one decreases, eventually to the point where only improvements are accepted. In this way, the algorithm can attain the optimum solution without becoming trapped in local optima [4, 5].

This tells us that we can have some confidence in the answer Created by a well-formulated simulated annealing implementation, but says nothing about how long it might take to find that answer. It is often used when the search space is discrete (e.g., all tours that visit a given set of cities).
The method was independently described by Kirkpatrick, et.al., (1983)[6] and by V. Černý (1985)[7]. The method is an adaptation of theMetropolis-Hastings algorithm, a Monte Carlo method to generate sample states of a thermodynamic system, invented by M.N. Rosenbluth and published in a paper by Metropolise, et.al., (1953) [8].

The following structure gives the outline of (SA):

Algorithm:[5]	
S_{C}	Candidate schedule.
S_{0}	Best schedule found so far.
S_{K}	Schedule constructed at $\mathrm{K}^{\text {th }}$ iteration $(\mathrm{K}=$ iteration counter)
$\mathrm{G}\left(\mathrm{S}_{0}\right)$	Best schedule value (Aspiration criterion).
$\mathrm{G}\left(\mathrm{S}_{\mathrm{K}}\right)$	Value of schedule constructed at $\mathrm{K}^{\text {th }}$ iteration.

$\mathrm{G}\left(\mathrm{S}_{\mathrm{C}}\right) \quad$ Value of candidate schedule.
$\mathrm{P}\left(\mathrm{S}_{\mathrm{K}}, \mathrm{S}_{\mathrm{C}}\right) \quad$ Probability of moving from S_{K} schedule to S_{C} schedule at KIteration

$$
P\left(S_{K}, S_{C}\right)=\exp \left(\frac{G\left(S_{\mathrm{K}}\right)-G\left(S_{\mathrm{C}}\right)}{\beta_{\mathrm{K}}}\right)
$$

Where,
β_{K} is called cooling parameter in annealing terminology usually,

$$
\beta_{\mathrm{K}}=\mathrm{a}^{\mathrm{K}} \text { where } a \in[0,1] .
$$

First Step: Initialization

Set $K=1$, set β_{1} equal to given value.
From starting sequence by any heuristic; call it S_{1}
Let $S_{0}=S_{1}$, thenG $\left(\mathrm{S}_{0}\right)=\mathrm{G}\left(\mathrm{S}_{1}\right)$

Second Step: Conditioning

Select S_{C} from S_{K}
IF G($\left.\mathrm{S}_{0}\right)<\mathrm{G}\left(\mathrm{S}_{\mathrm{C}}\right)<\mathrm{G}\left(\mathrm{S}_{\mathrm{K}}\right)$,
Then $\mathrm{S}_{\mathrm{K}+1}=\mathrm{S}_{\mathrm{C}}$
Go to Third step
$\operatorname{IFG}\left(S_{C}\right)<G\left(S_{0}\right)$,
Then $S_{0}=S_{K+1}=S_{C}$
Go to Third step
$\operatorname{IFG}\left(S_{C}\right)>G\left(S_{k}\right)$,
Then generate a random number $U_{K} \sim[0,1]$
IF $\mathrm{U}_{\mathrm{K}} \leq \mathrm{P}\left(\mathrm{S}_{\mathrm{K}}, \mathrm{S}_{\mathrm{C}}\right)$,
Then $S_{K+1}=S_{C}$
$\operatorname{ELSES}_{\mathrm{K}+1}=\mathrm{S}_{\mathrm{K}}$
Go to Third step

Third Step: Finalization

$$
\begin{aligned}
& \text { Set } \beta_{\mathrm{K}+1} \leq \beta_{\mathrm{K}} \text { and Set } \mathrm{K}=\mathrm{K}+1 \\
& \text { IF } \mathrm{K} \leq \mathrm{N} \\
& \text { Then Go to Second Step } \\
& \text { ELSE Stop }
\end{aligned}
$$

Example 4.1

Solve the problem (1/ / $\sum_{j=1}^{n} N_{h_{j} E_{j}}+\sum_{j=1}^{n} N_{w_{j} T_{j}}$) using SA method. Apply the technique with four iteration $(\mathrm{K} \leq 4)$, and $\mathrm{N}=4$. Use U values $=\{0.8,0.01,0.02,0.43\}$, Take initial value of $\beta=0.9$, using the data of EX (3.1).

Solution

$\beta_{1}=0.9, \mathrm{~K}=1, \mathrm{~S}_{1}=\left\{\mathrm{j}_{2}, \mathrm{j}_{1}, \mathrm{j}_{3}, \mathrm{j}_{4}\right\}$

Set $S_{0}=S_{1}$
$\mathrm{G}\left(\mathrm{S}_{0}\right)=14, \mathrm{G}\left(\mathrm{S}_{1}\right)=14$,

Let $S_{C}=\left\{\mathrm{j}_{1}, \mathrm{j}_{2}, \mathrm{j}_{3}, \mathrm{j}_{4}\right\}$,
$\mathrm{G}\left(\mathrm{S}_{\mathrm{C}}\right)=15$,
$\mathrm{G}\left(\mathrm{S}_{\mathrm{C}}\right)>\mathrm{G}\left(\mathrm{S}_{1}\right)$,
$\mathrm{U}_{1}=0.8$
$\mathrm{P}\left(\mathrm{S}_{1}, \mathrm{~S}_{\mathrm{C}}\right)=\exp \left\{\frac{\mathrm{G}\left(\mathrm{S}_{1}\right)-\mathrm{G}\left(\mathrm{S}_{\mathrm{C}}\right)}{\beta_{1}}\right\}=0.2865$
$\mathrm{U}_{1}>\mathrm{P}\left(\mathrm{S}_{1}, \mathrm{~S}_{\mathrm{C}}\right)$
set $S_{2}=S_{1}, S_{2}=\left\{j_{2}, j_{1}, j_{3}, j_{4}\right\}, G\left(S_{2}\right)=14$
$\beta_{2}=\left(\beta_{1}\right)^{2}=(0.9)^{2}=0.81$
$\mathrm{K}=2, \mathrm{~N}=4$

Let $\mathrm{S}_{\mathrm{C}}=\left\{\mathrm{j}_{2}, \mathrm{j}_{1}, \mathrm{j}_{4}, \mathrm{j}_{3}\right\}$,
$\mathrm{G}\left(\mathrm{S}_{\mathrm{C}}\right)=26$,
$\mathrm{G}\left(\mathrm{S}_{\mathrm{C}}\right)>\mathrm{G}\left(\mathrm{S}_{2}\right)$
$\mathrm{U}_{2}=0.01$
$\mathrm{P}\left(\mathrm{S}_{2}, \mathrm{~S}_{\mathrm{C}}\right)=\exp \left\{\frac{\mathrm{G}\left(\mathrm{S}_{2}\right)-\mathrm{G}\left(\mathrm{S}_{\mathrm{C}}\right)}{\beta_{2}}\right\}=0.0000003681$
$\mathrm{U}_{2}>\mathrm{P}\left(\mathrm{S}_{2}, \mathrm{~S}_{\mathrm{C}}\right)$
set $S_{3}=S_{2}, S_{3}=\left\{j_{2}, j_{1}, j_{3}, j_{4}\right\}, G\left(S_{3}\right)=14$
$\beta_{3}=\left(\beta_{1}\right)^{3}=0.729$
$\mathrm{K}=3, \mathrm{~N}=4$,
$\mathrm{S}_{\mathrm{C}}=\left\{\mathrm{j}_{3}, \mathrm{j}_{2}, \mathrm{j}_{1}, \mathrm{j}_{4}\right\}$
$\mathrm{G}\left(\mathrm{S}_{\mathrm{C}}\right)=16$
$\mathrm{G}\left(\mathrm{S}_{C}\right)>\mathrm{G}\left(\mathrm{S}_{3}\right)$
$\mathrm{U}_{3}=0.02$
$\mathrm{P}\left(\mathrm{S}_{3}, \mathrm{~S}_{\mathrm{C}}\right)=\exp \left\{\frac{\mathrm{G}\left(\mathrm{S}_{3}\right)-\mathrm{G}\left(\mathrm{S}_{\mathrm{C}}\right)}{\beta_{3}}\right\}=0.0643$
$\mathrm{U}_{3}<\mathrm{P}\left(\mathrm{S}_{3}, \mathrm{~S}_{\mathrm{C}}\right)$
set $S_{4}=S_{C}, S_{4}=\left\{j_{3}, j_{2}, j_{1}, j_{4}\right\}, G\left(S_{4}\right)=16$
$\beta_{4}=\left(\beta_{1}\right)^{4}=(0.9)^{4}=0.6561$
$\mathrm{K}=4, \mathrm{~N}=4$
Let $\mathrm{S}_{\mathrm{C}}=\left\{\mathrm{j}_{1}, \mathrm{j}_{3}, \mathrm{j}_{2}, \mathrm{j}_{4}\right\}$
$\mathrm{G}\left(\mathrm{S}_{\mathrm{C}}\right)=15$
$\mathrm{G}\left(\mathrm{S}_{0}\right)<\mathrm{G}\left(\mathrm{S}_{C}\right)<\mathrm{G}\left(\mathrm{S}_{4}\right)$
set $S_{5}=S_{C}, S_{5}=\left\{j_{1}, j_{3}, j_{2}, j_{4}\right\}, G\left(S_{5}\right)=15$
$\beta_{5}=\left(\beta_{1}\right)^{5}=0.5905$
$\mathrm{K}=5, \mathrm{~N}=4$,
$S_{0}=\left\{j_{2}, \mathrm{j}_{1}, \mathrm{j}_{3}, \mathrm{j}_{4}\right\}, G\left(\mathrm{~S}_{0}\right)=14$,

5. Computational Experience of SA Algorithm

An intensive effort has been implemented in relation to numerical investigations. We will present in the next subsection how the problem under study is created randomly.

5.1 Test Problem [9]

There exists in the literature a classical way to randomly generate test problems of scheduling problems.

* The processing time a_{j}, b_{j} and c_{j} is uniformly distributed in the interval $[1,10]$.
* The due date d_{j} is uniformly distributed in the interval [P(1-TF-RDD/2), $\left.\mathrm{P}(1-\mathrm{TF}+\mathrm{RDD} / 2)\right]$; where $P=\sum_{j=1}^{n} p_{j}$ depending on the relative range of due date (RDD) and on the average tardiness factor (TF).
* The an integer weight of early job h_{j} were generated from uniform distribution $[1,10]$.
* The an integer weighted of tardy job w_{j} were generated from uniform
distribution $[1,10]$.
For both parameters, the values $0.2,0.4,0.6,0.8$ and 1.0 are considered. For each selected value of n (where n is the number of jobs), ten problems were generated.

5.2 Computational Results

In this section, we provide our results that were obtained for the simulated annealing algorithm with our proposed function. The test problems are provided in this paper. It's worth mentioning that we used the MATLAB 7.10.0 (R2010a) software for coding the algorithms and the processing personal computer was of 4 GB RAM with a CPU of 2.5 GHz speed.
Table (4) shows both the cost and times averages for 10 problems for each of its values from the number of jobs n where $n \in\{10,50,100,500,1000,5000,10000,12000\}$.
Table (5) displays a calculated cost by SA algorithm for 10 problems at $\mathrm{n}=500$, the time of each problem and the number of iterations, in addition to the average of time and cost.

From the observation of the two tables (4) and (5) we find that the method of SAgives an approximate solution we can solve the problem with up to $\mathrm{n}=12000$ during 30 seconds, and $\mathbf{S A}$ algorithm will cease when a constant time amount is passed, here after 30 seconds.

Table abbreviations:
n
Number of jobs
No. of iterations Number of iterations
No. Number of problems
Av. of Cost Average of cost
Av. of Time Average of time for (10) examples in Simulated Annealing algorithm.
Table (4): The performance to average of cost and average of time in Simulated Annealing algorithm for $\mathrm{n}=\{10,50,100,500,1000,5000,10000,12000\}$

\mathbf{n}	Av. of Cost	Av. of Time
$\mathbf{1 0}$	44.6000	0.2758
$\mathbf{5 0}$	225.2000	2.8994
$\mathbf{1 0 0}$	452.3000	9.0964
$\mathbf{5 0 0}$	2292	29.1419
$\mathbf{1 0 0 0}$	4516.7	29.1454
$\mathbf{5 0 0 0}$	22482	29.4675
$\mathbf{1 0 0 0 0}$	45072	29.7156
$\mathbf{1 2 0 0 0}$	54291	30.4109

At this point, we find the solution to Simulated Annealing algorithm (SA) for $\mathrm{n}=500$.

Table (5): The Performance of Simulated Annealing (SA) Algorithm for $\mathrm{n}=500$

n	No.	Cost	Time	No. of Iterations
500	1	2307	29.0160	122
	2	2306	29.2483	160
	3	2270	29.1916	169
	4	2345	29.1700	170
	5	2186	29.0170	168
	6	2210	29.0610	163
	7	2408	29.2995	167
	8	2327	29.0784	168
	9	2271	29.1836	168
	10	2290	29.1533	166
Av. of Cost		2292		
Av. of Time		29.1419		

6. Conclusion

In this paper, we have developed approximate solutions for the problem of scheduling n independent jobs on one machine tominimizethesumof weighted number of earlyjobsand weighted number of tardy jobs under the fuzzy processing time.To resolve it we proposed the Average High Ranking method to obtain a processing time generated from fuzzy processing time, calculate the costs and reach to penalty cost.we report on the results of extensive computations tests of the method: simulated annealing. The main conclusion to be drawn from our computation results is that the SA algorithms can solved the problem(1/ $/ \sum_{j=1}^{n} N_{h_{j} E_{j}}+\sum_{j=1}^{n} N_{w_{j} T_{j}}$)to 12000 jobs in 30 seconds.

References

[1] Gupta, S. and Rambha, M. (2011). Single Machine Scheduling With Distinct Due Dates Under Fuzzy Environment; International Journal of Enterprise Computing and Business Systems, vol. 1 , no. 2, pp. 1-9.
[2] Baker, K.R. and Scudder, G.D. (1990). Sequencing with Earliness and Tardiness Penalties: A Review; Operations Research, Vol. 38, No.21, Pp. 22-36.
[3] Soroush, H. (2007). Minimizing the Weighted Number of Early and Tardy Jobs in a Stochastic Single Machine Scheduling Problem; European Journal of Operational Research, Vol. 181, No. 1, Pp. 266-287.
[4] Pinedo, M.L. (2016). Scheduling: Theory, Algorithms, and Systems; 5th Edition, Springer, New York.
[5] Al-Harkan, I.M. (1997). Algorithms for Sequencing and Scheduling; University of Riyadh, College of Engineering, Industrial Engineering Department, King Saud, Riyadh, Saudi Arabia, Ch. 8, Pp. 8-1, 8-19.
[6] Kirkpatrick, S. Gelatt Jr, C.D. and Vecchi, M.P. (1983). Optimization by Simulated Annealing; Science, Vol. 220, No. 4598, Pp. 671-680,
[7] Černý, V. (1985). Thermodynamical Approach to the Traveling Salesman Problem: An Efficient Simulation Algorithm; Journal ofOptimization Theory and Applications, Vol. 45, No. 1, Pp. 4151.
[8] Metropolis, N. Rosenbluth, A.W. Rosenbluth, M.N. Teller, A.H. and Teller, E. (1953). Equation of State Calculations by Fast Computing Machines; The Journal of Chemical Physics, Vol. 21, No. 6, Pp. 1087-1092.
[9] Abdul-Razaq, T.S. Potts, C.N. and Van, Wassenhove. (1990). A survey of Algorithms for The Single Machine Total Weighted Tardiness Scheduling Problem; Discrete App. Math. Pp. 26235253.

