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Abstract 

In this paper, the problem of sequencing a set of n jobs on single machine was 

considered to minimize theobjective function. The aim  is to find the optimal or near 

optimal  solution  (scheduling) for the objective function consists of a  sum  of  total 

late work and maximum lateness. This problem is strongly NP-hard. Simulated 

Annealing, Ant colony Algorithm, and usagea hybridization as a tool to solved the 

problem approximatelywith up to  100000 jobs in a reasonable time 10 minutes. 
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1. Introduction  

In this paper, we tackle a problemof scheduling n independent jobs on a single 

machine to minimize the sum of total late work and maximum lateness which is 

denoted by   1 / / 𝑉𝑗
𝑛
𝑗=1  + 𝐿𝑚𝑎𝑥 . Clearly that our  problem consist of two sub 

problems. The  first subproblem 1 ∕∕  𝑉𝑗
𝑛
𝑗=1  which is NP-hard see[1, 2, 3, 4, 5]; 

Manal (2012)[6] also solved single machine scheduling problem to minimize the sum 

of total completion times and total late works; Asmaa  (2015) [7] solved scheduling 

jobs on a single machine to minimize the sum of tardy jobs and total late work. And 

the second subproblem the maximum lateness (1/ /𝐿𝑚𝑎𝑥 ) which is p-type and studied 

by Jackson (1955) [8], Jackson proved that 𝐿𝑚𝑎𝑥  was solved by EDD rule. Many 

researchers have studied this problem see [9, 10, 11, 12, 13, 14, 15]. 

2. Problem Formulation  

A set  of n  independent  job  {𝑗1, 𝑗2, … } be  scheduled  on  a single  machine  with 

the conditions only  one  job  j can  be  processed  at  a time.  All  jobs  are  available  
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for  processing  at  time  zero, the precedence relation  among the   jobs  are not  

supposed  and  preemption  is  not  allowed. The  goal  is  to find  a processing  order  

of  the  jobs  that  minimize  the sum  of  the  total  late  work  and  maximum  

lateness,  i.e solve the 1 / / 𝑉𝑖
𝑛
𝑖=1 + 𝐿𝑚𝑎𝑥  problem. 

Each  job  j  has  positive  integer  processing  time (𝑝𝑗 ) and  due  date  (𝑑𝑗 ). Fora 

given schedule the completion time (𝐶𝑗 = 𝐶𝑗−1 + 𝑝𝑗 , 𝑎𝑛𝑑  𝐶0 = 0),the late  

work𝑉𝑗 = min{𝑇𝑗 , 𝑝𝑗 } and maximum lateness𝐿𝑚𝑎𝑥 = max 𝐿𝑗  = max 𝐶𝑗 − 𝑑𝑗  ,

𝑗 = 1,2, …𝑛were computed.  The objective  is  to  find  the  schedule  𝜎 =

(𝜎 1 , … , 𝜎 𝑛 ) of  the  job  that  minimize  the  total  cost which  is  formulated  in  

mathematicsforms  as: 

 

𝑅 = 𝑚𝑖𝑛𝜎∈𝛿  𝑉𝜎 𝑗  + 𝐿𝑚𝑎𝑥  𝜎 
𝑛
𝑗=1  

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜:                                                                                  
  𝐶𝜎 𝑗   ≥  𝑝𝜎 𝑗                                      𝑗 = 1,… , 𝑛   

𝑉𝜎 𝑗  ≤ 𝑇𝜎 𝑗                                              𝑗 = 1, … , 𝑛

𝑉𝜎 𝑗  ≤ 𝑝𝜎 𝑗                                              𝑗 = 1,… , 𝑛

𝐿𝑗  =  𝐶𝑗  − 𝑑𝑗                                            𝑗 = 1,… , 𝑛           

𝑝𝜎 𝑗  > 0     ,     𝑑𝜎 𝑗  > 0     , 𝑉𝜎 𝑗   ≥ 0        

 
 
 
 
 

 
 
 
 

…(P) 

where 𝛿theset of all feasible solutions and 𝜎 𝑗  denotes the position of job  j  in the 

ordering  𝜎. 

 

3. Problem Decomposition 

In this section, the problem (P) is decomposed into two sub problem (𝑆𝑃1) and  𝑆𝑃2  

which are simple structure of the original problem as follows : 

(i) The total late work (1// 𝑉𝑗 ) is NP-hard [1] 

 

𝑅1 = 𝑚𝑖𝑛𝜎∈𝛿   𝑉𝜎 𝑗  

𝑛

𝑗=1

 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜                                                              
𝐶𝜎 𝑗   ≥  𝑝𝜎 𝑗                           𝑗 = 1,… , 𝑛

𝑉𝜎 𝑗   ≤  𝑇𝜎 𝑗                          𝑗 = 1,… , 𝑛

𝑉𝜎 𝑗   ≤  𝑝𝜎 𝑗                     𝑗 = 1,… , 𝑛

 𝑝𝜎 𝑗  > 0,   𝑑𝜎 𝑗  > 0,     𝑉𝜎 𝑗  ≥ 0  

 
 
 
 
 
 
 

 
 
 
 
 
 

……… 𝑆𝑃1  
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ii. The maximum lateness (1 \\ 𝐿𝑚𝑎𝑥 )  which is solved by the  EED rule [8] and the 

formulation form can be given as: 

 

𝑅2 =  𝑚𝑖𝑛𝜎 𝑗   𝐿𝑚𝑎𝑥  

𝑠𝑢𝑏𝑗𝑒𝑐𝑡  𝑡𝑜                                                                  
𝐶𝜎 𝑗   ≥  𝑝𝜎 𝑗                                        𝑗 = 1,… , 𝑛

 𝐿𝜎 𝑗  = 𝐶𝜎 𝑗  − 𝑑𝜎 𝑗                           𝑗 = 1,… , 𝑛 

𝑑𝜎 𝑗  > 0,    𝑝𝜎 𝑗  > 0,                    𝑗 = 1,… , 𝑛   
 
 

 
 

……(S𝑃2) 

Theorem (1) [16] 

𝑅1+𝑅2 ≤ R  where 𝑅1, 𝑅2  and R are the minimum objective function values of S𝑃1, 

S𝑃2 and  P  respectively. 

 

4. Special Cases 

A special case means finding an optimal solution without using mathematical 

programming techniques. 

Case (1) 

If EDD rule satisfies𝑐𝑗 < 𝑑𝑗 for each job  j  in EDD  then  EDD rule gives  the optimal 

solution for problem  1/ / 𝑉𝑗
𝑛
𝑗=1  + 𝐿𝑚𝑎𝑥 . 

Proof:- 

Since   𝑐𝑗  < 𝑑𝑗∀ j    in  EDD Hence, no job will be tardy    i.e.    𝑇𝑗=0     ∀ j    and  

 𝑉𝑗
𝑛
𝑗=1  =0   then the problem  1/  𝑐𝑗 < 𝑑𝑗  /  𝑉𝑗

𝑛
𝑗=1  + 𝐿𝑚𝑎𝑥   depend on   1/  𝑐𝑗  <

𝑑𝑗 /𝐿𝑚𝑎𝑥   which was already solved by EDD [8]. So EDD gives  an  optimal solution 

for 1/ / 𝑉𝑗
𝑛
𝑗=1  + 𝐿𝑚𝑎𝑥 . 

Case (2) 

If  𝑝𝑗=𝑝 ,  𝑑𝑗=𝑑 ,  j=1,….,n  then the problem 1/ 𝑝𝑗=p, 𝑑𝑗=d / 𝑉𝑗
𝑛
𝑗=1  + 𝐿𝑚𝑎𝑥   is 

independent on a schedule. 

Proof :- 

Since 𝑝𝑗=𝑝 , then𝑐𝑗=j𝑝 ∀ j for any schedule, and𝑉𝑗=min 𝑚𝑎𝑥 𝑗𝑝 − 𝑑, 0 , 𝑝  and 

since  𝑑𝑗=𝑑 then any order gives the minimum𝐿𝑚𝑎𝑥 , hence the problem 1/ 𝑝𝑗=p, 

𝑑𝑗=d / 𝑉𝑗
𝑛
𝑗=1  + 𝐿𝑚𝑎𝑥   is independent on a schedule. 

Case (3) 

If there is a schedule 𝜋  satisfying𝑝𝑗=𝑝   and  𝑑𝑗 = 𝑗𝑝 ∀𝑗 ∈ 𝜋,   𝜋=(1,……,n) then    

𝜋 is optimal solution for problem  1/  /  Vj
n
j=1  + Lmax . 
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Proof:- 

Since  𝑑𝑗= j𝑝    and  𝑝𝑗=𝑝 therefor   𝑐𝑗 = 𝑑𝑗    then 𝜋 gives just in time for each job  

𝑗 ∈ 𝜋  and   Vj
n
j∈π  + Lmax  =0. 

Case (4) 

. If  𝑑𝑗= 𝑑 ∀ j,  j=1,…, n   then any schedule give an optimal solution  for the 

problem  1/ / 𝑑𝑗 = 𝑑 /  Vj
n
j=1  + Lmax  . 

Proof: - 

  First,  From the condition of due date,   then any order of jobs  gives an optimal 

solution for problem   1/ 𝑑𝑗= d / Lmax  

Second,  since  𝑑𝑗= d  ∀𝑗  then for any ordering of the jobs the total late work equal  to 

max  𝑝𝑗 −
𝑛
𝑗=1 𝑑 , 0 [1]. Hence, any schedule gives an optimal solution  for the 

problem    1/ 𝑑𝑗 = 𝑑 /  Vj
n
j=1  + Lmax  . 

Case(5) 

     If  𝐿𝑚𝑎𝑥  𝐸𝐷𝐷 =  𝑉𝑗
𝑛
𝑗=1 (EDD)  then EDD rule gives an  optimal solution for  the  

problem  1/  / 𝑉𝑗 + 𝐿𝑚𝑎𝑥
𝑛
𝑗=1 . 

proof:- 

Since   𝐿𝑚𝑎𝑥  𝐸𝐷𝐷 =  𝑉𝑗
𝑛
𝑗=1 (EDD)  and  a schedule which is optimal with respect to 

𝐿𝑚𝑎𝑥  is also optimal with respect to 𝑇𝑚𝑎𝑥  [18],  then 𝑇𝑚𝑎𝑥  𝐸𝐷𝐷 =  𝑉𝑗
𝑛
𝑗=1 , and 

𝑇𝑚𝑎𝑥 (𝐸𝐷𝐷) is  a lower bound  for total late work  𝑉𝑗
𝑛
𝑗=1  [1] i.e  𝑇𝑚𝑎𝑥 (𝐸𝐷𝐷) ≤

 𝑉𝑗
𝑛
𝑗=1 . Then (EDD) rule is optimal for  1/  / 𝑉𝑗

𝑛
𝑗=1 .Then (EDD) rule  is  an  optimal  

solution  for  the  1/  /  Vj
n
j=1  + Lmax . 

5. Derivation of Lower  Bound (LB) 

       The  lower  bound  for  the  problem  (P) is  based  on  decomposing  (P) in to  

two  sub  problems   (𝑆𝑃1)and  (𝑆𝑃2) as shown  in   section   (2.3).  𝑅1  and  𝑅2 was  

calculated  to  be  the  lower  bound  for  𝑆𝑃1  and  𝑆𝑃2 respectively,  and  thus 

applying  theorem (1) gives lower  bound  (LB) for  the problem  (P). 

For  subproblem  (𝑆𝑃1),  𝑅1 = 𝑇𝑚𝑎𝑥  𝐸𝐷𝐷  is  a lower  bound  [1] while  for  

subproblem  (𝑆𝑃2),  𝑅2 = 𝐿𝑚𝑎𝑥  𝐸𝐷𝐷  is a lower bound [8].  

 and  LB = (𝑅1 + 𝑅2)  = 𝑇𝑚𝑎𝑥  𝐸𝐷𝐷  + 𝐿𝑚𝑎𝑥  𝐸𝐷𝐷  
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Theorem(2) 

If   i and j  unscheduled jobs  with  𝑑𝑖 < 𝑑𝑗  and   𝑝𝑖=𝑝 for any job  then  job  i≺  j  in 

optimal solution for problem(P). 

Proof:- 

Let  𝑆𝑘  partial  sequence  which  its  schedule, 𝑘 ⊂ 𝑁 for 𝑖, 𝑗 ∈ 𝑘 = 𝑁 − 𝑘, and (𝑆𝑘  ,i 

,j )  be a schedule  which is obtained  by interchanging  job  i and j in (𝑆𝑘  ,j ,i ), then 

all job other than i and j  has the same completion time in (𝑆𝑘  ,i ,j )  as in (𝑆𝑘  ,j ,i). 

Since  potts and van wessanhove [1] prove that EDD rule gives as optimal for  1/  

/ 𝑉𝑗
𝑛
𝑗=1   proved that   𝑝𝑖=𝑝 ∀𝑖  then     𝑉𝑗𝑗∈𝑆𝑘  ,𝑖 ,𝑗  ≤  𝑉𝑗𝑗∈𝑆𝑘  ,𝑗  ,𝑖  since  𝑑𝑖 < 𝑑𝑗  . 

Also by EDD rule  𝐿𝑚𝑎𝑥  𝑆𝑘  , 𝑖 , 𝑗  < 𝐿𝑚𝑎𝑥 𝑆𝑘  , 𝑗 , 𝑖 , hence  i≺j  in optimal  solution 

for problem (P). 

Theorem(3) 

If 𝑑𝑗 = max⁡{ 𝑑𝑖}  ,  i=1,…,n  and  𝑑𝑗≥ t where t= 𝑐𝑚𝑎𝑥  then there exists an optimal 

sequence such that job  j  is ordered last job. 

Proof: 

since  𝑑𝑗  ≥ 𝑐𝑚𝑎𝑥  then job j  is early job, and  𝑉𝑗=0 and by condition 𝑑𝑗 = max 𝑑𝑖 , and 

EDD rule gives an optimal  for 1/  /  Lmax  hence there exists an optimal sequence such 

that job  j  is ordered last job. 

Theorem(4) 

If 𝛿𝑘partial sequence which it is job are schedule  K ⊂ N  for  i , j ∈N - k   and  let    c    

be  a completion  time of the last  job in   𝛿𝑘   if  𝑑𝑖 ≤ 𝑑𝑗  and c+𝑝𝑖+𝑝𝑗  ≤ 𝑑𝑖 then  i ≺  j  

inan optimal solution fortheproblem (P). 

Proof: 

  Since 𝑑𝑖 ≤ 𝑑𝑗  and c +𝑝𝑖+𝑝𝑗  ≤ 𝑑𝑖  then jobs i and j are be early and  𝑉𝑖 = 𝑉𝑗 = 0, 

since EDD rule gives an  optimal for  𝐿𝑚𝑎𝑥    then  i ≺  j  in an optimal solution for the 

problem (P). 

6. Ants Colony optimization (ACO) Algorithm 

In the early 1990s, ant colony optimization (ACO) [19] was introduced by M. Dorigo 

and his colleagues as a novel nature-inspired meta heuristic for the solution of hard 

combinatorial optimization (CO) problems Ant Colony Optimization is a part of the 

larger field of a swarm intelligence technique through which scientists studied the 

behavior patterns of termites, ''ants and other social insects [20] and inspired by the 

behavior of ants in their search for food also. The ants colony algorithm is an 

experimental and error-based search algorithm that gives an acceptable solution (may 
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be the best solution and may not be) so it is used to solve long-time problems using a 

computer such as NP-Complete or questions that need to be tried all the possibilities 

even reach the desired solution if found. Also the ant colony studied by Ali  and 

Farouk  in 2013 [21],Araibi  2017 [22]andHussametal[23]. 

6.1Algorithm Idea 

The idea of algorithm came from simulating the process of searching of food in the 

ants are as follows: 

1. A group of ants start from the cell in several random directions (this process is 

done only in the first time in subsequent times, each track is tested and a 

certain path chosen as we will see later(. 

2. During the passage of the ant it secrete a material called pheromone in a  

certain percentage. 

3. When it find a source of food, it takes a quantity of it and returns to the cell by 

choosing a certain path (the path that contains the largest amount of 

pheromone(. During it return it secrete the same amount of the pheromone. 

4. When the ant starts from the cell again, it will test the amount of pheromone in 

each path and choose the path that contains the largest amount of pheromone. 

(during the return trip, the quantity of pheromone that an ant leaves on the 

ground may depend on the quantity and quality of the food, the pheromone 

trails will guide other ants to the food source [24]). 

5. The amount of pheromone is updated every time period (the concentration of 

the pheromone fades over time. the ants' life is millions of years . 

Note that the shortest path will always contain the largest amount of pheromone and 

therefore all the ants will pass it. The advantage of this algorithm is that it is dynamic 

in the sense that if there is an obstacle in the shortest path, the ants will choose a new 

path in the same way. 
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Fig. (1) Find the shortest path by ants 

 

Steps of the ants algorithm [25]: 

Step1. Set pheromone trails to be small constant. 

Step2. While (termination condition not met). 

Step3. Place each ant on initial node (its index usually). 

Step4. Repeat. 

Step5. For each ant do. 

Step6. Choose next node with Apply State Transition Rule. 

Step7. End for. 

Step8. Until ''each ant builds one solution''. 

Step9. Choose the best solution. 

Step10. Apply Local Update pheromone. 

Step11. Apply Global Update. 
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Step12. End White. 

 

 

 

 

 

 

 

 

 

 No 

 No 

 Yes 

 Yes 

 

                                 Fig. (2):Flowchart of ACO algorithm 

6.2 Actual Ant 

In the experiment ''Linepithema humile'',  Deneubourg et al. (1990)  on the argentine 

ant, which provides a clear demonstration of how to organize the ants by the effects of 

pheromones and called this experiment, the double bridge is two paths, one of which 

twice the length of the other and both used for crossing between the ant site  and food 

source in minutes, the ant Choose in the most cases of the shorter branch. This has 

been achieved by the ants that leave marks of pheromone and followed by other ants 

in their search for food.This has been achieved by the ants that leave marks of 

pheromone and followed by other ants in their search for food. Obviously the faster 

ants that go back to the nest  are  which followed the shorter road back and forth. 

Although ant species are almost blind, they can still communicate with the 

environment and with each other by means of substances they release 

7.  Simulated Annealing (SA) Heuristics 

Simulated  annealing  algorithm is a well-known neighborhood search approach, 

deriving its acceptance mechanism from annealing process in order to let the current 

solution escape from the local optima. It starts with an initial solution and navigates 

start 

Create ants 

Put ants on an entry state 

Select next state 

Is it final 

state? 

Deposit pheromone 

Daemon activities 

Evaporate pheromone 

Is exit 

criterion 

satisfied?  

 

 

 

End 
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around it by any kind of neighborhood search structure. In order to escape from local 

optima, leading ultimately to the optimum solution. In generating this path, solutions 

are chosen from the locality of the preceding solution by a probabilistic function of 

the improvement gained by this move. So, steps are not strictly required to produce 

improved solutions, but each step has a certain probability of leading to improvement; 

at the start all steps all equally likely, but as the algorithm progresses, the tolerance for 

solutions worse than the current one decreases, eventually to the point where only 

improvements are accepted. In this way, the algorithm can attain the optimum 

solution without becoming trapped in local optimal. 

This tells us that we can have some confidence in the answer generated by a well 

formulated simulated annealing implementation, but says nothing about how long it 

might take to find that answer.  It is often used when the search space is discrete (e.g., 

all tours that visit a given set of cities). 

Hence, one finds a few references in the literature that addresses Simulated Annealing  

algorithm. (2009) Seyed, Hashemi and  Khatibi  using the simulated  annealing 

method to solve an problem  on more than one machine is a matter of type NP-hard in 

a reasonable computation time[26],(2013)Sergio, Fulvio, Antonio  and  Alberto  the 

simulated  annealing algorithm was used to solve an  problem of the NP-hard  type 

with release dates [27], (2014) Nakandhrakumar and Balachandar   They found 

approximate solutions to solve the Job Shop Scheduling Problem by simulated  

annealing method [28]. 

The following structure gives the outline of (SA): 

Algorithm[29]: 

Let 's term 

𝑆𝑐  : Candidate schedule 

𝑆𝑜   : Best schedule found so far 

𝑆𝑘  : schedule constructed at K iteration (K= iteration counter) 

𝐺(𝑆𝑜) : Value of best schedule 

𝐺(𝑆𝑘) : Value of schedule constructed at K iteration 

𝐺(𝑆𝑐) : Value of candidate schedule 

𝑟𝑎𝑛𝑑(𝑥) < exp(
𝐺(𝑆𝑐) − 𝐺(𝑆𝑘)

𝛽𝑘
) 

Where, x is a random variable having uniform distribution  U[0; 1]. 

𝛽𝑘  is called cooling parameter in annealing terminology usually   𝛽𝑘 = 𝑎𝑘 , where 

𝑎 ∈ [0,1]. 
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Step (1): Initialize 

Set  K=1 

Let 𝑆𝑘  be a randomly create sequence 

Let  𝑆𝑘 = 𝑆𝑜  

Then  𝐺 𝑆𝑘 = 𝐺 𝑆𝑜  

Step (2): Generate a perturbed sequence 𝑺𝒄with one of the neighborhoods operators 

and set  𝑘 = 𝑘 + 1. 

Step (3): Evaluate the 𝐺 𝑆𝑐  values. 

Step (4):  If  𝐺 𝑆𝑐 < 𝐺 𝑆𝑜 , then let 𝑆𝑘 = 𝑆𝑐 , 𝐺 𝑆𝑜 = 𝐺 𝑆𝑐 . Set 𝑘 = 𝑘 + 1 and go 

to step 7. 

Step (5): Generate a random number 𝒙. 

Step (6): If  𝑟𝑎𝑛𝑑(𝑥) < exp⁡(
𝐺 𝑆𝑐 −𝐺 𝑆𝑘 

𝛽𝑘
) , then let  𝑆𝑘 = 𝑆𝑐 , 𝐾 = 𝑁. 

Step (7): If 𝑘 < 𝑁, then go to step 2. 

Else 

Let 𝛽𝑘+1 = 𝑎𝛽𝑘  and 𝑘 = 0. 

Step(8): Stop best value of 𝑆𝑜  stored in best. 

8. Hybridization algorithms 

      Meta-heuristics are used to solve with the computationally hard optimization 

problems. Meta-heuristics consist of a high level algorithm that guides the search 

using other particular methods. Meta-heuristics can be used as a standalone approach 

for solving hard combinatorial optimization problems. But now the standalone 

approach is drastically changed and attention of researchers has shifted to consider 

another type of high level algorithms, namely hybrid algorithms. There are at least 

two issues having to be considered while combining more than one meta-heuristics: 

(a) how to choose the meta-heuristic methods and (b) how to combine the chosen 

heuristic methods into new hybrid approaches. Unfortunately, there are no theoretical 

foundations for these issues. For the former, different classes of search algorithms can 

be considered for the purposes of hybridization, such as exact methods, simple 

heuristic methods and meta-heuristics. Moreover, meta-heuristics themselves are 

classified into local search based methods, population based methods and other 

classes of nature inspired meta-heuristics. Therefore, in principle, one could combine 

any methods from the same class or methods from different classes [30], Hence, one 

finds a few references in the literature that addresses Hybridization algorithms, (2006)  
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Mohammad Kadhim He studied the hybridization of genetic with Simulated to solve 

the problem  [31], (2010) A. Jamili, M.A. Shafia, R. Tavakkoli-Moghaddam  They 

hybridized Simulated with electromagnetism-like mechanism to solve a periodic job 

shop scheduling problem [32], (2016) KashifAkram  etal. are using  simulated 

annealing  hybridized with quenching for solving job shop scheduling problem [33]. 

In this chapter, we will study hybridization for the two approximate methods ( Ants 

Colony, Simulated Annealing) as follows: 

 Hybridization the Ants Colony with Simulated Annealing(HASA). 

 Hybridization the Simulated Annealing with Ants Colony(HSAC). 

8.1 Hybridization the Ants Colony with Simulated Annealing (HASA) 

      The use of the ants algorithm in order to find a preliminary solution or candidate 

schedule of the problem  and then this solution is improved by introducing it in the 

simulated  algorithm, i.e (Hybridization of ants algorithm with simulated  algorithm), 

An efficient scheduler is to be obtained at a reasonable time. 

8.2 Hybridization the Simulated Annealing  with  Ants Colony (HSAC) 

     Hybridization of the Ants algorithm by sequential taking as an initial solution from 

the simulated algorithm and then inserted with the Ants algorithm to improve the first 

solution. 

9.Computational   Results  of  Local   Search Algorithms and Comparison 

9.1 Test Problems 

The data were generated in this chapter in the same way as in [34]that generates as 

follows: 

 The processing time pj is uniformly distributed in the interval      [1,10]. 

 The  due  date di  is  uniformly  distributed  in  the  interval 

[P(1-TF-RDD/2),P(1-TF+RDD/2)];  where 𝑃 =  𝑝𝑗
𝑛
𝑗=1  

depending on the relative range of due date (RDD) and on the average tardiness factor 

(TF). 

For  both  parameters, the values 0.2, 0.4, 0.6, 0.8 and 1.0 are considered. For each 

selected value of n (where n is the number of jobs), ten problems were generated. 

9.2 Computational Results 

The local search algorithms in this chapter Ants Colony Algorithm, Simulated 

Annealing Heuristics andCats Swarm Algorithm, are coded in MATLAB 8.3.0 

(R2014a) and implemented on Intel (R) Core(TM) i3-6100U CPU @ 2.30 GHZ, with 
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RAM 4.00 GB personal computer. In our computation, we use the condition that: if 

the solution of an example with " n " jobs for any algorithm does not appear after 600 

seconds, i.e. (10 minutes) from its run; then this example is unsolved and this 

algorithm is active until the problem of size " n'' 

9.2.1 Comparative Effective of Local Search Algorithms 

Table (1) shows for each algorithm the value of the objective function and how many 

it can catch the optimal value for each value of  " n  " (problem size). In addition, it 

describes the deviation of local search methods fro the optimal solution. The optimal 

solution for examples in table (1) was found by using complete enumeration (CE). 

Table (2) shows the values of each local search algorithms and how many times that 

each of them catch the best value. where: 

Opt= the optimal value. 

ACO= the value found by Ants Colony Algorithm. 

SA= the value found by Simulated Annealing. 

HASA = the value found by HASA algorithm. 

HSAC = the value found by HSAC algorithm. 

No of opt.= number of examples that catch the optimal value. 

Av. of Time = the average of time for (10) examples for each size. 

Av. of Cost = the average of cost for (10) examples for each size. 

/ = refer to the unsolved example. 
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Table(1): The performance of local search methods and the optimal                    

solution for n{5, 10} 

n Ex Opt SA ACO 

 

 

 

 

 

5 

1 30 31 34 

2 41 41 41 

3 22 22 22 

4 32 32 32 

5 25 25 25 

6 31 31 33 

7 29 30 30 

8 57 57 59 

9 40 40 47 

10 15 15 24 

No. of  opt. 8 4 

Av. of time 0.1153 0.0012 

Av. of cost 32.4 34.6 

 

 

 

 

 

10 

1 121 121 122 

2 67 67 79 

3 33 33 70 

4 76 76 76 

5 22 22 43 

6 70 70 76 

7 27 27 36 

8 122 122 125 

9 57 58 68 

10 54 54 65 
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No. of  opt. 9 1 

Av. Time 0.1285 0.0018 

Av. of cost 65 76.6 

 

Table (2): The performance of local search methods for problem (P) withn ∈ 

{50,100,200,500,1000,2000,5000,10000,15000,20000,30000,50000,100000} 

n 

SA ACO HASA HSAC 

Av. of 

cost 

Av. of 

time 

Av. of 

cost 

Av. of 

time 

Av. of 

cost 

Av. of 

time 

Av. of 

cost 

Av. of 

time 

50 263.4 0.1797 391.3 0.0221 263.9 0.2181 265.4 0.3915 

100 470.9 0.2513 782.9 0.1084 471 0.4747 473.2 0.6099 

200 1051.3 0.4042 1686.8 0.6430 1056.4 1.6799 1058.3 1.4534 

400 1763 0.7304 3331.4 4.8082 1764.4 10.3751 1755.4 6.2230 

500 2534.6 0.8836 4175.3 8.9643 2534.8 18.8087 2529 10.6705 

1000 5781.8 1.7305 8782.1 72.3901 5796.4 146.3028 5765.8 75.7601 

2000 11013 3.5265 / / / / / / 

5000 25899 9.0975 / / / / / / 

10000 67369 18.4783 / / / / / / 

15000 93634 23.0555 / / / / / / 

20000 117930 30.9836 / / / / / / 

30000 142000 49.2750 / / / / / / 

50000 374290 86.9954 / / / / / / 

100000 660240 213.4520 / / / / / / 

9.2.2 Summary of  Experimental Evaluation  of  Local Search  Methods 

In the table (3), we summarize the results of table (1) by viewing how  many  times 

that the algorithm catch  the optimal value only,   and their sum, for each number of  

jobs and for the two local search methods. 



Journal of Progressive Research in Mathematics(JPRM) 

ISSN: 2395-0218  

 
 Volume 13, Issue 3 available at www.scitecresearch.com/journals/index.php/jprm                                    2259| 

 

                                   Table (3): summary of results of table (1) 

n SA ACO 

5 8 4 

10 9 1 

Sum 17/20 5/20 

 

In the table (4), we summarize the results of table (2) by viewing how many times that 

the algorithm catch the best value only, and their sum. For each number of jobs for the 

four local search algorithms. 

                             Table (4): summary of results of table (2) 

n SA ACO HASA HSAC 

50 9 0 7 7 

100 4 0 4 3 

200 5 0 3 2 

400 3 0 5 5 

500 5 0 1 4 

1000 6 0 0 5 

2000 10 / / / 

5000 10 / / / 

10000 10 / / / 

15000 10 / / / 

20000 10 / / / 

30000 10 / / / 

50000 10 / / / 

100000 10 / / / 

Sum 112/140 0 20/140 26/140 
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In the table (5), we give the activity of local search algorithms,  (i.e. give the 

maximum number of jobs " n (  " that the local search algorithms can solve the (1/  / 

 𝑉𝑖
𝑛
𝑖=1 + 𝐿𝑚𝑎𝑥 ) problem with reasonable time, (i. e. according to the condition that 

had been given in subsection (9.2)). 

                      Table (5): shows activity of the local search methods 

Algorithm Active until ( maximum no. of jobs ) 

SA 100000 

ACO 1000 

HSAC 1000 

HASA 1000 

 

From a comparative study of the introduced local search methods and precise vision 

of all the above tables, we found that for the                      (1/  /  𝑉𝑖
𝑛
𝑖=1 + 𝐿𝑚𝑎𝑥 ) 

problem the SA algorithm has obtained the best results and used hybridization 

methods to try to improve solutions, we note that the hybridization algorithms 

(HASA, HSAC) have improved the results of the ACO algorithm, whereas the 

hybridization algorithm (HSAC) has improved the results of the SA algorithm when n 

≥ 400 see  figure (3). 
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 Fig.(3): the results with 𝑛 large than 50 jobs 

Where:  

SA: Cost averages of the results of the simulated annealing.  

ACO: Cost averages of the results of the ants colony.  

HASA: Cost averages of the results of the Hybridization the Ants Colony      with 

Simulated Annealing.  

HSAC: Cost averages of the results of the Hybridization the Simulated Annealing 

with Ants Colony. 
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