# Journal of Progressive Research in Mathematics www.scitecresearch.com/journals 

# Multiple solutions for a kind of periodic boundary value problems via variation approach ${ }^{12}$ 

Li Zhang ${ }^{\text {a,b }}$, Nao Li ${ }^{\text {a }}$, Yujie $\mathrm{Xu}^{\text {b }}$, Qian $\mathrm{Xu}^{\text {b }}$, Chong Li ${ }^{\text {b }}$<br>${ }^{\text {a }}$ Collaborative Innovation Center of eTourism, Beijing Union University, Beijing 100101, China<br>${ }^{\mathrm{b}}$ Department of Foundation Courses, Beijing Union University, Beijing 100101, China


#### Abstract

In this paper, the existence of at least two solutions for periodic boundary value problems is obtained by the critical point theory. The interest is that the nonlinear term includes the first-order derivative and may not satisfy the classical Ambrosetti-Rabinowitz condition.


Keywords: $p$-laplacian; boundary value problem; variational; periodic solution.
Mathematics Subject Classification 2000: 34B24.

## 1. Introduction

This paper considers the existence of at least two periodic solutions for the following kind of boundary value problems (for short BVPs)

$$
\left\{\begin{array}{l}
\left(\phi_{p}\left(x^{\prime}(t)\right)\right)^{\prime}=\left(a(t) \phi_{p}(x(t))+f(t, x(t))\right) g\left(x^{\prime}(t)\right), t \in[0, T] \backslash\left\{t_{1}, \cdots, t_{k}\right\}  \tag{1.1}\\
\Delta G\left(x^{\prime}\left(t_{i}\right)\right)=I_{i}\left(x\left(t_{i}\right)\right), i=1, \cdots, k(1.2) \\
x(0)-x(T)=0, \quad x^{\prime}(0)-x^{\prime}(T)=0 .
\end{array}\right.
$$

Here, $p>1, T>0, \phi_{p}(x)=|x|^{p-2} x, G(x)=\int_{0}^{x} \frac{(p-1)|s|^{p-2}}{g(s)} d s$.
The periodic BVPs have received a lot of attention. Many works have been carried out to discuss the existence of at least one solution, multiple solutions. The methods therein mainly depend on lower and upper solutions with monotone iterative ${ }^{[1]}$ and fixed point theorems ${ }^{[2]}$, etc. Reciently, variational methods have been used to study the existence of periodic solutions, such as [3,4]. Moreover, Ambrosetti and Rabinowitz ${ }^{[10]}$ established the existence of nontrival solutions for Dirichlet problems under the well known Ambrosetti-Rabinowitz condition: there exist some $\mu>2$ and $R>0$ such that

$$
0<\mu \int_{0}^{x} f(t, s) d s \leq f(t, x) x
$$

for all $t \in[0, T]$ and $|x| \geq R$. Since then, the AR-condition has been used extensively. By the usual AR-condition, it is easy to show that the Euler-Lagrange functional associated with the system has the mountain pass geometry and the Palais-Smale sequence is bounded.

Since it is not easy to verify the corresponding Euler functional satisfying (PS)-condition, few papers consider the boundary value problems with the nonlinear term including the first-order derivative. G. A. Afrouzi and S. Heidarkhani ${ }^{[8]}$ proved the existence of at least three weak solutions for the Dirichlet problem

[^0]\[

\left\{$$
\begin{array}{l}
y^{\prime \prime}+\lambda h\left(y^{\prime}\right) f(t, y)=0, \quad a<t<b \\
y(a)=y(b)=0
\end{array}
$$\right.
\]

where $a, b \in \mathbb{R}, \lambda>0$. Based on the three critical points theorem in ${ }^{[5]}$, the authors did not need to verify (PS)-condition of the corresponding Euler functional.

To the best of our knowledge, no people consider the existence of at least two solutions for periodic BVP with the nonlinearity including $x^{\prime}$ by using variational methods. As a result, the goal of this paper is to fill the gap in this area.

The outline of the paper is as follows. In the forthcoming section, we present some general results. In section 3 , we exhibit the existence of at least two solutions. Thoughout, assume $a(t) \in C([0, T] ;(0,+\infty)), F(t, x)=$ $\int_{0}^{x} f(t, u) d u, G(x)=\int_{0}^{x} \frac{(p-1) \mid s s^{p-2}}{g(s)} d s$ and
$\left(A_{1}\right) f(t, x):[0, T] \times \mathbb{R} \rightarrow \mathbb{R}$ is continuous.
$\left(A_{2}\right) g(x): \mathbb{R} \rightarrow \mathbb{R}$ is continuous and there exist constants $M>m>0$ such that $M \geq g(x) \geq m, x \in \mathbb{R}$.
$\left(A_{3}\right) I_{i}(x): \mathbb{R} \rightarrow \mathbb{R}$ is continuous, $i=1, \cdots, k$.
Remark 1.1 From the expression of $G(x)$, one has $\frac{d}{d t} G(x)=\frac{(p-1)|x|^{p-2}}{g(x)} \frac{d x}{d t}=\frac{\frac{d}{d t}\left(\phi_{p}(x(t))\right)}{g(x)}, \frac{1}{M}|x|^{p} \leq G(x) x \leq$ $\frac{1}{m}|x|^{p}, \frac{1}{M p}|x|^{p} \leq \int_{0}^{x} G(s) d s \leq \frac{1}{m p}|x|^{p}$.

## 2. Preliminary

The Sobolev space $W^{1, p}[0, T]$ is defined by
$W^{1, p}[0, T]=\left\{x:[0, T] \rightarrow \mathbb{R} \mid x\right.$ is absolutely continuous, $\left.x^{\prime} \in L^{p}(0, T ; \mathbb{R}), x(0)=x(T)\right\}$
and is endowed with the norm

$$
\begin{equation*}
\|x\|=\left(\int_{0}^{T}|x(t)|^{p} d t+\int_{0}^{T}\left|x^{\prime}(t)\right|^{p} d t\right)^{\frac{1}{p}} \tag{2.2}
\end{equation*}
$$

Then, from [3], $W^{1, p}[0, T]$ is a sparable and reflexive Banach space. Next, we show some basic knowledge.
Theorem 2.1 ${ }^{[6]}$ For the functional $F: M \subset X \rightarrow[-\infty,+\infty]$ with $M \neq \emptyset, \min _{u \in M} F(u)=\alpha$ has a solution in case the following holds:
(i) $X$ is a real reflexive Banach space;
(ii) $M$ is bounded and weak sequentially closed, i.e., for each sequence $\left\{u_{n}\right\}$ in $M$ such that $u_{n} \rightharpoonup u$ as $n \rightarrow \infty$, we always have $u \in M$;
(iii) $F$ is weakly sequentially lower semi-continuous on $M$.

Theorem 2.2 ${ }^{[3]}$ Let $E$ be a Banach space and $\varphi \in C^{1}(E, \mathbb{R})$ satisfy (PS)-condition. Assume there exist $x_{0}, x_{1} \in E$, and a bounded open neighborhood $\Omega$ of $x_{0}$ such that $x_{1} \backslash \bar{\Omega}$ and

$$
\max \left\{\varphi\left(x_{0}\right), \varphi\left(x_{1}\right)\right\}<\inf _{x \in \partial \Omega} \varphi(x)
$$

Let

$$
\Gamma=\left\{h \mid h:[0,1] \rightarrow E \text { is continuous and } h(0)=x_{0}, h(1)=x_{1}\right\}
$$

and

$$
c=\inf _{h \in \Gamma} \max _{s \in[0,1]} \varphi(h(s))
$$

Then, $c$ is a critical value of $\varphi$, that is, there exists $x^{*} \in E$ such that $\varphi^{\prime}\left(x^{*}\right)=$ and $\varphi\left(x^{*}\right)=c$, where $c>$ $\max \left\{\varphi\left(x_{0}\right), \varphi\left(x_{1}\right)\right\}$.
For $x \in C[0, T]$, suppose $\|x\|_{\infty}=\max _{t \in[0, T]}|x(t)|,\|x\|_{m}=\min _{t \in[0, T]}|x(t)|$.
Lemma 2.1 If $x \in W^{1, p}[0, T]$, then, $\|x\|_{\infty} \leq C\|x\|$ where $C=T^{-\frac{1}{p}}+T^{\frac{1}{q}}$.
Lemma 2.2 ${ }^{[7]}$ There exists a positive constant $c_{p}$ such that

$$
\left(|x|^{p-2} x-|y|^{p-2} y, x-y\right) \geq\left\{\begin{array}{l}
c_{p}|x-y|^{p}, \quad p \geq 2,(2.3)  \tag{2.3}\\
c_{p} \frac{|x-y|^{2}}{(|x|+|y|)^{2-p}}, \quad 1<p<2(2.4)
\end{array}\right.
$$

for any $x, y \in \mathbb{R}^{N},|x|+|y| \neq 0$. Here, $(x, y)=x \cdot y^{T}$.
In the following, we state the (C) condition ${ }^{[8]}$. Let $\varphi$ be a Frechet differential functional and $H$ be a Banach space,
(C) Every sequence $\left(x_{n}\right)_{n \in N} \subset H$ such that the following conditions hold:
(i) $\left(\varphi\left(x_{n}\right)\right)_{n \in N}$ is bounded,
(ii) $\left(1+\left\|x_{n}\right\|_{H}\right)\left\|\varphi^{\prime}\left(x_{n}\right)\right\|_{H^{*}} \rightarrow 0$ as $n \rightarrow \infty$
has a subsequence which converges strongly in $H$.

## 3. Existence of at least two solutions

Define

$$
\begin{equation*}
\varphi(x)=\int_{0}^{T}\left[F(t, x)+\frac{1}{p} a(t)|x(t)|^{p}+\int_{0}^{x^{\prime}} G(u) d u\right] d t+\sum_{i=1}^{k} \int_{0}^{x\left(t_{i}\right)} I_{i}(t) d t, \tag{3.1}
\end{equation*}
$$

Obviously, $\varphi$ is continuously differentiable on $W^{1, p}[0, T]$ and by computation, one has

$$
\begin{aligned}
<\varphi^{\prime}(x), y \geq & \int_{0}^{T} f(t, x) y d t+\int_{0}^{T} a(t) \phi_{p}(x) y d t+\int_{0}^{T} G\left(x^{\prime}\right) y^{\prime} d t \\
& +\sum_{i=1}^{k} I_{i}\left(x\left(t_{i}\right)\right) y\left(t_{i}\right), \quad x, y \in W^{1, p}[0, T] . \text { (3.2) }
\end{aligned}
$$

Lemma 3.1 If $x \in W_{T}^{1, p}$ is a critical point of $\varphi$, then, $x$ is a solution to $\operatorname{BVP}(1.1)$.
Lemma 3.2 Assume $\left(A_{1}\right),\left(A_{2}\right)$, and the following conditions
$\left(B_{1}\right)$ there exists some constants $\mu>p$ and $\gamma_{1}, \gamma_{2}$ satisfying

$$
\mu F(t, x)-x f(t, x) \geq \gamma_{1} x^{p}-\gamma_{2}, \quad x \in \mathbb{R} ;
$$

$\left(B_{2}\right) \lim _{x \rightarrow+\infty} \frac{f(t, x)}{|x|^{p-1}}=-\infty, \lim _{x \rightarrow-\infty} \frac{f(t, x)}{|x|^{p-1}}=+\infty, t \in[0, T] ;$

$$
\begin{gathered}
\left(B_{3}\right) \mu \min \left\{\|a\|_{m}, \frac{1}{M}\right\}>p \max \left\{\|a\|_{\infty}, \frac{1}{m}\right\} \\
\left(B_{4}\right) 0 \leq I_{i}(x) \cdot x, I_{i}(x) \leq b_{i}+c_{i} x^{\tau-1}, \tau<p, b_{i}, c_{i} \in R^{+}, i=1, \cdots, k
\end{gathered}
$$

hold, then the functional $\varphi$ satisfies (C)-condition.
Proof. Let $\left(x_{n}\right)_{n \in N}$ be a sequence in $W^{1, p}[0, T]$ such that $\varphi\left(x_{n}\right)$ is bounded and $\left\|\varphi^{\prime}\left(x_{n}\right)\right\| \times\left(1+\left\|x_{n}\right\|\right) \rightarrow 0$ as $n \rightarrow \infty$. Then, there exist a constant $C_{1}>0$ and a sequence $\left(\varepsilon_{n}\right)_{n \in N}, \varepsilon_{n} \rightarrow 0$ as $n \rightarrow \infty$ such that

$$
\begin{equation*}
\left|\varphi\left(x_{n}\right)\right| \leq C_{1}, \quad\left|<\varphi^{\prime}\left(x_{n}\right), x_{n}>\right| \leq \varepsilon_{n} . \tag{3.3}
\end{equation*}
$$

Suppose $\left\|x_{n}\right\| \rightarrow \infty, n \rightarrow \infty$. Set $y_{n}=\frac{x_{n}}{\left\|x_{n}\right\|}$ for all $n \geq 1$. Obviously, $\left\|y_{n}\right\|=1$, that is, $\left(y_{n}\right)_{n \in N}$ is a bounded sequence in $W^{1, p}[0, T]$. Going to a subsequence if necessary, we may assume that

$$
y_{n} \rightharpoonup y \text { in } W^{1, p}[0, T], y_{n}(t) \rightarrow y(t) \text { in }[0, T] .
$$

From (3.3),
$\left|\frac{\int_{0}^{T} a(t)\left|x_{n}\right|^{p} d t+\int_{0}^{T} G\left(x_{n}^{\prime}\right) x_{n}{ }^{\prime} d t}{\left\|x_{n}\right\|^{p}}+\int_{0}^{T} \frac{f\left(t, x_{n}\right) y_{n}}{\left\|x_{n}\right\| p-1} d t+\frac{\sum_{i=1}^{k} I_{i}\left(x_{n}\left(t_{i}\right)\right) x_{n}\left(t_{i}\right)}{\left\|x_{n}\right\|^{p}}\right| \leq \frac{\varepsilon_{n}}{\left\|x_{n}\right\|^{p}}$.
Moreover,
$\min \left\{\frac{1}{M},\|a\|_{m}\right\} \leq\left|\frac{\int_{0}^{T} a(t)\left|x_{n}\right|^{p} d t+\int_{0}^{T} G\left(x_{n}{ }^{\prime}\right) x_{n}{ }^{\prime} d t}{\left\|x_{n}\right\|^{p}}\right| \leq \max \left\{\frac{1}{m},\|a\|_{\infty}\right\}$.(3.5)
Let $\Omega_{0}^{+}=\{t \in[0, T], y(t)>0\}, \Omega_{0}^{-}=\{t \in[0, T], y(t)<0\}$, then, $x_{n}(t) \rightarrow+\infty$ for $t \in \Omega_{0}^{+}, x_{n}(t) \rightarrow-\infty$ for $t \in \Omega_{0}^{-}, n \rightarrow \infty$. By the hypothesis,

$$
\frac{f\left(t, x_{n}(t)\right)}{\left(x_{n}(t)\right)^{p-1}} \rightarrow-\infty, \quad t \in \Omega_{0}^{+}, n \rightarrow \infty .
$$

If meas $\Omega_{0}^{+}>0$, then,

$$
\left(y_{n}(t)\right)^{p} \frac{f\left(t, x_{n}(t)\right)}{\left(x_{n}(t)\right)^{p-1}} \rightarrow-\infty, \quad t \in \Omega_{0}^{+}, n \rightarrow \infty .
$$

If $m e a s \Omega_{0}^{-}>0$, then,

$$
\left(y_{n}(t)\right)^{p} \frac{f\left(t, x_{n}(t)\right)}{\left(x_{n}(t)\right)^{p-1}}=y_{n}(t)\left|y_{n}(t)\right|^{p-1} \frac{f\left(t, x_{n}(t)\right)}{\left|x_{n}(t)\right|^{p-1}} \rightarrow-\infty, \quad t \in \Omega_{0}^{-}, n \rightarrow \infty .
$$

Moreover,

$$
\begin{aligned}
\int_{0}^{T} \frac{f\left(t, x_{n}\right) y_{n}}{\left\|x_{n}\right\|^{p-1}} d t= & \int_{\Omega_{0}^{+}}\left(y_{n}(t)\right)^{p} \frac{f\left(t, x_{n}(t)\right)}{\left(x_{n}(t)\right)^{p-1}} d t+\int_{\Omega_{0}^{-}}\left(y_{n}(t)\right)^{p} \frac{f\left(t, x_{n}(t)\right)}{\left(x_{n}(t)\right)^{p-1}} d t \\
& +\int_{\left[0, T \backslash \backslash\left(\Omega_{0}^{+} \cup \Omega_{0}^{-}\right)\right.} \frac{f\left(t, x_{n}(t)\right) x_{n}(t)}{\left\|x_{n}\right\|^{p}} d t .
\end{aligned}
$$

Then, from $\left(B_{2}\right)$, there exists some constant $k>0, f(t, x) x<0$ for $|x|>k$. For $|x| \leq k, f(t, x)$ is bounded by continuity, hence, $\int_{[0, T] \backslash\left(\Omega_{0}^{+} \cup \Omega_{-}^{-}\right)} \frac{f\left(t, x_{n}(t)\right) x_{n}(t)}{\left\|x_{n}\right\|^{p}} d t$ is bounded or negative. By $\left(B_{3}\right)$ and the discussion above, one has

$$
\int_{0}^{T} \frac{f\left(t, x_{n}\right) y_{n}}{\left\|x_{n}\right\|^{p-1}} d t \rightarrow-\infty, \quad n \rightarrow \infty .
$$

This reaches a contradiction, that is, $\operatorname{meas} \Omega_{0}^{+}=\operatorname{meas} \Omega_{0}^{-}=0$. Then, one can conclude that $y(t)=0$ for a.e. $t \in[0, T]$. Hence, $y(t) \equiv 0, t \in[0, T]$.
Moreover,

$$
\begin{gathered}
\frac{1}{p} \min \left\{\|a\|_{m}, \frac{1}{M}\right\}\left\|x_{n}\right\|^{p} \leq \int_{0}^{T}\left[\frac{1}{p} a(t)\left|x_{n}(t)\right|^{p}+\int_{0}^{x_{n}{ }^{\prime}} G(u) d u\right] d t \\
\quad \leq \frac{1}{p} \max \left\{\|a\|_{\infty}, \frac{1}{m}\right\}\left\|x_{n}\right\|^{p}, \\
\min \left\{\|a\|_{m}, \frac{1}{M}\right\}\left\|x_{n}\right\|^{p} \leq \int_{0}^{T}\left[a(t)\left|x_{n}(t)\right|^{p}+G\left(x_{n}{ }^{\prime}\right) x_{n}{ }^{\prime}\right] d t \leq \max \left\{\|a\|_{\infty}, \frac{1}{m}\right\}\left\|x_{n}\right\|^{p} . \\
0 \leq I_{i}\left(x_{n}\left(t_{i}\right)\right) \cdot x_{n}\left(t_{i}\right) \leq b_{i}\left|x_{n}\left(t_{i}\right)\right|+c_{i}\left|x_{n}^{\tau}\left(t_{i}\right)\right| \leq c b_{i}\left\|x_{n}\right\|+c^{\tau} c_{i}\left\|x_{n}\right\|^{\tau} \\
\left|\int_{0}^{x_{n}\left(t_{i}\right)} I_{i}(t) d t\right|=\left|I_{i}(\zeta) \cdot x_{n}\left(t_{i}\right)\right| \leq b_{i}\left|x_{n}\left(t_{i}\right)\right|+c_{i}\left|x_{n}^{\tau}\left(t_{i}\right)\right| \leq c b_{i}\left\|x_{n}\right\|+c^{\tau} c_{i}\left\|x_{n}\right\|^{\tau}
\end{gathered}
$$

Here $\boldsymbol{c}=\boldsymbol{T}^{-\frac{1}{p}}+\boldsymbol{T}^{\frac{1}{q}}$. Hence,

$$
-C_{1}-\frac{1}{p} \max \left\{\|a\|_{\infty}, \frac{1}{m}\right\}\left\|x_{n}\right\|^{p}-\sum_{i=1}^{k}\left(c b_{i}\left\|x_{n}\right\|+c^{\tau} c_{i}\left\|x_{n}\right\|^{\tau}\right)
$$

$$
\leq \int_{0}^{T} F\left(t, x_{n}\right) d t \leq C_{1}-\frac{1}{p} \min \left\{\|a\|_{m}, \frac{1}{M}\right\}\left\|x_{n}\right\|^{p},
$$

$-\varepsilon_{n}+\min \left\{\|a\|_{m}, \frac{1}{M}\right\}\left\|x_{n}\right\|^{p}$
$\leq-\int_{0}^{T} f\left(t, x_{n}\right) x_{n} d t$
$\leq \varepsilon_{n}+\max \left\{\|a\|_{\infty}, \frac{1}{m}\right\}\left\|x_{n}\right\|^{p}+\sum_{i=1}^{k}\left(c b_{i}\left\|x_{n}\right\|+c^{\tau} c_{i}\left\|x_{n}\right\|^{\tau}\right)$,
Then, one has
$-\frac{\mu C_{1}}{\left\|x_{n}\right\|^{p}}-\frac{\mu}{p} \max \left\{\|a\|_{\infty}, \frac{1}{m}\right\}$
$\leq \int_{0}^{T} \frac{\mu F\left(t, x_{n}\right)}{\left\|x_{n}\right\|^{p}} d t \leq-\frac{\mu}{p} \min \left\{\|a\|_{m}, \frac{1}{M}\right\}+\frac{\mu C_{1}}{\left\|x_{n}\right\|^{p}}-\sum_{i=1}^{k}\left(c b_{i} \frac{1}{\left\|x_{n}\right\|^{p-1}}-c^{\tau} c_{i} \frac{1}{\left\|x_{n}\right\|^{p-\tau}}\right)$,
$-\frac{\varepsilon_{n}}{\left\|x_{n}\right\|^{p}}+\min \left\{\|a\|_{m}, \frac{1}{M}\right\}$
$\leq-\int_{0}^{T} \frac{f\left(t, x_{n}\right) x_{n}}{\left\|x_{n}\right\|^{p}} d t \leq \max \left\{\|a\|_{\infty}, \frac{1}{m}\right\}+\frac{\varepsilon_{n}}{\left\|x_{n}\right\|^{p}}+\sum_{i=1}^{k}\left(c b_{i} \frac{1}{\left\|x_{n}\right\|^{p-1}}+c^{\tau} c_{i} \frac{1}{\left\|x_{n}\right\|^{p-\tau}}\right)$.
Moreover,
$-\frac{\mu}{p} \max \left\{\|a\|_{\infty}, \frac{1}{m}\right\}+\min \left\{\|a\|_{m}, \frac{1}{M}\right\}$
$\leq \lim _{n \rightarrow+\infty} \int_{0}^{T} \frac{\mu F\left(t, x_{n}\right)-x_{n} f\left(t, x_{n}\right)}{\left|x_{n}\right|^{p}}\left|y_{n}\right|^{p} d t$
$\leq-\frac{\mu}{p} \min \left\{\|a\|_{m}, \frac{1}{M}\right\}+\max \left\{\|a\|_{\infty}, \frac{1}{m}\right\}<0$.
By $\left(B_{1}\right)$,

$$
\lim _{n \rightarrow+\infty} \frac{\mu F\left(t, x_{n}\right)-x_{n} f\left(t, x_{n}\right)}{\left|x_{n}\right|^{p}}\left|y_{n}\right|^{p} \geq \lim _{n \rightarrow+\infty} \frac{\gamma_{1} x_{n}^{p}-\gamma_{2}}{\left|x_{n}\right|^{p}}\left|y_{n}\right|^{p} \rightarrow 0,
$$

which is contradictive with (3.6). Hence, $\left(x_{n}\right)_{n \in N}$ is bounded in $W^{1, p}[0, T]$. By the compactness of the embedding $W^{1, p}[0, T] \leftrightarrow C[0, T]$, the sequence $\left(x_{n}\right)_{n \in N}$ has a subsequence, again denoted by $\left(x_{n}\right)_{n \in N}$ for convenience, such that

$$
\begin{gathered}
x_{n} \rightharpoonup x \text { weakly in } W^{1, p}[0, T], \\
x_{n} \rightarrow x \text { strongly in } C[0, T] .
\end{gathered}
$$

From (3.2), for $m, n \in N$,
$\left.<\varphi^{\prime}\left(x_{n}\right)-\varphi^{\prime}\left(x_{m}\right), x_{n}-x_{m}\right\rangle$
$=\int_{0}^{1}\left(f\left(t, x_{n}\right)-f\left(t, x_{m}\right)\right)\left(x_{n}-x_{m}\right) d t+\int_{0}^{1} a(t)\left(\phi_{p}\left(x_{n}\right)-\phi_{p}\left(x_{m}\right)\right)$

$$
\begin{aligned}
& \left(x_{n}-x_{m}\right) d t+\int_{0}^{1}\left(G\left(x_{n}^{\prime}\right)-G\left(x_{m}^{\prime}\right)\right)\left(x_{n}^{\prime}-x^{\prime}{ }_{m}\right) d t \\
& +\sum_{i=1}^{k}\left(I_{i}\left(x_{n}\left(t_{i}\right)\right)-I_{i}\left(x_{m}\left(t_{i}\right)\right)\right)\left(x_{n}\left(t_{i}\right)-x_{m}\left(t_{i}\right)\right) .
\end{aligned}
$$

Since $\left(x_{n}\right)_{n \in N}$ is a Cauchy sequence in $C[0, T], f(t, x)$ is continuous in $x, G(x)$ is continuous, and $\mid<\varphi^{\prime}\left(x_{n}\right)-$ $\varphi^{\prime}\left(x_{m}\right), x_{n}-x_{m}>\mid \leq\left(\left\|\varphi^{\prime}\left(x_{n}\right)\right\|+\left\|\varphi^{\prime}\left(x_{m}\right)\right\|\right)\left\|x_{n}-x_{m}\right\|,\left\|x_{n}-x_{m}\right\|$ is bounded in $W^{1, p}[0, T]$, \| $\varphi^{\prime}\left(x_{n}\right)\|+\| \varphi^{\prime}\left(x_{m}\right) \| \rightarrow 0, n, m \rightarrow \infty$, one has $<\varphi^{\prime}\left(x_{n}\right)-\varphi^{\prime}\left(x_{m}\right), x_{n}-x_{m}>\rightarrow 0$. Hence

$$
\int_{0}^{T}\left(G\left(x_{n}^{\prime}\right)-G\left(x_{m}^{\prime}\right)\right)\left(x_{n}^{\prime}-x_{m}^{\prime}\right) d t \rightarrow 0, \quad n, m \rightarrow \infty
$$

Moreover,

$$
\begin{aligned}
\int_{0}^{T}\left(G\left(x_{n}{ }^{\prime}\right)-G\left(x_{m}{ }^{\prime}\right)\right)\left(x_{n}^{\prime}-x_{m}{ }^{\prime}\right) d t & =\int_{0}^{T}\left(\int_{x_{m}{ }^{\prime}}^{x_{n}{ }^{\prime}} \frac{(p-1)|s|^{p-2}}{g(s)} d s\right)\left(x_{n}^{\prime}{ }_{n}-x_{m}{ }^{\prime}\right) d t \\
& \geq \frac{1}{M} \int_{0}^{1}\left(\phi_{p}\left(x_{n}{ }^{\prime}\right)-\phi_{p}\left(x_{m}{ }^{\prime}\right)\right)\left(x_{n}{ }^{\prime}-x_{m}{ }^{\prime}\right) d t \\
& \geq 0
\end{aligned}
$$

then,

$$
\begin{equation*}
\int_{0}^{T}\left(\phi_{p}\left(x_{n}{ }^{\prime}\right)-\phi_{p}\left(x_{m}{ }^{\prime}\right)\right)\left(x_{n}{ }^{\prime}-x_{m}{ }^{\prime}\right) d t \rightarrow 0, \text { as } n, m \rightarrow \infty . \tag{3.7}
\end{equation*}
$$

If $p \geq 2$, from Lemma 2.2, there exists a positive constant $c_{p}$ such that

$$
\begin{equation*}
\int_{0}^{T}\left(\phi_{p}\left(x_{n}^{\prime}\right)-\phi_{p}\left(x_{m}^{\prime}\right)\right)\left(x_{n}^{\prime}-x_{m}^{\prime}\right) d t \geq c_{p} \int_{0}^{T}\left|x_{n}^{\prime}-x_{m}^{\prime}\right|^{p} d t \tag{3.8}
\end{equation*}
$$

If $p<2$, by Lemma 2.2, Hölder inequality and the boundedness of $\left(x_{n}\right)_{n \in N}$ in $W^{1, p}$, one has

$$
\begin{align*}
\int_{0}^{T}\left|x_{n}{ }^{\prime}-x_{m}{ }^{\prime}\right|^{p} d t= & \int_{0}^{T} \frac{\left|x_{n}{ }^{\prime}-x_{m}{ }^{\prime}\right|^{p}}{\left(\left|x_{n}{ }^{\prime}\right|+\left|x_{m}{ }^{\prime}\right|\right)^{\frac{p(2-p)}{2}}}\left(\left|x_{n}{ }^{\prime}\right|+\left|x_{m}{ }^{\prime}\right|\right)^{\frac{p(2-p)}{2}} d t \\
\leq & \left(\int_{0}^{T} \frac{\left|x_{n}{ }^{\prime}-x_{m}{ }^{\prime}\right|^{2}}{\left(\left|x_{n}{ }^{\prime}\right|+\left|x_{m}{ }^{\prime}\right|\right)^{2-p}} d t\right)^{\frac{p}{2}}\left(\int_{0}^{T}\left(\left|x_{n}{ }^{\prime}\right|+\left|x_{m}{ }^{\prime}\right|\right)^{p} d t\right)^{\frac{2-p}{2}} \\
\leq & c_{p}^{\frac{-p}{2}}\left(\int_{0}^{T}\left(\phi_{p}\left(x_{n}{ }^{\prime}\right)-\phi_{p}\left(x_{m}{ }^{\prime}\right)\right)\left(x_{n}{ }^{\prime}-x_{m}{ }^{\prime}\right) d t\right)^{\frac{p}{2} 2^{\frac{(p-1)(2-p)}{2}}} \\
& \left(\int_{0}^{T}\left(\left|x_{n}{ }^{\prime}\right|^{p}+\left.\left|x_{m}{ }^{\prime}\right|\right|^{p}\right) d t\right)^{\frac{2-p}{2}} \\
& \leq c_{p}^{\frac{-p}{2}}\left(\int_{0}^{T}\left(\phi_{p}\left(x_{n}{ }^{\prime}\right)-\phi_{p}\left(x_{m}{ }^{\prime}\right)\right)\left(x_{n}{ }^{\prime}-x_{m}{ }^{\prime}\right) d t\right)^{\frac{p}{2} 2^{\frac{(p-1)(2-p)}{2}}} \\
& \left.\left(\left\|x_{n}\right\|^{p}+\left\|x_{m}\right\|^{p}\right)\right)^{\frac{2-p}{2}} . \tag{3.9}
\end{align*}
$$

From (3.7)-(3.9), we have $\int_{0}^{1}\left|x_{n}{ }^{\prime}-x_{m}{ }^{\prime}\right|^{p} d t \rightarrow 0$ as $n, m \rightarrow \infty$. Then, $\left\|x_{n}-x_{m}\right\| \rightarrow 0$, that is, $\left(x_{n}\right)_{n \in N}$ is a Cauchy sequence in $W^{1, p}[0, T]$. By the completeness of $W^{1, p}[0, T]$, one has $\left(x_{n}\right)_{n \in N}$ has a convergent subsequence.Пப
Theorem 3.1 Assume $\left(A_{1}\right),\left(A_{2}\right),\left(B_{1}\right),\left(B_{2}\right),\left(B_{3}\right)$ and the following condition
$\left(B_{5}\right)$ there exist positive constants $l_{1}, l_{2}, R, \sigma \leq p$, such that for $\|x\|=R$,

$$
-F(t, x) \leq l_{1}|x|^{\sigma}+l_{2}
$$

and

$$
T^{1-\frac{\sigma}{p}} l_{1} R^{\sigma}+l_{2} T<\frac{\min \left\{\|a\|_{m}, \frac{1}{M}\right\}}{p} R^{p}
$$

hold, then, $\operatorname{BVP}(1.1)$ has at least two periodic solutions $x_{0}, x_{1}$ and $\left\|x_{0}\right\|<R$.
Proof. First, we show for the constant $R>0$ given in $\left(B_{4}\right), \varphi$ has a local minimum point $x_{0}$ in $B_{R}=\{x \in$ $\left.W^{1, p}[0, T]:\|x\|<R\right\}$. There are two steps.

Step 1 , we show $x_{0} \in \overline{B_{R}}$. Obviously, $\overline{B_{R}}$ is bounded and weakly sequentially closed. In the following, we show $\varphi$ is weakly sequently lower semi-continuous on $\overline{B_{R}}$. Let

$$
\varphi_{1}(x)=\int_{0}^{T}\left[\frac{1}{p} a(t)|x(t)|^{p}+\int_{0}^{x^{\prime}} G(u) d u\right] d t, \quad \varphi_{2}(x)=\int_{0}^{T} F(t, x) d t+\sum_{i=1}^{k} \int_{0}^{x\left(t_{i}\right)} I_{i}(t) d t
$$

Assume $x_{n} \rightarrow x$ in $W^{1, p}[0, T]$, then, $\left\|x_{n}{ }^{\prime}-x^{\prime}\right\|_{L^{p}} \rightarrow 0,\left\|x_{n}-x\right\|_{L^{p}} \rightarrow 0$. Hence,

$$
\begin{aligned}
\left|\varphi_{1}\left(x_{n}\right)-\varphi_{1}(x)\right| \leq \frac{1}{p}\|a\|_{\infty} & \left.\int_{0}^{T}| | x_{n}\right|^{p}-|x|^{p}\left|d t+\int_{0}^{T}\right| \int_{x^{\prime}}^{x_{n}} G(u) d u \mid d t \\
& \left.\leq\left.\frac{1}{p}\|a\|_{\infty} \int_{0}^{T}| | x_{n}\right|^{p}-|x|^{p}\left|d t+\frac{1}{m p} \int_{0}^{T}\right|\left|x_{n}^{\prime}\right|^{p}-\left|x^{\prime}\right|^{p} \right\rvert\, d t
\end{aligned}
$$

Define $h(x)=|x|^{p}, p>1$. It is obvious that $h \in C^{1}[0, T]$. By applying the Mid-value Theorem, there exists $\zeta(t)$ satisfying $0 \leq \zeta(t) \leq 1$ such that

$$
\|\left. x_{n}^{\prime}\right|^{p}-\left|x^{\prime}\right|^{p}|=p| x^{\prime}(t)+\left.\zeta(t)\left(x_{n}^{\prime}(t)-x^{\prime}(t)\right)\right|^{p-1} \times\left|x_{n}^{\prime}(t)-x^{\prime}(t)\right|
$$

Moreover, there exists $\delta>0$, such that

$$
\left|x^{\prime}(t)+\zeta(t)\left(x_{n}{ }^{\prime}(t)-x^{\prime}(t)\right)\right|^{p-1} \leq \delta\left[\left|x^{\prime}(t)\right|^{p-1}+\left|x_{n}^{\prime}(t)-x^{\prime}(t)\right|^{p-1}\right] \in L^{q}([0, T])
$$

Hence,

$$
\begin{aligned}
& \quad \int_{0}^{T}\left|\int_{x^{\prime}}^{x_{n}{ }^{\prime}} G(u) d u\right| d t \leq\left[\frac{\delta}{m p} \int_{0}^{T}\left|x^{\prime}(t)\right|^{p-1}\left|x_{n}{ }^{\prime}(t)-x^{\prime}(t)\right| d t+\int_{0}^{T}\left|x_{n}{ }^{\prime}(t)-x^{\prime}(t)\right|^{p}\right] d t \\
& \quad \leq \frac{\delta}{m p}\left[\left(\int_{0}^{T}\left|x^{\prime}(t)\right|^{p} d t\right)^{\frac{1}{q}}\left(\int_{0}^{T}\left|x_{n}{ }^{\prime}(t)-x^{\prime}(t)\right|^{p} d t\right)^{\frac{1}{p}}+\int_{0}^{T}\left|x_{n}{ }^{\prime}(t)-x^{\prime}(t)\right|^{p}\right] d t
\end{aligned}
$$

Here, $\frac{\mathbf{1}}{\boldsymbol{q}}+\frac{\mathbf{1}}{\boldsymbol{p}}=\mathbf{1}$. With the same discussion above, one has $\left.\int_{0}^{T}| | x_{n}\right|^{p}-|x|^{p} \mid d t \rightarrow 0$ as $n \rightarrow \infty$. Hence, $\varphi_{1}$ is continuous. Since $\varphi_{1}$ is convex, then, $\varphi_{1}$ is weakly lower semi-continuous. Assume $x_{n} \rightharpoonup x$ in $W^{1, p}[0, T]$, then, $x_{n} \rightarrow x$ in $C[0, T]$. Hence, $\varphi_{2}$ is weakly semi-continuous. Therefore, $\varphi$ is weakly lower semi-continuous. From Theorem 2.1, $\varphi$ has a local minimum $x_{0} \in \overline{B_{R}}$.

Step 2. If $x_{0} \in \partial B_{R}$,

$$
\begin{gather*}
\varphi\left(x_{0}\right) \geq \int_{0}^{T} F\left(t, x_{0}\right) d t+\frac{\|a\|_{m}}{p} \int_{0}^{T}\left|x_{0}(t)\right|^{p} d t+\frac{1}{p M} \int_{0}^{T}\left|x^{\prime}{ }_{0}\right|^{p} d t \\
\geq \int_{0}^{T} F\left(t, x_{0}\right) d t+\frac{\min \left\{\|a\|_{m}, \frac{1}{M}\right\}}{p}\left\|x_{0}\right\|^{p} . \tag{3.10}
\end{gather*}
$$

Moreover, $\varphi\left(x_{0}\right)<\varphi(0)=\int_{0}^{T} F(t, 0) d t=0$, that is,

$$
\begin{equation*}
\int_{0}^{T}\left[-F\left(t, x_{0}\right)\right] d t \geq \frac{\min \left\{\|a\|_{m}, \frac{1}{M}\right\}}{p} R^{p} \tag{3.11}
\end{equation*}
$$

From ( $B_{4}$ ),

$$
\int_{0}^{T}\left[-F\left(t, x_{0}\right)\right] d t \leq l_{1} \int_{0}^{T}\left|x_{0}\right|^{\sigma} d t+l_{2} T \leq T^{1-\frac{\sigma}{p}} l_{1}\left\|x_{0}\right\|^{\sigma}+l_{2} T=T^{1-\frac{\sigma}{p}} l_{1} R^{\sigma}+l_{2} T,
$$

together with (3.11), we reach a contradiction. Hence, $x_{0} \in B_{R}$, that is $x_{0}$ is a critical point of $\varphi$.
In the following, we show there exists $x_{1}$ satisfying $\left\|x_{1}\right\|>R$ and $\varphi\left(x_{1}\right)<\min _{x \in \partial B_{R}} \varphi(x)$. From $\left(B_{2}\right)$, for $\forall M>0$, there exists $C_{M}>0$ such that

$$
F(t, x) \leq-M|x|^{p}, \quad|x|>C_{M} .
$$

For large $\lambda>0, M>0$, one has

$$
\begin{aligned}
& \varphi(\lambda)=\int_{0}^{T} F(t, \lambda) d t+\lambda^{p} \int_{0}^{T} \frac{1}{p} a(t) d t+\sum_{i=1}^{k} \int_{0}^{\lambda} I_{i}(t) d t \\
\leq & \lambda^{p} \int_{0}^{T} \frac{1}{p} a(t) d t-M \lambda^{p} T+\sum_{i=1}^{k}\left(b_{i} \lambda+c_{i} \lambda^{2}\right) \rightarrow-\infty .
\end{aligned}
$$

Hence, by the mountain pass theorem, one obtain another periodic solution $\boldsymbol{x}_{\mathbf{1}}$.

## References

[1] W.Ding, M.Han, J.Yan, Periodic boundary vslue problems for the second order functional differential equations, J.Math.Anal.Appl,298(2004)341-351.
[2] H.Wang,Positive periodic solutions of functional differential equations,J.Differential Eqns. 202(2004)354-366.
[3] J.Mawhin, M.Willen. Critical Point Theorem and Hamiltonian Systems. Appl. Math. Sci., Vol. 74, Springer, New York; 1989.
[4] P.Rabinowitz, Periodic solutions of hamiltonian systems, Comm. Pure Appl. Math. 31(1978):157-184.
[5] Ricceri B.: On a three critical points theorem, Arch. Math. 75,220-226(2000).
[6] E.Zeidler, Nonlinear Functional Analysis and its Application, Vol.3, Springer,1985.
[7] Giovanna Cerami.: An existence criterion for the critical points on unbounded manifolds. Istit. Lombardo Accad. Sci. Lett. Rend. A, 112(2)(1979):332-336,1978.
[8] AfrouziG.A.,Heidarkhani S.: Three solutions for a quasilinear boundary value problem, Nonlinear Anal.69,3330-3336(2008).
[9] Y.Tian, W.Ge. Multiple positive solutions for periodic boundary value problem via vatiational methods. Tamkang J. Math., 39(2008):111-119.
[10] A.Ambrosetti, P.H.Rabinowitz. Dual variational methods in critical point theory and applications. J.Funct.Anal. 14(1973):349-381.
[11] Siegfried Carl, Dumitru Motreanu. Constant-sign and sign-changing solutions for nonlinear eigenvalue problems. Nonlinear Anal.,68(2008):2668-2676.
[12] Michael E.Filippakis, Nikolaos S.Papageorgiou. Multiple constant sign and nodal solutions for nonlinear elliptic with the p-Laplacian. J.Differential Equations. 245(2008):1883-1922.


[^0]:    ${ }^{1}$ supported by Beijing Natural Science Foundation (1152002), National Natural Science Foundation of China(11501030, 11501031, 11471221, 41101111), the Scientific Research Project of Beijing Municipal Education Commission (No. KM201711417002)
    ${ }^{2}$ Corresponding author:Li Zhang, lytzhangli@buu.edu.cn

