

Volume 12, Issue 2 Published online: July 08, 2017

Journal of Progressive Research in Mathematics www.scitecresearch.com/journals

On direct product pure-1-2-3 subgroups in abelian group $G_n \times G_m$

H. M. A. Abdullah and Saif Z. Hameed*

Al Mustansiriyah University, college of basic education, Department of Mathematics.

*Email: saifzuhair@yahoo.com

Abstract.

In this paper, we shall define new subgroups which are called pure-1-2-3 in abelian groups $G_n \times G_m$ for all $n, m \in N$ which are a family of pure subgroups.

In [1], [2] H.M.A.Abdullah gave the some general properties of pure-1-2-3 in abelian group G, but here, we shall prove more than properties os this subgroups in Mod $G_n \times G_m$, which are not valid for pure subgroups.

Keywords: Subgroup; Abelian group; Direct product; Pure; Pure-1; Pure-2; Pure-3.

1. Introduction

we shall use following definitions, to get the results.

Definition 1.1 A subgroup S of G said to be pure-1 in G if for all $x \in S$ and for all prime p, px = x.

Remark 1.2

- 1. If S is pure-1 in G then $\forall x \in S$ we have $p^{nk}|_x$, $n, k \in Z^+$ in S.
- 2. Every pure-1 subgroup is pure in G.
- 3. Every pure-1 subgroup is divisible.

Definition 1.3.

Let A, B are pure-1 subgroups in G_n, G_m . Then we shall called a direct product $A \times B$ is pure-1 in $G_n \times G_m$ if A and B are pure-1 in G_n, G_m . Which means that $\forall x = (a,b) \in A \times B$ $a \in A, b \in B$ then p(a,b) = (pa,pb) = (a,b).

Now, we are ready to show some results relating to the direct - pure - 1.

Theorem 1.4 Let $A_1 \times B_1$ and $A_2 \times B_2$ are two direct product pure -1 in $G_n \times G_m$.

Then

1. $A_1 \times B_1 \bigcap A_2 \times B_2$ is pure-1 in $G_n \times G_m$.

2.
$$A_1 \times B_1 + A_2 \times B_2$$
 is pure-1

Proof.

1. Let $x \in A_1 \times B_1 \bigcap A_2 \times B_2$ so $x \in A_1 \times B_1$ is *pure*-1, thus $\forall p$ $p(a,b) = x = (a,b) \in A_1 \times B_1$ $a \in A_1, b \in B_1$. And $A_2 \times B_2$ is *pure*-1, then $p(a_0,b_0) = x = (a_0,b_0) \in A_2 \times B_2$. Therefore, we get $p(a,b) = p(a_0,b_0) = x = (a,b) = (a_0,b_0)$

Thus, $a = a_0$ and $x = (a,b) b = b_0$ so $px = p(a,b) = (a,b) = x \in A_1 \times B_1 \bigcap A_2 \times B_2$.

Thus, $A_1 \times B_1 \bigcap A_2 \times B_2$ is pure-1.

2. Let x be any element belong to $A_1 \times B_1 + A_2 \times B_2$ So, $x = ((a_1, b_1), (a_2, b_2))$ $(a_1, b_1) \in A_1 \times B_1, (a_2, b_2) \in A_2 \times B_2$ but, both $A_1 \times B_1$ and $A_2 \times B_2$ are *pure*-1. Thus $\forall p$

$$p(a_1, b_1) = (a_1, b_1) \tag{1.1}$$

$$p(a_2, b_2) = (a_2, b_2) \tag{1.2}$$

By (1.1) and (1.2) we get

$$p(a_1,b_1) + p(a_2,b_2) = ((a_1,b_1) + (a_2,b_2)) = x$$

$$p((a_1,b_1) + (a_2,b_2)) = x, \text{ but } (a_1,b_1) + (a_2,b_2) \in A_1 \times B_1 + A_2 \times B_2$$

So, $px = x.$ We obtain
 $A_1 \times B_1 + A_2 \times B_2$ is $pure - 1$.

Theorem 1.5 If $A \times B$ is any pure-1 in $G_n \times G_m$, and $H \times K$ any subgroup of $G_n \times G_m$, then $A \times B \bigcap H \times K$ is pure in $G_n \times G_m$.

Proof.

Let x any element in $A \times B \cap H \times K$. So $x \in A \times B$ and $x \in H \times K$. Since $A \times B$ is a pure-1 in $G_n \times G_m$, so $\forall p$ (p is prime number)

$$px = x$$
. But $x \in A \times B \cap H \times K$.

Hence, $A \times B \cap H \times K$ is pure-1.

Easily to show the following:

Theorem 1.6

- 1. If $\overline{A} \times \overline{B}$ is any subgroup of *pure*-1 subgroup $\overline{A} \times \overline{B}$ of $G_n \times G_m$. Then $\overline{A} \times \overline{B}$ is a *pure*-1.
- 2. If $A \times B$ is a *pure*-1 in $G_n \times G_m$ and $\overline{A} \times \overline{B}$ any subgroup of $\overline{A} \times \overline{B}$ then

$$\frac{A \times B}{\overline{A} \times \overline{B}} \text{ is } pure-1 \text{ in } \frac{G_n \times G_m}{\overline{A} \times \overline{B}}$$

Proof.

- **1.** Let $x \in \overline{A} \times \overline{B}$, so $x \in A \times B$ but $A \times B$ is *pure*-1 in $G_n \times G_m$, then $\forall p$, we have
- $p(a,b) = (a,b) = x \in \overline{A} \times \overline{B}$ for some $a \in A, b \in B$.
- So, $A \times B$ is pure-1.
- 2. Let $(a,b) + \overline{A} \times \overline{B} \in \frac{A \times B}{\overline{A} \times \overline{B}}$.

Since $(a,b) \in A \times B$ and $A \times B$ is a *pure*-1 in $G_n \times G_m$. Thus, we have $\forall p, P(a,b) = (a,b)$. Clearly

$$p(a,b) + \overline{A} \times \overline{B} = p((a,b) + \overline{A} \times \overline{B}) = (a,b) + \overline{A} \times \overline{B}$$
. Thus, $\frac{\overline{A} \times \overline{B}}{\overline{A} \times \overline{B}}$ is $pure-1$ in $\frac{G_n \times G_m}{\overline{A} \times \overline{B}}$.

Definition 1.7 A subgroup $A \times B$ is said to be pure-2 in $G_n \times G_m$ if $\forall x, x \in A \times B$ and $\forall p, p$ is prime number, then px = p(px).

Remark 1.8

1. It is clear that any pure-1 is a pure-2.

2. $\forall x, x \in A \times B$ and if $A \times B$ is pure-2 in $G_n \times G_m$, then we are ready to prove the following results of pure-2.

Theorem 1.9 Any pure-2 subgroup of Torsion-free group is pure-1.

Proof.

Let A | timesB be any pure-2 in Torsion-free $G_n \times G_m$ and $x \in A \times B$, so $\forall p, px = p(px)$, put $x = (a,b) \in A \times B$, thus p(a,b) = p(p(a,b)), which implies that p(a,b) - p(p(a,b)) = (0,0) so p((a,b)-(p(a,b))) = (0,0). But $G_n \times G_m$ is a Torsion-free. Then P(a,b) = (a,b), we obtain the result.

Theorem 1.10 Any pure-2 subgroup of Torsion-free group is

- 1. pure.
- 2. *pure*−1.

Proof.

1. Let $A \times B$ be any pure-2 in $G_n \times G_m$, we claim that $A \times B$ is a neat in $G_n \times G_m$.

Let $x \in A \times B$, and suppose that $\forall p, p \mid_x$ in $G_n \times G_m$, so $x \in p_{G_n \times G_m} \cap A \times B$. Thus,

$$x = p(g_n, g_m) \quad forsome \ g_n \in G_n, g_m \in G_m.$$
(1.3)

Since $A \times B$ is a *pure*-2, so we can write px = p(px),

so $p(p(g_n, g_m)) = pp(x) \Rightarrow p^2(g_n, g_m) = p^2 x$ but $G_n \times G_m$ is Torsion-free we get $(g_n, g_m) = x$ by (1.3) we can obtain $x = (g_n, g_m) = p(g_n, g_m) \in p(A \times B)$.

Which means that $p|_x \in A \times B$, by ([3] p.q2) We get the result.

2. Let $A \times B$ be any pure-2 in a Torsion-free $G_n \times G_m$ for all $x \in A \times B$, so for all prime p we have px = p(px), and let x = (a,b) for some $a \in A, b \in B$ then, p(a,b) = p(p(a,b)), But $G_n \times G_m$ is a Torsion-free group. Thus, p((a,b) - p(a,b)) = 0 which implies that (a,b) = p(a,b) and we we get. But $\forall (a,b) \in A \times B$ and for all prime p, $p|_{(a,b)}$ in $A \times B$. Moreover, $A \times B$ is a Neat in $G_n \times G_m$.

By the above theorems we get the main results:

Theorem 1.11 Let $G_n \times G_m$ be a Torsion-free group then the following statements are equivalents:

- 1. $A \times B$ is a pure-1;
- 2. $A \times B$ is a pure-2;
- 3. $A \times B$ is a pure.

Theorem 1.12 If $A \times B$ is pure-2 and a Neat subgroup of $G_n \times G_m$ then $A \times B$ is pure.

Proof.

Since $A \times B$ is a Neat in $G_n \times G_m$, then we have $p(G_n \times G_m) \bigcap A \times B = p(A \times B)$, $\forall p, p$ is prime number. we shall prove the statement by induction.

So let $\forall p$ and $\forall k \in Z^+$

$$P^{k}G_{n} \times G_{m} \bigcap A \times B = P^{k}(A \times B)$$
 is true.

We have to show that

$$P^{k}G_{n}\times G_{m}\bigcap A\times B=P^{k+1}(A\times B).$$

The induction $P^{k+1}(A \times B) \subseteq P^{k+1}G_n \times G_m \bigcap A \times B$ is obvious.

Remained to show that $P^{k+1}G_n \times G_m \bigcap A \times B \subseteq P^{k+1}(A \times B)$.

Let $(a,b) \in P^{k+1}G_n \times G_m \bigcap A \times B$ and we may write (a,b) in the form $(a,b) = P^{k+1}(g_n, g_m)$ for some $(g_n, g_m) \in G_n \times G_m$. Thus, $(a,b) = P^k(p(g_n, g_m)) \in A \times B \bigcap P^k G_n \times G_m$ but $A \times B$ is a Neat. Thus,

$$(a,b) = P^{k}(P(g_{n},g_{m})) \in A \times B \bigcap P^{k}G_{n} \times G_{m} = P^{k}(A \times B)$$

Therefore,

 $(a,b) = P^k(a_0,b_0)$ for some $(a_0,b_0) \in A \times B$. Since $A \times B$ is pure-2, then we get

 $(a,b) = P^{k}(a_{0},b_{0}) = P^{k-1}(P(a_{0},b_{0})) = P^{k-1}(P(P(a_{0},b_{0}))) = P^{k+1}(a_{0},b_{0}) \in P^{k+1}A \times B$. Assuming $k \ge 1$. So $A \times B \bigcap P^{k+1}(G_{n} \times G_{m}) = P^{k+1}(A \times B)$. Consequently $A \times B$ is a *pure*

Now we shall prove some properties of pure-2 subgroups, which are valid in pure-1.

Theorem 1.13 If $A \times B$ is a pure-2 subgroup of $G_n \times G_m$ then:

- 1. $A \times B \cap C \times D$ is also pure 2 for any subgroup $C \times D$ of $G_n \times G_m$.
- 2. If $A \times B$ is a *pure-2* subgroup of $G_n \times G_m$ then any subgroup of $A \times B$ is also *pure-2*.
- 3. The sum of any two pure-2 subgroups of $G_n \times G_m$ will be pure-2.
- 4. If $A \times B$ is a *pure*-2 subgroup of $A \times B$, then $A \times B/c \times D$ is *pure*-2.

Definition 1.14 A subgroup $A \times B$ of $G_n \times G_m$ is called pure-3 if $(\forall p)$), $(\forall k \in Z^+ \text{ and } \forall (a,b) \in A \times B$ $P^k(a,b) = P^k(P(a,b)) = P^{k+1}(a,b)$

Remark 1.15

- 1. Any pure-2 is pure-3.
- 2. If k = 1, then a pure 3 is a pure 2.

Now, we are ready to prove the following results of pure-3 subgroups.

Theorem 1.16 If $A \times B$ is pure-3 and Neat subgroup of $G_n \times G_m$, then $A \times B$ is a pure.

Proof.

Since $A \times B$ is pure-3, then we have $\forall p$, $P(G_n \times G_m) \bigcap A \times B = P(A \times B)$.

We will prove the statement by induction. Let $(\forall p), (\forall k), P^k(G_n \times G_m) \bigcap A \times B = P(A \times B)$ is true, so we have to showing that

$$P^{k-1}(G_n \times G_m) \bigcap A \times B = P^{k+1}(A \times B).$$

Let $(a,b) = P^{k+1}(g_n, g_m)$ for some $(g_n, g_m) \in G_n \times G_m$. Thus,

$$(a,b) = P^{k+1}(g_n,g_m) \in A \times B \bigcap P^k(G_n \times G_m) = P_k(A \times B).$$

Therefore, $(a,b) = P^k(a_0,b_0)$ for some $(a_0,b_0) \in A \times B$. Since $A \times B$ is pure-3, then $(a,b) = P^k(a_0,b_0) = P^k(P(a_0,b_0)) \in P^{k+1}(A \times B)$.

Consequently $A \times B$ is pure.

Now, we shall give the generalization of the Theorem 1.10.

Theorem 1.17 Any pure -3 subgroup of Torsion-free $G_n \times G_m$ is pure

Theorem 1.18 Any pure -3 subgroup of a torsion-free abelian group G is pure -1

Proof.

Let $A \times B$ be a *pure* in a free $G_n \times G_m$, let $(a,b) \in A \times B$, then $(\forall p), k \in Z^+$ we have $P^k(a,b) = P^k(p(a,b))$ (Assume that $k \ge 1$). So $P^k((a,b) - P(a,b)) = 0$ and since G is torsion-free, then P(a,b) - (a,b) = 0 So (a,b) = P(a,b), we obtain that $A \times B$ is *pure*-1.

We know that the intersection of divisible (*pure*), (Neat) subgroup is not divisible (*pure*-Neat). But we shall show that if $A \times B$ and $A_1 \times B_1$ are two *pure*-3 and Neat in $G_n \times G_m$ then $A \times B \bigcap A_1 \times B_1$ is *pure*.

First we need the following lemma:

Lemma 1.19 Let $A \times B$ be a pure-3 in $G_n \times G_m$ and $A_1 \times B_1$, be any subgroup of $G_n \times G_m$. Then $P^k(A \times B \bigcap A_1 \times B_1) = P^k A \times B \bigcap P^k A_1 \times B_1$, $(\forall p) (\forall k, k \in Z^+)$.

Proof.

Let $(a,b) \in P^k A \times B \bigcap P^k A_1 \times B_1$. Therefore, $(a,b) = P^k (a_0,b_0)$ for some $(a_0,b_0 \in A \times B$. Since $A \times B$ is pure-3. Then $P^k (a,b) = P^{2k} (a,b) = P^k (a_0,b_0)$. Then $(a_0,b_0) = P^k (a,b) \in P^k (A \times B \bigcap A_1 \times B_1)$ we obtain the result.

Remark 1.20 The above lemma is satisfied for pure-1-2 subgroups.

Theorem 1.21 Let $A \times B$ and $A_1 \times B_1$ be two pure -3 and Neat in $G_n \times G_m$. Then $A \times B \bigcap A_1 \times B_1$.

Proof.

By using Theorem 1.16 we have $A \times B$ and $A_1 \times B_1$ are *pure*. We need to prove $A \times B \bigcap A_1 \times B_1$ is *pure*. Let $(a,b) \in A \times B \bigcap A_1 \times B_1$ and let us suppose that $P \mid^k (a,b)$ is solvable in $G_n \times G_m$. Then $(a,b) = P^k(g_n,g_m)$ for some $(g_n,g_m) \in G_n \times G_m$. Since $A \times B$ and $A_1 \times B_1$ are *pure*. Then $P^k(a_0,b_0) = (a,b) = P^k(a_1,b_1)$ for some $(a_0,b_0) \in A \times B, (a_1,b_1) \in A_1 \times B_1$ By lemma 1.19 we have $P^k(A \times B) \bigcap P^k A_1 \times B_1 = P^k(A \times B \bigcap A_1 \times B_1)$. Then $(a,b) = P^k(y,z)$ for some $(y,z) \in A \times B \bigcap A_1 \times B_1$. Consequently, $A \times B \bigcap A_1 \times B_1$ is *pure*.

Now, we are showing the following results:

Theorem 1.22 Let $P(S \times M)$ be a pure-2 in $G_n \times G_m$. Then $P(S \times M)$ is pure.

Proof.

Claim $P(S \times M)$ is Neat. We have to show that $P(G_n \times G_m) \bigcap P(S \times M) = P(P(S \times M))$.

Let $(a,b) = P(g_n, g_m) = P(S,M) \in P(S \times M)$ since $P(S \times M)$ is pure-2,

P(S,M) = P(P(S,M)), so $(a,b) = P(S,M) = P(P(S,M)) \in P(P(S \times M))$. Consequently $P(S \times M)$ is Neat. By theorems (1.12, 1.13) We obtain that $P(S \times M)$ is *pure* in $G_n \times G_m$.

References

- [1] H.M.A. Abdullah(1992), "*pure*-1-2-3 in abelain," PU.M.A, Italy, No.3-4, vol. 3, pp. 135-139.
- [2] H.M.A. Abdullah(1992), "On minimal neat subgroup,"ser PU.M.A, Italy, No.3-4, Vol. 3, pp. 141-145.
- [3] Fuchi. Laszlo (1980), " Abelian group," USA.