Journal of Progressive Research in Mathematics
 www.scitecresearch.com/journals

On McShane integrals of interval-valued functions and fuzzy-number-valued functions on Time Scales

Muawya Elsheikh Hamid ${ }^{\text {a,b* }}$, Luoshan Xu ${ }^{\text {a }}$, Alshaikh Hamed Elmuiz ${ }^{\text {b }}$
${ }^{a}$ School of Mathematical Science, Yangzhou University, Yangzhou 225002, China
${ }^{\mathrm{b}}$ School of Management, Ahfad University for Women, Omdurman, Sudan

Abstract

In 2016, Hamid et al. [1] introduced the thought of the $A P$-Henstock integrals of intervalvalued functions and fuzzy-number-valued functions and obtained a number of their properties. The aim of this paper is to introduce the thought of the McShane delta integrals of interval-valued functions and fuzzy-number-valued functions and discuss some of their properties.

Keywords: Fuzzy numbers; McShane delta integral of interval-valued functions; McShane delta integral of fuzzy-number-valued functions.

1 Introduction

The calculus on time scales was introduced for the firrst time in 1988 by Hilger [2] to unify the theory of difference equations and the theory of differential equations. The Henstock delta integral on time scales was introduced by Allan Peterson and Bevan Thompson [3] in 2006. In 2016, Hamid and Elmuiz [4] introduced the concept of the Henstock-Stieltjes $(H S)$ integrals of interval-valued functions and fuzzy-number-valued functions and discussed a number of their properties.

In this paper, we introduce the notion of the McShane delta integrals of interval-valued functions and fuzzynumber-valued functions and investigate some of their properties.

The paper is organized as follows, in Section 2 we have a tendency to provide the preliminary terminology used in this paper. Section 3 is dedicated to discussing the McShane delta integral of interval-valued functions. In Section 4, we present the McShane delta integral of fuzzy-number-valued functions. The last section provides Conclusions.

2 Preliminaries

A time scale T is a nonempty closed subset of real number \mathbb{R} with the subspace topology inherited from the standard topology of \mathbb{R}. For $t \in \mathbf{T}$ we define the forward jump operator $\sigma(t)=\inf \{s \in \mathbf{T}: s>t\}$ where $\inf \phi=\sup \{\mathbf{T}\}$, while the backward jump operator $\rho(t)=\sup \{s \in \mathbf{T}: s<t\}$ where $\sup \phi=\inf \{\mathbf{T}\}$. If $\sigma(t)>t$, we say that t is right-scattered, while if $\rho(t)<t$, we say that t is left-scattered. If $\sigma(t)=t$, we say that t is right-dense, while if $\rho(t)=t$, we say that t is left-dense. The forward graininess function $\mu(t)$ of $t \in \mathbf{T}$ is defined by $\mu(t)=\sigma(t)-t$, whlie the backward graininess function $\nu(t)$ of $t \in \mathbf{T}$ is defined by $\nu(t)=t-\rho(t)$. For $a, b \in \mathbf{T}$ we denote the closed interval $[a, b]_{\mathbf{T}}=\{t \in \mathbf{T}: a \leq t \leq b\}$.

Throughout this paper, all considered intervals will be intervals in T. A division P of $[a, b]_{\mathbf{T}}$ is a finite collection of interval-point pairs $\left\{\left(\left[t_{i-1}, t_{i}\right]_{\mathbf{T}} ; \xi_{i}\right)\right\}_{i=1}^{n}$, where $\left\{a=t_{0}<t_{1}<\cdots<t_{n-1}<t_{n}=b\right\}$ and $\xi_{i} \in[a, b]_{\mathbf{T}}$ for $i=1,2, \cdots, n$. By $\Delta t_{i}=t_{i}-t_{i-1}$ we denote the length of i th subinterval in the division $P . \delta(\xi)=\left(\delta_{L}(\xi), \delta_{R}(\xi)\right)$ is a Δ - gauge for $[a, b]_{\mathbf{T}}$ provided $\delta_{L}(\xi)>0$ on $(a, b]_{\mathbf{T}}, \delta_{R}(\xi)>0$ on $[a, b)_{\mathbf{T}}, \delta_{L}(a) \geq 0, \delta_{R}(b) \geq 0$ and $\delta_{R}(b) \geq \mu(\xi)$

[^0]for all $\xi \in[a, b)_{\mathbf{T}}$. We say that $P=\left\{\left(\left[t_{i-1}, t_{i}\right]_{\mathbf{T}} ; \xi_{i}\right)\right\}_{i=1}^{n}$ is a δ-fine McShane division of $[a, b]_{\mathbf{T}}$ if $\left[t_{i-1}, t_{i}\right]_{\mathbf{T}} \subset$ $\left(\xi_{i}-\delta_{L}\left(\xi_{i}\right), \xi_{i}+\delta_{R}\left(\xi_{i}\right)\right)_{\mathbf{T}}$ and $\xi_{i} \in[a, b]_{\mathbf{T}}$ for all $i=1,2, \cdots, n$.

Definition 2.1 [5] A real-valued function $f:[a, b] \rightarrow \mathbb{R}$ is said to be McShane (M) integrable to B on $[a, b]$ if for every $\varepsilon>0$, there is a function $\delta(t)>0$ such that for any δ-fine McShane division $P=\left\{\left[u_{i}, v_{i}\right] ; \xi_{i}\right\}_{i=1}^{n}$ of $[a, b]$, we have

$$
\begin{equation*}
\left|\sum_{i=1}^{n} f\left(\xi_{i}\right)\left(v_{i}-u_{i}\right)-B\right|<\varepsilon \tag{2.1}
\end{equation*}
$$

we write $(M) \int_{a}^{b} f(t) \mathrm{d} t=B$, and $f \in M[a, b]$.
Definition 2.2 [6] A function $f:[a, b]_{\mathbf{T}} \rightarrow \mathbb{R}$ is McShane delta integrable (McShane Δ-integrable) on $[a, b]_{\mathbf{T}}$ if there exists a number $A \in \mathbb{R}$ such that for each $\varepsilon>0$ there is a Δ-gauge, δ, on $[a, b]_{\mathbf{T}}$ such that

$$
\begin{equation*}
\left|\sum_{i=1}^{n} f\left(\xi_{i}\right)\left(t_{i}-t_{i-1}\right)-A\right|<\varepsilon \tag{2.2}
\end{equation*}
$$

for each δ-fine McShane division $P=\left\{\left(\left[t_{i-1}, t_{i}\right]_{\mathbf{T}} ; \xi_{i}\right)\right\}_{i=1}^{n}$ of $[a, b]_{\mathbf{T}} . A$ is called McShane Δ-integral of f on $[a, b]_{\mathbf{T}}$, and we write $A=(M) \int_{a}^{b} f(t) \Delta t$.

Theorem 2.1 If $f(t)$ and $g(t)$ are McShane Δ-integrable on $[a, b]_{\mathbf{T}}$ and $f(t) \leq g(t)$ almost everywhere on $[a, b]_{\mathbf{T}}$, then

$$
\begin{equation*}
(M) \int_{a}^{b} f(t) \Delta t \leq(M) \int_{a}^{b} g(t) \Delta t \tag{2.3}
\end{equation*}
$$

Proof The proof follows easily from the same argument in Theorem 3.6 [5].

3 McShane delta integral of interval-valued functions on time scales

In this section, we introduce the notion of the McShane delta integral of interval-valued functions on time scales and investigate some of their properties.

Definition 3.1 [7] Let $I_{\mathbb{R}}=\left\{I=\left[I^{-}, I^{+}\right]: I\right.$ is the closed bounded interval on the real line $\left.\mathbb{R}\right\}$.
For $A, B \in I_{\mathbb{R}}$, we define $A \leq B$ iff $A^{-} \leq B^{-}$and $A^{+} \leq B^{+}, A+B=C$ iff $C^{-}=A^{-}+B^{-}$and $C^{+}=A^{+}+B^{+}$, and $A \cdot B=\{a \cdot b: a \in A, b \in B\}$, where

$$
\begin{equation*}
(A \cdot B)^{-}=\min \left\{A^{-} \cdot B^{-}, A^{-} \cdot B^{+}, A^{+} \cdot B^{-}, A^{+} \cdot B^{+}\right\} \tag{3.1}
\end{equation*}
$$

and

$$
\begin{equation*}
(A \cdot B)^{+}=\max \left\{A^{-} \cdot B^{-}, A^{-} \cdot B^{+}, A^{+} \cdot B^{-}, A^{+} \cdot B^{+}\right\} \tag{3.2}
\end{equation*}
$$

Define $d(A, B)=\max \left(\left|A^{-}-B^{-}\right|,\left|A^{+}-B^{+}\right|\right)$as the distance between intervals A and B.
Definition 3.2 [8] Let $F:[a, b] \rightarrow I_{\mathrm{R}}$ be an interval-valued function. $I_{0} \in I_{\mathrm{R}}$, for every $\varepsilon>0$ there is a $\delta(t)>0$ such that for any δ-fine McShane division $P=\left\{\left(\left[u_{i}, v_{i}\right], \xi_{i}\right)\right\}_{i=1}^{n}$, we have

$$
\begin{equation*}
d\left(\sum_{i=1}^{n} F\left(\xi_{i}\right)\left(v_{i}-u_{i}\right), I_{0}\right)<\varepsilon \tag{3.3}
\end{equation*}
$$

then $F(t)$ is said to be McShane integrable over $[a, b]$ and write $(I M) \int_{a}^{b} F(t) \mathrm{d} t=I_{0}$. For brevity, we write $F(t) \in I M[a, b]$.

Definition 3.3 A interval-valued function $F:[a, b]_{\mathbf{T}} \rightarrow I_{\mathbb{R}}$ is McShane delta integrable to $I_{0} \in I_{\mathbb{R}}$ on $[a, b]_{\mathbf{T}}$ if for every $\varepsilon>0$ there exists a Δ-gauge, δ, on $[a, b]_{\mathbf{T}}$ such that

$$
\begin{equation*}
d\left(\sum_{i=1}^{n} F\left(\xi_{i}\right)\left(t_{i}-t_{i-1}\right), I_{0}\right)<\varepsilon, \tag{3.4}
\end{equation*}
$$

whenever $P=\left\{\left(\left[t_{i-1}, t_{i}\right]_{\mathbf{T}} ; \xi_{i}\right)\right\}_{i=1}^{n}$ is a δ-fine McShane division of $[a, b]_{\mathbf{T}}$. We write $(I M) \int_{a}^{b} F(t) \Delta t=I_{0}$ and $F \in I M[a, b]_{\mathbf{T}}$.

Remark 3.1 If $F(t) \in I M[a, b]_{\mathbf{T}}$, then the integral value is unique.
Theorem 3.1 An interval-valued function $F:[a, b]_{\mathbf{T}} \rightarrow I_{\mathbb{R}}$ is McShane delta integrable on $[a, b]_{\mathbf{T}}$ if and only if $F^{-}, F^{+} \in M[a, b]_{\mathbf{T}}$ and

$$
\begin{equation*}
(I M) \int_{a}^{b} F(t) \Delta t=\left[(M) \int_{a}^{b} F^{-}(t) \Delta t,(M) \int_{a}^{b} F^{+}(t) \Delta t\right] . \tag{3.5}
\end{equation*}
$$

Proof Let $F \in I M[a, b]_{\mathbf{T}}$, then there exists an interval $I_{0}=\left[I_{0}^{-}, I_{0}^{+}\right]$with the property that for any $\varepsilon>0$ there exists a Δ-gauge, δ, on $[a, b]_{\mathbf{T}}$ such that

$$
\begin{equation*}
d\left(\sum_{i=1}^{n} F\left(\xi_{i}\right)\left(t_{i}-t_{i-1}\right), I_{0}\right)<\varepsilon \tag{3.6}
\end{equation*}
$$

whenever $P=\left\{\left(\left[t_{i-1}, t_{i}\right]_{\mathbf{T}} ; \xi_{i}\right)\right\}_{i=1}^{n}$ is a δ-fine McShane division of $[a, b]_{\mathbf{T}}$.
Since $t_{i}-t_{i-1} \geq 0$ for $1 \leq i \leq n$, we have

$$
\begin{align*}
& d\left(\sum_{i=1}^{n} F\left(\xi_{i}\right)\left(t_{i}-t_{i-1}\right), I_{0}\right) \\
= & \max \left(\left|\left[\sum_{i=1}^{n} F\left(\xi_{i}\right)\left(t_{i}-t_{i-1}\right)\right]^{-}-I_{0}^{-}\right|,\left|\left[\sum_{i=1}^{n} F\left(\xi_{i}\right)\left(t_{i}-t_{i-1}\right)\right]^{+}-I_{0}^{+}\right|\right)<\varepsilon . \\
= & \max \left(\left|\sum_{i=1}^{n} F^{-}\left(\xi_{i}\right)\left(t_{i}-t_{i-1}\right)-I_{0}^{-}\right|,\left|\sum_{i=1}^{n} F^{+}\left(\xi_{i}\right)\left(t_{i}-t_{i-1}\right)-I_{0}^{+}\right|\right)<\varepsilon . \tag{3.7}
\end{align*}
$$

Hence $\left|\sum_{i=1}^{n} F^{-}\left(\xi_{i}\right)\left(t_{i}-t_{i-1}\right)-I_{0}^{-}\right|<\varepsilon,\left|\sum_{i=1}^{n} F^{+}\left(\xi_{i}\right)\left(t_{i}-t_{i-1}\right)-I_{0}^{+}\right|<\varepsilon$ whenever $P=\left\{\left(\left[t_{i-1}, t_{i}\right]_{\mathbf{T}} ; \xi_{i}\right)\right\}_{i=1}^{n}$ is a δ-fine McShane division of $[a, b]_{\mathbf{T}}$. Thus $F^{-}, F^{+} \in M[a, b]_{\mathbf{T}}$ and

$$
\begin{equation*}
(I M) \int_{a}^{b} F(t) \Delta t=\left[(M) \int_{a}^{b} F^{-}(t) \Delta t,(M) \int_{a}^{b} F^{+}(t) \Delta t\right] . \tag{3.8}
\end{equation*}
$$

Conversely, let $F^{-}, F^{+} \in M[a, b]_{\mathbf{T}}$. Then there exists $M_{1}, M_{2} \in \mathbb{R}$ with the property that given $\varepsilon>0$ there exists a Δ-gauge, δ, on $[a, b]_{\mathbf{T}}$ such that

$$
\left|\sum_{i=1}^{n} F^{-}\left(\xi_{i}\right)\left(t_{i}-t_{i-1}\right)-M_{1}\right|<\varepsilon, \quad\left|\sum_{i=1}^{n} F^{+}\left(\xi_{i}\right)\left(t_{i}-t_{i-1}\right)-M_{2}\right|<\varepsilon
$$

whenever $P=\left\{\left(\left[t_{i-1}, t_{i}\right]_{\mathbf{T}} ; \xi_{i}\right)\right\}_{i=1}^{n}$ is a δ-fine McShane division of $[a, b]_{\mathbf{T}}$. We define $I_{0}=\left[M_{1}, M_{2}\right]$, then if $P=\left\{\left(\left[t_{i-1}, t_{i}\right]_{\mathbf{T}} ; \xi_{i}\right)\right\}_{i=1}^{n}$ is a δ-fine McShane division of $[a, b]_{\mathbf{T}}$, we have

$$
\begin{equation*}
d\left(\sum_{i=1}^{n} F\left(\xi_{i}\right)\left(t_{i}-t_{i-1}\right), I_{0}\right)<\varepsilon . \tag{3.9}
\end{equation*}
$$

Hence $F:[a, b]_{\mathbf{T}} \rightarrow I_{\mathbf{R}}$ is McShane delta integrable on $[a, b]_{\mathbf{T}}$.
Theorem 3.2 If $F(t), G(t) \in I M[a, b]_{\mathbf{T}}$ and $\beta, \gamma \in \mathbb{R}$. Then $[\beta F(t)+\gamma G(t)] \in I M[a, b]_{\mathbf{T}}$ and

$$
\begin{equation*}
(I M) \int_{a}^{b}(\beta F(t)+\gamma G(t)) \Delta(t)=\beta(I M) \int_{a}^{b} F(t) \Delta(t)+\gamma(I M) \int_{a}^{b} G(t) \Delta(t) . \tag{3.10}
\end{equation*}
$$

Proof If $F(t), G(t) \in I M[a, b]_{\mathbf{T}}$, then $F^{-}(t), F^{+}(t), G^{-}(t), G^{+}(t) \in M[a, b]_{\mathbf{T}}$ by Theorem 3.1. Hence $\beta F^{-}(t)+$ $\gamma G^{-}(t), \beta F^{-}(t)+\gamma G^{+}(t), \beta F^{+}(t)+\gamma G^{-}(t), \beta F^{+}(t)+\gamma G^{+}(t) \in M[a, b]_{\mathbf{T}}$.
(1) If $\beta>0$ and $\gamma>0$, then

$$
\begin{aligned}
(M) \int_{a}^{b}(\beta F(t)+\gamma G(t))^{-} \Delta t & =(M) \int_{a}^{b}\left(\beta F^{-}(t)+\gamma G^{-}(t)\right) \Delta t \\
& =\beta(M) \int_{a}^{b} F^{-}(t) \Delta t+\gamma(M) \int_{a}^{b} G^{-}(t) \Delta t \\
& =\beta\left((I M) \int_{a}^{b} F(t) \Delta t\right)^{-}+\gamma\left((I M) \int_{a}^{b} G(t) \Delta t\right)^{-} \\
& =\left(\beta(I M) \int_{a}^{b} F(t) \Delta t+\gamma(I M) \int_{a}^{b} G(t) \Delta t\right)^{-}
\end{aligned}
$$

(2) If $\beta<0$ and $\gamma<0$, then

$$
\begin{aligned}
(M) \int_{a}^{b}(\beta F(t)+\gamma G(t))^{-} \Delta t & =(M) \int_{a}^{b}\left(\beta F^{+}(t)+\gamma G^{+}(t)\right) \Delta t \\
& =\beta(M) \int_{a}^{b} F^{+}(t) \Delta t+\gamma(M) \int_{a}^{b} G^{+}(t) \Delta t \\
& =\beta\left((I M) \int_{a}^{b} F(t) \Delta t\right)^{+}+\gamma\left((I M) \int_{a}^{b} G(t) \Delta t\right)^{+} \\
& =\left(\beta(I M) \int_{a}^{b} F(t) \Delta t+\gamma(I M) \int_{a}^{b} G(t) \Delta t\right)^{-}
\end{aligned}
$$

(3) If $\beta>0$ and $\gamma<0$, (or $\beta<0$ and $\gamma>0$), then

$$
\begin{aligned}
(M) \int_{a}^{b}(\beta F(t)+\gamma G(t))^{-} \Delta t & =(M) \int_{a}^{b}\left(\beta F^{-}(t)+\gamma G^{+}(t)\right) \Delta t \\
& =\beta(M) \int_{a}^{b} F^{-}(t) \Delta t+\gamma(M) \int_{a}^{b} G^{+}(t) \Delta t \\
& =\beta\left((I M) \int_{a}^{b} F(t) \Delta t\right)^{-}+\gamma\left((I M) \int_{a}^{b} G(t) \Delta t\right)^{+} \\
& =\left(\beta(I M) \int_{a}^{b} F(t) \Delta t+\gamma(I M) \int_{a}^{b} G(t) \Delta t\right)^{-}
\end{aligned}
$$

Similarly, for four cases above we have

$$
\begin{equation*}
(M) \int_{a}^{b}(\beta F(t)+\gamma G(t))^{+} \Delta t=\left(\beta(I M) \int_{a}^{b} F(t) \Delta t+\gamma(I M) \int_{a}^{b} G(t) \Delta t\right)^{+} \tag{3.11}
\end{equation*}
$$

Hence by Theorem 3.1 $\beta F(t)+\gamma G(t) \in I M[a, b]_{\mathbf{T}}$ and

$$
\begin{equation*}
(I M) \int_{a}^{b}(\beta F(t)+\gamma G(t)) \Delta t=\beta(I M) \int_{a}^{b} F(t) \Delta t+\gamma(I M) \int_{a}^{b} G(t) \Delta t . \tag{3.12}
\end{equation*}
$$

Theorem 3.3 If $F(t) \in I M[a, c]_{\mathbf{T}}$ and $F(t) \in I M[c, b]_{\mathbf{T}}$, then $F(t) \in I M[a, b]_{\mathbf{T}}$ and

$$
\begin{equation*}
(I M) \int_{a}^{b} F(t) \Delta t=(I M) \int_{a}^{c} F(t) \Delta t+(I M) \int_{c}^{b} F(t) \Delta t \tag{3.13}
\end{equation*}
$$

Proof If $F(t) \in I M[a, c]_{\mathbf{T}}$ and $F(t) \in I M[c, b]_{\mathbf{T}}$, then by Theorem 3.1 $F^{-}(t), F^{+}(t) \in M[a, c]_{\mathbf{T}}$ and $F^{-}(t), F^{+}(t) \in$ $M[c, b]_{\mathbf{T}}$. Hence $F^{-}(t), F^{+}(t) \in M[a, b]_{\mathbf{T}}$ and

$$
\begin{aligned}
(M) \int_{a}^{b} F^{-}(t) \Delta t & =(M) \int_{a}^{c} F^{-}(t) \Delta t+(M) \int_{c}^{b} F^{-}(t) \Delta t \\
& =\left((I M) \int_{a}^{c} F(t) \Delta t+(I M) \int_{c}^{b} F(t) \Delta t\right)^{-} .
\end{aligned}
$$

Similarly, $(M) \int_{a}^{b} F^{+}(t) \Delta t=\left((I M) \int_{a}^{c} F(t) \Delta t+(I M) \int_{c}^{b} F(t) \Delta t\right)^{+}$. Hence by Theorem 3.1 $F(t) \in I M[a, b]_{\mathbf{T}}$ and

$$
\begin{equation*}
(I M) \int_{a}^{b} F(t) \Delta t=(I M) \int_{a}^{c} F(t) \Delta t+(I M) \int_{c}^{b} F(t) \Delta t . \tag{3.14}
\end{equation*}
$$

Theorem 3.4 If $F(t) \leq G(t)$ nearly everywhere on $[a, b]_{\mathbf{T}}$ and $F(t), G(t) \in I M[a, b]_{\mathbf{T}}$, then

$$
\begin{equation*}
(I M) \int_{a}^{b} F(t) \Delta t \leq(I M) \int_{a}^{b} G(t) \Delta t \tag{3.15}
\end{equation*}
$$

Proof Let $F(t) \leq G(t)$ nearly everywhere on $[a, b]_{\mathbf{T}}$ and $F(t), G(t) \in I M[a, b]_{\mathbf{T}}$. Then $F^{-}(t), F^{+}(t), G^{-}(t), G^{+}(t) \in$ $M[a, b]_{\mathbf{T}}$ and $F^{-}(t) \leq G^{-}(t), F^{+}(t) \leq G^{+}(t)$ nearly everywhere on $[a, b]_{\mathbf{T}}$. By Theorem $2.1(M) \int_{a}^{b} F^{-}(t) \Delta t \leq$ $(M) \int_{a}^{b} G^{-}(t) \Delta t$ and $(M) \int_{a}^{b} F^{+}(t) \Delta t \leq(M) \int_{a}^{b} G^{+}(t) \Delta t$. Hence

$$
\begin{equation*}
(I M) \int_{a}^{b} F(t) \Delta t \leq(I M) \int_{a}^{b} G(t) \Delta t \tag{3.16}
\end{equation*}
$$

by Theorem 3.1.
Theorem 3.5 Let $F(t), G(t) \in I M[a, b]_{\mathbf{T}}$ and $d(F(t), G(t))$ is Lebesgue integrable on $[a, b]_{\mathbf{T}}$. Then

$$
\begin{equation*}
d\left((I M) \int_{a}^{b} F(t) \Delta t,(I M) \int_{a}^{b} G(t) \Delta t\right) \leq(L) \int_{a}^{b} d(F(t), G(t)) \Delta t . \tag{3.17}
\end{equation*}
$$

Proof By definition of distance,

$$
\begin{aligned}
& d\left((I M) \int_{a}^{b} F(t) \Delta t,(I M) \int_{a}^{b} G(t) \Delta t\right) \\
& =\max \left(\left|\left((I M) \int_{a}^{b} F(t) \Delta t\right)^{-}-\left((I M) \int_{a}^{b} G(t) \Delta t\right)^{-}\right|,\left|\left((I M) \int_{a}^{b} F(t) \Delta t\right)^{+}-\left((I M) \int_{a}^{b} G(t) \Delta t\right)^{+}\right|\right) \\
& =\max \left(\left|(M) \int_{a}^{b}\left(F^{-}(t)-G^{-}(t)\right) \Delta t\right|,\left|(M) \int_{a}^{b}\left(F^{+}(t)-G^{+}(t)\right) \Delta t\right|\right) \\
& \leq \max \left((L) \int_{a}^{b}\left|F^{-}(t)-G^{-}(t)\right| \Delta t,(L) \int_{a}^{b}\left|F^{+}(t)-G^{+}(t)\right| \Delta t\right)
\end{aligned}
$$

$$
\begin{align*}
& \leq(L) \int_{a}^{b} \max \left(\left|F^{-}(t)-G^{-}(t)\right| \Delta t,\left|F^{+}(t)-G^{+}(t)\right| \Delta t\right) \\
& \quad=(L) \int_{a}^{b} d(F(t), G(t)) . \tag{3.18}
\end{align*}
$$

4 McShane delta integral of fuzzy-number-valued functions on time scales

This section introduces the notion of the McShane delta integral of fuzzy-number-valued functions and discusses some of their properties.

Definition $4.1[9,10,11]$ Let $\tilde{A} \in F(\mathbb{R})$ be a fuzzy subset on \mathbb{R}. If for any $\lambda \in[0,1], A_{\lambda}=\left[A_{\lambda}^{-}, A_{\lambda}^{+}\right]$and $A_{1} \neq \phi$, where $A_{\lambda}=\{t: \tilde{A}(t) \geq \lambda\}$, then \tilde{A} is called a fuzzy number. If \tilde{A} is (1) convex, (2) normal, (3) upper semi-continuous, (4) has the compact support, we say that \tilde{A} is a compact fuzzy number.

Let $\tilde{\mathbb{R}}$ denote the set of all fuzzy numbers.
Definition 4.2 [9] Let $\tilde{A}, \tilde{B} \in \tilde{\mathbb{R}}$, we define (1) $\tilde{A} \leq \tilde{B}$ iff $A_{\lambda} \leq B_{\lambda}$ for all $\lambda \in(0,1]$, (2) $\tilde{A}+\tilde{B}=\tilde{C}$ iff $A_{\lambda}+B_{\lambda}=C_{\lambda}$ for any $\lambda \in(0,1]$, (3) $\tilde{A} \cdot \tilde{B}=\tilde{D}$ iff $A_{\lambda} \cdot B_{\lambda}=D_{\lambda}$ for any $\lambda \in(0,1]$.

For $\tilde{A}, \tilde{B} \in \tilde{\mathbb{R}}^{C}$, then

$$
\begin{equation*}
D(\tilde{A}, \tilde{B})=\sup _{\lambda \in[0,1]} d\left(A_{\lambda}, B_{\lambda}\right) \tag{4.1}
\end{equation*}
$$

is called the distance between \tilde{A} and \tilde{B}.
Lemma 4.1 [12] If a mapping $H:[0,1] \rightarrow I_{\mathbb{R}}, \lambda \rightarrow H(\lambda)=\left[m_{\lambda}, n_{\lambda}\right]$, satisfies $\left[m_{\lambda_{1}}, n_{\lambda_{1}}\right] \supset\left[m_{\lambda_{2}}, n_{\lambda_{2}}\right]$ when $\lambda_{1}<\lambda_{2}$, then

$$
\begin{equation*}
\tilde{A}:=\bigcup_{\lambda \in(0,1]} \lambda H(\lambda) \in \tilde{\mathbb{R}} \tag{4.2}
\end{equation*}
$$

and

$$
\begin{equation*}
A_{\lambda}=\bigcap_{n=1}^{\infty} H\left(\lambda_{n}\right) \tag{4.3}
\end{equation*}
$$

where $\lambda_{n}=\left[1-\frac{1}{(n+1)}\right] \lambda$.
Definition 4.3 Let $\tilde{F}:[a, b]_{\mathbf{T}} \rightarrow \tilde{\mathbb{R}}$. If the interval-valued function $F_{\lambda}(t)=\left[F_{\lambda}^{-}(t), F_{\lambda}^{+}(t)\right]$ is McShane delta integrable on $[a, b]_{\mathbf{T}}$ for any $\lambda \in(0,1]$, then $\tilde{F}(t)$ is called McShane delta integrable on $[a, b]_{\mathbf{T}}$ and the integral is defined by McShane delta integral is defined by

$$
\begin{aligned}
(F M) \int_{a}^{b} \tilde{F}(t) \Delta t & :=\bigcup_{\lambda \in(0,1]} \lambda(I M) \int_{a}^{b} F_{\lambda}(t) \Delta t \\
& =\bigcup_{\lambda \in(0,1]} \lambda\left[(M) \int_{a}^{b} F_{\lambda}^{-}(t) \Delta t,(M) \int_{a}^{b} F_{\lambda}^{+}(t) \Delta t\right]
\end{aligned}
$$

We write $\tilde{F}(t) \in F M[a, b]_{\mathbf{T}}$.
Theorem 4.1 $\tilde{F}(t) \in F M[a, b]_{\mathbf{T}}$, then $(F M) \int_{a}^{b} \tilde{F}(t) \Delta t \in \tilde{\mathbb{R}}$ and

$$
\begin{equation*}
\left[(F M) \int_{a}^{b} \tilde{F}(t) \Delta t\right]_{\lambda}=\bigcap_{n=1}^{\infty}(I M) \int_{a}^{b} F_{\lambda_{n}}(t) \Delta t \tag{4.4}
\end{equation*}
$$

where $\lambda_{n}=\left[1-\frac{1}{(n+1)}\right] \lambda$.

Proof Let $H:(0,1] \rightarrow I_{\mathbb{R}}$, be defined by $H(\lambda)=\left[(M) \int_{a} F_{\lambda}^{-}(t) \Delta t,(M) \int_{a} F_{\lambda}^{+}(t) \Delta t\right]$.
Since $F_{\lambda}^{-}(t)$ and $F_{\lambda}^{+}(t)$ are increasing and decreasing on λ respectively, therefore, when $0<\lambda_{1} \leq \lambda_{2} \leq 1$, we have $F_{\lambda_{1}}^{-}(t) \leq F_{\lambda_{2}}^{-}(t), F_{\lambda_{1}}^{+}(t) \geq F_{\lambda_{2}}^{+}(t)$, on $[a, b]_{\mathbf{T}}$. From Theorem 3.4 we have

$$
\begin{equation*}
\left[(M) \int_{a}^{b} F_{\lambda_{1}}^{-}(t) \Delta t,(M) \int_{a}^{b} F_{\lambda_{1}}^{+}(t) \Delta t\right] \supset\left[(M) \int_{a}^{b} F_{\lambda_{2}}^{-}(t) \Delta t,(M) \int_{a}^{b} F_{\lambda_{2}}^{+}(t) \Delta t\right] \tag{4.5}
\end{equation*}
$$

Using Theorem 3.1 and Lemma 4.1 we obtain

$$
\begin{equation*}
(F M) \int_{a}^{b} \tilde{F}(t) \Delta t:=\bigcup_{\lambda \in(0,1]} \lambda\left[(M) \int_{a}^{b} F_{\lambda}^{-}(t) \Delta t,(M) \int_{a}^{b} F_{\lambda}^{+}(t) \Delta t\right] \in \tilde{\mathbb{R}} \tag{4.6}
\end{equation*}
$$

and for all $\lambda \in(0,1]$,

$$
\begin{equation*}
\left[(F M) \int_{a}^{b} \tilde{F}(t) \Delta t\right]_{\lambda}=\bigcap_{n=1}^{\infty}(I M) \int_{a}^{b} F_{\lambda_{n}}(t) \Delta t \tag{4.7}
\end{equation*}
$$

where $\lambda_{n}=\left[1-\frac{1}{(n+1)}\right] \lambda$.
Theorem 4.2 If $\tilde{F}(t), \tilde{G}(t) \in F M[a, b]_{\mathbf{T}}$ and $\beta, \gamma \in \mathbb{R}$. Then $\beta \tilde{F}(t)+\gamma \tilde{G}(t) \in F M[a, b]_{\mathbf{T}}$ and

$$
\begin{equation*}
(F M) \int_{a}^{b}(\beta \tilde{F}(t)+\gamma \tilde{G}(t)) \Delta t=\beta(F M) \int_{a}^{b} \tilde{F}(t) \Delta t+\gamma(F M) \int_{a}^{b} \tilde{G}(t) \Delta t \tag{4.8}
\end{equation*}
$$

Proof If $\tilde{F}(t), \tilde{G}(t) \in F M[a, b]_{\mathbf{T}}$, then the interval-valued function $F_{\lambda}(t)=\left[F_{\lambda}^{-}(t), F_{\lambda}^{+}(t)\right]$ and $G_{\lambda}(t)=$ $\left[G_{\lambda}^{-}(t), G_{\lambda}^{+}(t)\right]$ are McShane delta integrable on $[a, b]_{\mathbf{T}}$ for any $\lambda \in(0,1]$ and $(F M) \int_{a}^{b} \tilde{F}(t) \Delta t=\bigcup_{\lambda \in(0,1]} \lambda(I M) \int_{a}^{b} F_{\lambda}(t) \Delta$ and $(F M) \int_{a}^{b} \tilde{G}(t) \Delta t=\bigcup_{\lambda \in(0,1]} \lambda(I M) \int_{a}^{b} G_{\lambda}(t) \Delta t$. From Theorem 3.2 we have $\beta F_{\lambda}(t)+\gamma G_{\lambda}(t) \in I M[a, b]_{\mathbf{T}}$ and $(I M) \int_{a}^{b}\left(\beta F_{\lambda}(t)+\gamma G_{\lambda}(t)\right) \Delta t=\beta(I M) \int_{a}^{b} F_{\lambda}(t) \Delta t+\gamma(I M) \int_{a}^{b} G_{\lambda}(t) \Delta t$ for any $\lambda \in(0,1]$. Hence $\beta \tilde{F}(t)+\gamma \tilde{G}(t) \in$ $F M[a, b]_{\mathbf{T}}$ and

$$
\begin{aligned}
(F M) \int_{a}^{b}(\beta \tilde{F}(t)+\gamma \tilde{G}(t)) \Delta t & =\bigcup_{\lambda \in(0,1]} \lambda(I M) \int_{a}^{b}\left(\beta F_{\lambda}(t)+\gamma G_{\lambda}(t)\right) \Delta t \\
& =\bigcup_{\lambda \in(0,1]} \lambda\left(\beta(I M) \int_{a}^{b} F_{\lambda}(t) \Delta t+\gamma(I M) \int_{a}^{b} G_{\lambda}(t) \Delta t\right) \\
& =\beta \bigcup_{\lambda \in(0,1]} \lambda(I M) \int_{a}^{b} F_{\lambda}(t) \Delta t+\gamma \bigcup_{\lambda \in(0,1]} \lambda(I M) \int_{a}^{b} G_{\lambda}(t) \Delta t \\
& =\beta(F M) \int_{a}^{b} \tilde{F}(t) \Delta t+\gamma(F M) \int_{a}^{b} \tilde{G}(t) \Delta t .
\end{aligned}
$$

Theorem 4.3 If $\tilde{F}(t) \in F M[a, c]_{\mathbf{T}}$ and $\tilde{F}(t) \in F M[c, b]_{\mathbf{T}}$, then $\tilde{F}(t) \in F M[a, b]_{\mathbf{T}}$ and

$$
\begin{equation*}
(F M) \int_{a}^{b} \tilde{F}(t) \Delta t=(F M) \int_{a}^{c} \tilde{F}(t) \Delta t+(F M) \int_{c}^{b} \tilde{F}(t) \Delta t \tag{4.9}
\end{equation*}
$$

Proof If $\tilde{F}(t) \in F M[a, c]_{\mathbf{T}}$ and $\tilde{F}(t) \in F M[c, b]_{\mathbf{T}}$, then the interval-valued function $F_{\lambda}(t)=\left[F_{\lambda}^{-}(t), F_{\lambda}^{+}(t)\right]$ is McShane delta integrable on $[a, c]_{\mathbf{T}}$ and $[c, b]_{\mathbf{T}}$ for any $\lambda \in(0,1]$ and $(F M) \int_{a}^{c} \tilde{F}(t) \Delta t=\bigcup_{\lambda \in(0,1]} \lambda(I M) \int_{a}^{c} F_{\lambda}(t) \Delta t$ and
$(F M) \int_{c}^{b} \tilde{F}(t) \Delta t=\bigcup_{\lambda \in(0,1]} \lambda(I M) \int_{c}^{b} F_{\lambda}(t) \Delta t$. From Theorem 3.3 we have $F_{\lambda}(t) \in I M[a, b]_{\mathbf{T}}$ and $(I M) \int_{a}^{b} F_{\lambda}(t) \Delta t=$ $(I M) \int_{a}^{c} F_{\lambda}(t) \Delta t+(I M) \int_{c}^{b} F_{\lambda}(t) \Delta t$ for any $\lambda \in(0,1]$. Hence $\tilde{F}(t) \in F M[a, b]_{\mathbf{T}}$ and

$$
\begin{aligned}
(F M) \int_{a}^{b} \tilde{F}(t) \Delta t & =\bigcup_{\lambda \in(0,1]} \lambda(I M) \int_{a}^{b} F_{\lambda}(t) \Delta t \\
& =\bigcup_{\lambda \in(0,1]} \lambda\left((I M) \int_{a}^{c} F_{\lambda}(t) \Delta t+(I M) \int_{c}^{b} F_{\lambda}(t) \Delta t\right) \\
& =\bigcup_{\lambda \in(0,1]} \lambda(I M) \int_{a}^{c} F_{\lambda}(t) \Delta t+\bigcup_{\lambda \in(0,1]} \lambda(I M) \int_{c}^{b} F_{\lambda}(t) \Delta t \\
& =(F M) \int_{a}^{c} \tilde{F}(t) \Delta t+(F M) \int_{c}^{b} \tilde{F}(t) \Delta t
\end{aligned}
$$

Theorem 4.4 If $\tilde{F}(t) \leq \tilde{G}(t)$ nearly everywhere on $[a, b]_{\mathbf{T}}$ and $\tilde{F}(t), \widetilde{G}(t) \in F M[a, b]_{\mathbf{T}}$, then

$$
\begin{equation*}
(F M) \int_{a}^{b} \tilde{F}(t) \Delta t \leq(F M) \int_{a}^{b} \tilde{G}(t) \Delta t \tag{4.10}
\end{equation*}
$$

Proof If $\tilde{F}(t) \leq \tilde{G}(t)$ nearly everywhere on $[a, b]_{\mathbf{T}}$ and $\tilde{F}(t), \tilde{G}(t) \in F M[a, b]_{\mathbf{T}}$, then $F_{\lambda}(t) \leq G_{\lambda}(t)$ nearly everywhere on $[a, b]_{\mathbf{T}}$ for any $\lambda \in(0,1]$ and $F_{\lambda}(t)$ and $G_{\lambda}(t)$ are McShane delta integrable on $[a, b]_{\mathbf{T}}$ for any $\lambda \in(0,1]$ and $(F M) \int_{a}^{b} \tilde{F}(t) \Delta t=\bigcup_{\lambda \in(0,1]} \lambda(I M) \int_{a}^{b} F_{\lambda}(t) \Delta t$ and $(F M) \int_{a}^{b} \tilde{G}(t) \Delta t=\bigcup_{\lambda \in(0,1]} \lambda(I M) \int_{a}^{b} G_{\lambda}(t) \Delta t$. From Theorem 3.4 we have $(I M) \int_{a}^{b} F_{\lambda}(t) \Delta t \leq(I M) \int_{a}^{b} G_{\lambda}(t) \Delta t$ for any $\lambda \in(0,1]$. Hence

$$
\begin{aligned}
(F M) \int_{a}^{b} \tilde{F}(t) \Delta t & =\bigcup_{\lambda \in(0,1]} \lambda(I M) \int_{a}^{b} F_{\lambda}(t) \Delta t \\
& \leq \bigcup_{\lambda \in(0,1]} \lambda(I M) \int_{a}^{b} G_{\lambda}(t) \Delta t \\
& =(F M) \int_{a}^{b} \tilde{G}(t) \Delta t
\end{aligned}
$$

5 conclusions

In this paper, we have a tendency to introduced the concept of the McShane delta integrals of interval-valued functions and fuzzy number- valued functions and discussed some properties of those integrals.

References

[1] Hamid, M.E, A.H. Elmuiz, M.E, Sheima. (2016) On AP-Henstock integrals of interval-valued functions and fuzzy-number-valued functions. Applied Mathematics, 7, 2285-2295.
[2] Hilger, S. (1988) Ein Makettenkalkl mit Anwendung auf Zentrumsmannigfaltigkeiten, Ph. D. Thesis, Universtat Wurzburg.
[3] A. Peterson and B.Thompson. (2006) Henstock-Kurzweil Delta and Nabla Integral, J. Math. Anal. Appl, 323, 162-178.
[4] Hamid, M.E. and A.H. Elmuiz. (2016) On Henstock-Stieljes integrals of interval-valued functions and fuzzy-number-valued functions. Journal of Applied Mathematics and Physics, 4, 779-786.
[5] Peng-Yee, L. (1989) Lanzhou lectures on Henstock integration. World Scientific, Singapore.
[6] You, X.X. and Zhao, D.F. (2012) On Convergence Theorems for the McShane Inegral on Time Scales. Journal of the Chungcheong Mathematical Society, 25(3), 393-400.
[7] Wu, C.X. and Gong, Z. (2000) On Henstock integrals of interval-valued functions and fuzzy-valued functions. Fuzzy Sets and Systems, 115, 377-391.
[8] Park, C.K. (2004) On McShane-Stieljes integrals of interval-valued functions and fuzzy-number-valued functions. Bull. Korean Math. Soc, 41(2), 221-233.
[9] Nanda, S. (1989) On integration of fuzzy mappings. Fuzzy Sets and Systems, 32, 95-101.
[10] Wu, C.X. and Ma, Ming. (1991) Embedding problem of fuzzy number spaces: Part I. Fuzzy Sets and Systems, 44, 33-38.
[11] Wu, C.X. and Ma, Ming. (1992) Embedding problem of fuzzy number spaces: Part II. Fuzzy Sets and Systems, 45, 189-202.
[12] Cheng, Z.L. and Demou, W. (1983) Extension of the integral of interval-valued function and the integral of fuzzy-valued function. Fuzzy Math, 3, 45-52.

[^0]: *Corresponding author. Tel.: +8613218977118. E-mail address: mowia-84@hotmail.com, muawya.ebrahim@gmail.com (M.E. Hamid), luoshanxu@hotmail.com (L.S Xu) and almoizalsheikh1@windowslive.com (A.H Elmuiz).

