Journal of Progressive Research in Mathematics

 www.scitecresearch.com/journals
Some New Results Of The integrals in the groups Mod-n

H.M.A Abdullah, Atefa J. S Abdullah, Rawaa E . E. Ibrahim
Al-Mustansirya University, College of Basic Education

Abstract.

Let $\mathrm{G}=\mathrm{Zn}$ be abelian group $\operatorname{Mod} \mathrm{n}$. we shall define a new integral of the all elements of the $\mathrm{G}=\mathrm{Zn}$ (n is a finite number, $\mathrm{n} \in \mathrm{N}, \mathrm{n} \geq 2$).

We shall study a new - results of the integrals properties in the group Z_{n}. We gave the definitions of integrals in the Zn , and we shall gave the anew- definitions of the neat (semi) integrals, and the some a new results of this integrals.

Introduction

Let $\mathrm{G}=\mathrm{Z}_{\mathrm{n}}$ be abelian group $\operatorname{Mod} \mathrm{n}, \mathrm{n} \geq 2$. We shall starts with the a new - definition of the integrals, by the following :

Definition A : The integrals in the group Zn define b

$$
\begin{aligned}
& \forall n \geq 2, \int_{0}^{k} \bar{x} d Z n=\bar{x} Z n \int_{0}^{k r}=k \bar{x} \\
& =\{0 \bar{x}, 1 \bar{x}, 2 \bar{x}, 3 \bar{x} \ldots \ldots,(n-1) \bar{x}\} \\
& \text { With } \mathrm{K}=\{0,1,2, \ldots \ldots, \mathrm{n}-1\}
\end{aligned}
$$

Example 1 :Take $G=Z_{3}$, So

$$
\begin{gathered}
<\overline{0}>\int_{0}^{k} \overline{0} d \mathrm{z}_{3}=\int_{0}^{2} \overline{0} d z_{3}=\{0 \overline{0}, \overline{1}, 2 \overline{0}\}=\{\overline{0}\}= \\
\int_{0}^{2} \overline{1} d \mathrm{z}_{3}=\{0 \overline{1}, 1 \overline{1}, 2 \overline{1}\}=Z_{3} \\
\int_{0}^{2} \overline{2} d \mathrm{z}_{3}=\{0 \overline{2}, 1 \overline{2}, 2 \overline{2}\}=\{0, \overline{2}, \overline{1}\}=Z_{3}
\end{gathered}
$$

$$
\text { So } \int_{0}^{2} \overline{1} d z_{3}=Z_{3}=\int_{0}^{2} \overline{2} d z_{3}
$$

Clearly, $\int_{0}^{k} d \mathrm{zn}=\mathrm{Zn} \quad \forall n \geq 2$

Example 2 .Take $G=Z_{6}$ It's easily to show that

$$
\begin{gathered}
\int_{0}^{k} \overline{\mathrm{O}} d z_{6}=\int_{0}^{5} d z_{6}=<\overline{\mathrm{O}}> \\
\int_{0}^{5} \overline{1} d z_{6}=Z_{6} \\
\int_{0}^{5} \overline{2} d z_{6}=\{0 \overline{0}, 1 \overline{2}, 2 \overline{2}, 3 \overline{2}, 4 \overline{2}, 5 \overline{2}\} \\
=\{\overline{\mathrm{O}}, \overline{2}, \overline{4}, \overline{\mathrm{O}}, \overline{2}, \overline{4}\}=<\overline{2}> \\
=\{\overline{3}\}
\end{gathered}
$$

So

$$
\begin{aligned}
\int_{0}^{5} \overline{3} d z_{6}= & \{0 \overline{3}, 1 \overline{3}, 2 \overline{3}, 3 \overline{3}, 4 \overline{3}, 5 \overline{3}\} \\
& \int_{0}^{5} \overline{5} \mathrm{dz}_{6}=Z_{6}
\end{aligned}
$$

Here,

$$
\begin{gathered}
1-\int_{0}^{5} \overline{1} \mathrm{dz}_{6}=\int \overline{5} d z_{6}=Z_{6} \\
2-\int_{0}^{5}\left(\overline{1}+_{6} \overline{2}\right) d z_{6}=\int_{0}^{5} \overline{3} d z_{6}=<\overline{3}> \\
\int_{0}^{5}\left(\overline{1}+{ }_{6} \overline{2}\right) d z_{6}
\end{gathered}
$$

Definition B :

The odd integrals, between two different Mod - group, define by

$$
\begin{aligned}
& \int_{0}^{k 1+k 2}(Z n+Z m) d z_{n+m}=\int_{0}^{k 1} Z n d z_{n+m}+\int_{0}^{k 2} Z m d z_{n+m} \\
&=\mathrm{Zn}+\mathrm{Zm}
\end{aligned}
$$

Example 3 :

$$
\begin{gathered}
\int_{0}^{k 1+k 2}\left(Z_{2}+Z_{3}\right) d z_{2+3} \\
\int_{0}^{k 1} Z_{2}+d z_{2}+\int_{0}^{k 2} Z_{3} d z_{3}= \\
=\int_{0}^{1} Z_{2} d z_{2}+\int_{0}^{2} Z_{3} d z_{3} \\
=Z_{2}+Z_{3}=\{(\overline{0}, \overline{0}),(\overline{0}, \overline{1}),(\overline{0}, 2),(\overline{1}, \overline{0}),(\overline{1}, \overline{1}),(\overline{1}, \overline{2})
\end{gathered}
$$

We are ready to gave the new-definition to the neat - integrals subgroups -

Definition C: [2]

Let $G=Z_{n}$ be a group $\operatorname{Mod}-\mathrm{n}$ and H be a subgroup to G .
Then the integrals of the elements of the H . Is said to be neat - integrals element, for all prime number P , for all $h \neq 0 \in H$

$$
\text { If } \int_{0}^{p} x d Z_{n}=P x=h \quad \text { for some } Z_{n} \text { then } \int_{0}^{p} h o d H=P h o=h \quad \text { for some } h o \in H .
$$

We shall said a subgroup H of Zn isa neat - integrals in Zn if for all $h \in H$, h is neat - integral element, that mean H is neat - integrals in Z_{n}, For all $\mathrm{h} \in \mathrm{H}$, for all prime number $P, x \in Z n$

$$
\text { If } \int_{0}^{p} x d Z n=h=\int_{0}^{p} h o d h \quad \text { for some } h o \in H .
$$

Example 4: Take $\mathrm{G}=\mathrm{Z}_{6}$ and $H=\langle\overline{3}>=\{\overline{0}, \overline{3}\}$ then we can show that the all element of H (We have only $\overline{3}$) is a neat - integrals

Take $\mathrm{p}=2$
Clearly $\int_{0}^{2} \bar{x} d z_{6}=2 \bar{x}=\overline{3}$
Clearly that, then is no solution in $\mathrm{Z}_{6},\left(\bar{x} \notin z_{6}\right)$

Take $\mathrm{p}=3$

$$
\text { So } \int_{0}^{3} \bar{x} d z_{6}=3 \bar{x}=\overline{3} \Rightarrow 3(\overline{1})=\overline{3} \text { in } Z_{6}
$$

To show $\int_{0}^{3} \bar{x} d z_{6}=\overline{3} \quad$ it has a solution in H .

$$
\int_{0}^{3} \bar{x} d z_{6}=\overline{3}=\int_{0}^{3} \overline{3} d h=3 \overline{3}=\overline{3}=\overline{3} \in H
$$

Take $\mathrm{p}=5$

Clearly

$$
\begin{aligned}
\int_{0}^{5} \bar{x} d z_{6}=5 \bar{x} & =\overline{3} \in G \\
5(\overline{3}) & =\overline{3} \in H .
\end{aligned}
$$

So $\quad \int_{0}^{5} \bar{x} d z_{6}=\int_{0}^{5} \bar{x} d h$
Thus $, \forall p, p \geq 2 \quad, \quad \forall h \in H$
If $\quad \int_{0}^{p} \bar{x} d Z_{n}=h \quad$ in G
Then $\quad \int_{0}^{p} \bar{x} d H=$ Pho $=h \quad$ in H

Therefore, H is integral-neat. We shall denoted H by P -integral neat subgroup of G

Example 5: Take $\mathrm{G}=\mathrm{Z}_{12}$ and $H=<\overline{2}>$. and take $\mathrm{P}=2$

$$
\int_{0}^{2} \bar{x} d Z_{12}=2 \bar{x}=\overline{2} \quad \text { in } G
$$

We have

$$
2(\overline{1})=\overline{2} \quad \operatorname{in} G
$$

But $\quad \int_{0}^{2} \bar{x} d z_{12} \neq \int_{0}^{2} \bar{x} d H=\overline{2}$
Which means, That $\int_{0}^{2} \bar{x} d z_{12}=\overline{2}$
It has no solution in H
So H is not P -integral neat in G .

Definition D :

A subgroup H of the G is said to be Po - integral neat in G if, $\forall h \in H \int_{0}^{p o} \bar{x} d Z n=p o \bar{x}=h$

$$
\text { Then } \quad \int_{0}^{p o} \bar{x} d H=p o \bar{x}=h=\text { poho } \quad \text { for some } h o \in H
$$

Example 6 :Take $G=Z_{8}$ and $H=<\overline{2}>$
If $\quad \mathrm{P}=2, \quad h=\overline{2} \in H$
It has solution in $Z_{8} \int_{0}^{2} \bar{x} d Z_{n}=2 \bar{x}=2$
But $\int_{0}^{2} \bar{x} d Z n=\overline{2} \quad$ it has no solution in H.
So H is not P -integral neat in G .

Now, take $\mathrm{P}=3, \quad h=\overline{2} \in H$
its has solution in $\mathrm{Z}_{8}(\mathbf{3} \overline{\mathbf{6}}=\overline{2}) \int_{0}^{3} \bar{x} d Z_{8}=3 \bar{x}=\overline{2}$
Clearly $\int_{0}^{3} \bar{x} d Z_{8}=\overline{2}$ it has solution in H.

$$
\int_{0}^{3} \bar{x} d Z_{8}=\overline{2}=\int_{0}^{3} \bar{x} d H=3 \overline{6}=\overline{2} \text { and } h o=\overline{6} \in H
$$

Now, test $\overline{4} \in H$

$$
\begin{array}{cc}
\int_{0}^{3} \bar{x} d Z_{8}=3 \bar{x}=\overline{4} & \text { in } G \\
3 \bar{x}=3(\overline{4})=\overline{4} \text { and } \overline{4} \in H \\
\text { So } \int_{0}^{3} \bar{x} d Z_{8}=\int_{0}^{3} \bar{x} d H & \text { in } H \\
\text { Test } \overline{6} \in H & \\
\int_{0}^{3} \bar{x} d Z_{8}=3 \bar{x}=\overline{6} & \text { in } G \\
=3(\overline{2})=\overline{6} & \overline{2} \in H
\end{array}
$$

Clearly $\int_{0}^{3} \bar{x} d z_{8}=\overline{6}=\int_{0}^{3} \bar{x} d H$ in H and His 3- neat integrals in G.We are ready to show some results of P- neat integrals.

TheoremA : For any P- neat integrals in abelian group G is a Po -neat in G

Theorem B : [1]

Let A and B be two p - neat integrals in G then
i) $A \cap B$ is a P - neat integrals in
ii) $\mathrm{A}+\mathrm{B}$ is a $\mathrm{P}-$ neat integrals in G

Proof :
Let \mathbf{h} be any element in \mathbf{A}B and for all prime number P

Suppose $\int_{0}^{p} \bar{x} d G=P \bar{x}=h \quad$ in G
So there exist an element $g \in G$ such that

$$
\int_{0}^{p} \bar{x} d G=P \bar{x}=p g=h \in A \cap B
$$

Since $\quad h \in A \cap B \quad h \in A \quad$ and $\quad h \in B$
Thus, $\int_{0}^{p} \bar{x} d G=P \bar{x}=p g=h \in A \quad$ in $\quad G$
But A is p-neat integral in G

$$
\text { So } \int_{0}^{p} \bar{x} d G=\int_{0}^{p} \bar{x} d A=P \bar{x}=p a=h \quad \text { for some } a \in A
$$

and B is p - neat integral in G

We have

$$
\int_{0}^{p} \bar{x} d G=\int_{0}^{p} \bar{x} d B=P \bar{x}=p b=h \quad \text { in } B
$$

Hence, $\mathrm{Pb}=\mathrm{h}=\mathrm{Pa}$
So $\mathrm{P}(\mathrm{a}-\mathrm{b})=0$ and thus $a=b \in \boldsymbol{A} \cap \boldsymbol{B}$
Therefore $\int_{0}^{p} \bar{x} d G=\int_{0}^{p} \bar{x} d A \cap B=h \in A \cap B$
We get $A \cap B$ is p- neat integral in G
ii) To prove, $A+B$ be a p- neat integral in G

Let Z be any element in $\mathrm{A}+\mathrm{B}$ and suppose that $\int_{0}^{p} \bar{x} d G=z$ in G
So $\quad P \bar{x}=z$
Since $\quad z \in A+B, Z=a+b \quad$ for some $\quad a \in A b \in B$
We have $P \bar{x}=a+b \quad \in A+B$

$$
\text { and } \int_{0}^{p} \overline{x_{1}} d G n=a \quad \int_{0}^{p} \overline{x_{2}} d g n=b
$$

But we have A and B are P-neat integrals in G

$$
\begin{aligned}
\text { So } \int_{0}^{p} \overline{x_{1}} d G & =\int_{0}^{p} d_{o} d A
\end{aligned} \quad \text { for some } d_{o} \in A
$$

Thus, $\mathrm{Pd}_{\mathrm{o}}=\mathrm{a}$
$\mathrm{Pd}_{\mathrm{o}}=\mathrm{b}$ and we get $\mathrm{P}\left(\mathrm{d}_{\mathrm{o}}+\mathrm{b}_{\mathrm{o}}\right)=\mathrm{a}+\mathrm{b}$
So, $\boldsymbol{P} \bar{x}=a+b=p a \mathrm{O}+p b_{o}=p\left(d_{o}+b_{o}\right)$

$$
\int_{0}^{p} \bar{x} d G=\int_{0}^{p}\left(d+d d_{0}\right)=a+b
$$

Which mean that
It $\int_{0}^{p} \bar{x} d G=z \in A+B \quad$ in G
Then $\int_{0}^{p} \bar{x} d(A+B)=z \in A+B \quad$ in G
Theorem 3: If A is only neat - integral subgroup of \mathbf{A} subgroup \mathbf{B} of \mathbf{G} then
i) A is a neat-integral of G
ii) B is p-neat integral in G then B / A is a neat - integral of G / A

Proof :/ and for all P it $\quad \int_{0}^{p} \bar{x} d G=a$ in G and for all P it $\int_{0}^{p} \bar{x} d G=a$ in G
So $\quad P \bar{x}=a \in A$.But A is a neat- integral of B so

$$
\int_{0}^{p} \overline{x_{1}} d B=a \quad \in A \subseteq B
$$

So $\int_{0}^{p} \overline{x_{1}} d A=a=p d_{o}=p d_{o}=$ for some $d_{o} \in A$.
Hence $\int_{0}^{p} \bar{x} d G=a=\int_{0}^{p} d d A$
Therefore A is p-neat in G
ii) Let $b+A \in B / A$ and $\forall p(b \in B)$

$$
\int_{0}^{p} \bar{x} d G / A=b+A \quad, \quad \bar{x} \in G / A
$$

So $\int_{0}^{p} g d G / A=b+A \quad$ in $\quad G / A$

$$
\mathrm{P}(\mathrm{~g}+\mathrm{A})=\mathrm{b}+\mathrm{A} \in G / A
$$

So $P g+p A=b+A \quad \Rightarrow P g+A=b+A$
So $P g=b \Rightarrow \int_{0}^{p} g d G=b \quad$ in G
But B is P- neat integral in G
Thus, $\int_{0}^{p} g d \boldsymbol{G}=b=\int_{0}^{p} b_{o} d \boldsymbol{B}$
$\mathrm{Pb} 0=\mathrm{b}$ some $\mathrm{b} 0 \in B$
Since we have

$$
\begin{gathered}
\int_{0}^{p} g+A d G / A=P(g+A)=b+A \\
P(g+A)=p b o+A=p(b o+A)=b+A \\
\text { Thus, } \int_{0}^{p} g+A d G / A=\int_{0}^{p} b o+A d B / A
\end{gathered}
$$

We get B / A is p - neat integral

References

[1] H.M.A. Abdulla .pure ($1-2$) and 3 subgroup in Abelian groups PU.M.A ser A , Vol 3 no $3-4$ pp 135 139 Ital (1992) .
[2] L. fuchns,Abelian group U.S.A (1990).
[3] Tato Kimiko, On abelian group every subgroup of which is neat subgroup. Comment, Math, Univ . St . Pauli is (1980).

