

SCITECH RESEARCH ORGANISATION

Volume 12, Issue 2 Published online: June 13, 2017|

Journal of Progressive Research in Mathematics www.scitecresearch.com/journals

Some New Results Of The integrals in the groups Mod-n

H.M.A Abdullah, Atefa J.S Abdullah, Rawaa E.E. Ibrahim

Al-Mustansirya University, College of Basic Education

Abstract.

Let G = Zn be abelian group Mod n. we shall define a new integral of the all elements of the G = Zn (n is a finite number, $n \in N$, $n \ge 2$).

We shall study a new – results of the integrals properties in the group Z_n . We gave the definitions of integrals in the Zn, and we shall gave the anew- definitions of the neat (semi) integrals, and the some a new results of this integrals.

Introduction

Let $G = Z_n$ be abelian group Mod n , $n \ge 2$. We shall starts with the a new – definition of the integrals, by the following :

Definition A : The integrals in the group Zn define b

$$\forall n \ge 2, \int_{0}^{k} \bar{x} \, dZn = \bar{x} Zn \int_{0}^{kr} = k \bar{x}$$

= $\{0\bar{x}, 1\bar{x}, 2\bar{x}, 3\bar{x}, \dots, (n-1)\bar{x}\}$
With K = $\{0, 1, 2, \dots, n-1\}$

Example 1 :Take $G = Z_3$, So

$$<\overline{0} > \int_{0}^{k} \overline{0} \, dz_{3} = \int_{0}^{2} \overline{0} \, dz_{3} = \{0\overline{0}, 1\overline{0}, 2\overline{0}\} = \{\overline{0}\} =$$
$$\int_{0}^{2} \overline{1} \, dz_{3} = \{0\overline{1}, 1\overline{1}, 2\overline{1}\} = Z_{3}$$
$$\int_{0}^{2} \overline{2} \, dz_{3} = \{0\overline{2}, 1\overline{2}, 2\overline{2}\} = \{0, \overline{2}, \overline{1}\} = Z_{3}$$

So
$$\int_{0}^{2} \bar{1} dz_{3} = Z_{3} = \int_{0}^{2} \bar{2} dz_{3}$$

Clearly, $\int_{0}^{k} dz n = Zn$ $\forall n \ge 2$

Example 2 .Take $G = Z_6$ It's easily to show that

$$\int_{0}^{k} \overline{0} \, dz_{6} = \int_{0}^{5} dz_{6} = \langle \overline{0} \rangle$$
$$\int_{0}^{5} \overline{1} \, dz_{6} = Z_{6}$$
$$\int_{0}^{5} \overline{2} \, dz_{6} = \{0\overline{2}, 1\overline{2}, 2\overline{2}, 3\overline{2}, 4\overline{2}, 5\overline{2}\}$$
$$= \{\overline{0}, \overline{2}, \overline{4}, \overline{0}, \overline{2}, \overline{4}\} = \langle \overline{2} \rangle$$
$$= \{\overline{3}\},$$

So

$$\int_{0}^{5} \overline{3} dz_{6} = \{ 0\overline{3}, 1\overline{3}, 2\overline{3}, 3\overline{3}, 4\overline{3}, 5\overline{3} \}$$
$$\int_{0}^{5} \overline{5} dz_{6} = Z_{6}$$

Here,

$$\int_{1-}^{5} \sqrt{1} dz_{6} = \int \overline{5} dz_{6} = Z_{6}$$

$$2 - \int_{0}^{5} (\overline{1} + \overline{2}) dz_{6} = \int_{0}^{5} \overline{3} dz_{6} = \langle \overline{3} \rangle$$

$$\int_{0}^{5} (\overline{1} + \overline{2}) dz_{6} = \int_{0}^{5} \sqrt{2} dz_{6}$$

Definition B :

The odd integrals, between two different Mod - group , define by

$$\int_{0}^{k_{1}+k_{2}} (Zn + Zm) dz_{n+m} = \int_{0}^{k_{1}} Zn dz_{n+m} + \int_{0}^{k_{2}} Zm dz_{n+m}$$
$$= Zn + Zm$$

Example 3 :

$$\int_{0}^{k_{1}+k_{2}} (Z_{2} + Z_{3}) dz_{2+3}$$
$$\int_{0}^{k_{1}} Z_{2} + dz_{2} + \int_{0}^{k_{2}} Z_{3} dz_{3=}$$
$$= \int_{0}^{1} Z_{2} dz_{2} + \int_{0}^{2} Z_{3} dz_{3}$$
$$Z_{2} + Z_{3} = \{(\bar{0}, \bar{0}), (\bar{0}, \bar{1}), (\bar{0}, 2), (\bar{1}, \bar{0}), (\bar{1}, \bar{1}), (\bar{1}, \bar{2})\}$$

We are ready to gave the new-definition to the neat - integrals subgroups -

Definition C : [2]

Let $G = Z_n$ be a group Mod – n and H be a subgroup to G.

=

Then the integrals of the elements of the H. Is said to be neat – integrals element, for all prime number P , for all $h \neq 0 \in H$

If
$$\int_{0}^{p} x d Z_{n} = Px = h$$
 for some Z_{n} then $\int_{0}^{p} ho dH = Pho = h$ for some $ho \in H$

We shall said a subgroup H of Zn is a neat – integrals in Zn if for all $h \in H$, h is neat – integral element, that mean H is neat – integrals in Z_n, For all $h \in H$, for all prime number P, $x \in Zn$

If
$$\int_{0}^{p} x \, dZn = h = \int_{0}^{p} ho \, dh$$
 for some $ho \in H$.

Example 4: Take $G = Z_6$ and $H = \langle \bar{3} \rangle = \{\bar{0}, \bar{3}\}$ then we can show that the all element of H (We have only $\bar{3}$) is a neat – integrals

Take p = 2Clearly $\int_{0}^{2} \overline{x} \, dz_6 = 2 \, \overline{x} = \overline{3}$

Clearly that, then is no solution in Z_6 , $(x \notin z_6)$

Take p = 3

So
$$\int_{0}^{3} \bar{x} dz_{6} = 3\bar{x} = \bar{3} \implies 3(\bar{1}) = \bar{3}$$
 in Z_{6}

To show $\int_{0}^{3} \overline{x} dz_6 = \overline{3}$ it has a solution in H.

$$\int_{0}^{3} \overline{x} \, dz_{6} = \overline{3} = \int_{0}^{3} \overline{3} \, dh = 3\overline{3} = \overline{3} = \overline{3} \in H$$

Take p = 5

Clearly

$$\bar{x} dz_6 = 5 \bar{x} = \bar{3} \in G$$

 \int_{0}^{5}

$$5(\bar{3}) = 3 \in H.$$

So $\int_{0}^{5} \overline{x} dz_{6} = \int_{0}^{5} \overline{x} dh$

Thus, $\forall p, p \geq 2$, $\forall h \in H$ $\int_{0}^{p} \bar{x} dZ_{n} = h \qquad in \ G$

If

Then $\int_{0}^{p} \bar{x} dH = Pho = h$ in H

Therefore, H is integral - neat. We shall denoted H by P-integral neat subgroup of G

Example 5: Take $G = Z_{12}$ and $H = \langle \overline{2} \rangle$. and take P = 2

$$\int_{0}^{2} \bar{x} dZ_{12} = 2\bar{x} = \bar{2} \qquad in \ G$$

We have

 $2(\bar{1}) = \bar{2}$ in G

But

But
$$\int_{0}^{2} \overline{x} dz_{12} \neq \int_{0}^{2} \overline{x} dH = \overline{2}$$

Which means, That
$$\int_{0}^{2} \overline{x} dz_{12} = \overline{2}$$

It has no solution in H

So H is not P-integral neat in G.

Definition D :

A subgroup H of the G is said to be Po – integral neat in G if, $\forall h \in H \int_{0}^{p_0} \bar{x} dZ n = po\bar{x} = h$

Then $\int_{0}^{p_0} \bar{x} dH = p_0 \bar{x} = h = p_0 h_0$ for some $h_0 \in H$.

Example 6: Take $G = Z_8$ and $H = <\overline{2} >$

P=2 , $h=\overline{2}\in H$ If It has solution in $Z_8 \int_0^2 \overline{x} dZ_n = 2\overline{x} = 2$

But $\int_{-\infty}^{\infty} \frac{1}{x} dZ n = \overline{2}$ it has no solution in H. So H is not P-integral neat in G.

Now, take P = 3,
$$h = \overline{2} \in H$$

its has solution in Z₈ ($3\overline{6} = \overline{2}$) $\int_{0}^{3} \overline{x} dZ_{8} = 3\overline{x} = \overline{2}$

Clearly $\int_{0}^{3} \bar{x} dZ_8 = \bar{2}$ it has solution in H.

$$\int_{0}^{3} \overline{x} \, dZ_{8} = \overline{2} = \int_{0}^{3} \overline{x} \, dH = 3\overline{6} = \overline{2} \text{ and } ho = \overline{6} \in H$$

Now, test $\bar{4} \in H$

$$\int_{0}^{3} \overline{x} \, dZ_8 = 3\overline{x} = \overline{4} \quad in \quad G$$

$$3\overline{x} = 3(\overline{4}) = \overline{4} \quad and \quad \overline{4} \in H$$
So
$$\int_{0}^{3} \overline{x} \, dZ_8 = \int_{0}^{3} \overline{x} \, dH \quad in \quad H$$

$$\mathbf{Test}_{\overline{6}} \in H$$

$$\int_{0}^{3} \overline{x} dZ_{8} = 3\overline{x} = \overline{6} \qquad \text{in } G$$
$$= 3 \ (\overline{2}) = \overline{6} \qquad \overline{2} \in H$$

Clearly
$$\int_{0}^{0} \overline{x} dz_8 = \overline{6} = \int_{0}^{0} \overline{x} dH$$
 in *H* and His 3- neat integrals in G. We are ready to show some

results of P- neat integrals.

3

TheoremA : For any P- neat integrals in abelian group G is a Po-neat in G

<u>Theorem B</u> : [1]

Let A and B be two p- neat integrals in G then

i) $A \cap B$ is a P-neat integrals in

ii) A + B is a P – neat integrals in G **Proof**:

Let **h** be any element in $\mathbf{A} \cap \mathbf{B}$ and for all prime number P

Suppose
$$\int_{0}^{p} \bar{x} dG = P\bar{x} = h$$
 in G

So there exist an element $g \in G$ such that

$$\int_{0}^{p} \overline{x} \, dG = P\overline{x} = pg = h \in A \cap B$$

Since $h \in A \cap B$ $h \in A$ and $h \in B$

Thus,
$$\int_{0}^{P} \bar{x} dG = P\bar{x} = pg = h \in A$$
 in G

But A is p-neat integral in G

So
$$\int_{0}^{p} \overline{x} dG = \int_{0}^{p} \overline{x} dA = P\overline{x} = pa = h$$
 for some $a \in A$

and B is p- neat integral in G

We have

$$\int_{0}^{p} \overline{x} dG = \int_{0}^{p} \overline{x} dB = P\overline{x} = pb = h \quad in B$$

Hence, Pb = h = Pa

So P(a-b)=0 and thus $a=b\in A\cap B$

Therefore
$$\int_{0}^{p} \overline{x} dG = \int_{0}^{p} \overline{x} dA \cap B = h \in A \cap B$$

We get $A \cap B$ is p-neat integral in G

ii) To prove, A + B be a p- neat integral in G

Let Z be any element in A + B and suppose that $\int_{0}^{p} x dG = z$ in G

So $P\overline{x} = z$

Since $z \in A + B$, z = a + b for some $a \in A$ $b \in B$

We have $Px = a + b \in A + B$

and
$$\int_{0}^{p} \overline{x_{1}} dGn = a$$
 and $\int_{0}^{p} \overline{x_{2}} dgn = b$

But we have A and B are P-neat integrals in G

So
$$\int_{0}^{p} \overline{x_{1}} dG = \int_{0}^{p} d_{o} dA$$
 for some $d_{o} \in A$
 $\int_{0}^{p} \overline{x_{2}} dG = \int_{0}^{p} d_{o} dB$ for some $b_{o} \in b$

Thus, $Pd_o = a$

$$Pd_{o} = b \text{ and we get } P(d_{o} + b_{o}) = a + b$$

So, $P\bar{x} = a + b = pa0 + pb_{o} = p(d_{o} + b_{o})$

$$\int_{a}^{p} \bar{x} dG = \int_{a}^{p} (d_{o} + d_{o}) = c$$

 $\int_{0}^{\mu} \overline{x} dG = \int_{0}^{\mu} (d_{o} + d_{o}) = a + b$

 \boldsymbol{G}

Which mean that

It
$$\int_{0}^{p} \overline{x} dG = z \in A + B$$
 in G
Then $\int_{0}^{p} \overline{x} d(A + B) = z \in A + B$ in

<u>**Theorem 3**</u>: If A is only neat – integral subgroup of A subgroup B of G then

i) A is a neat- integral of G

ii) B is p-neat integral in G then B_A is a neat – integral of G_A

Proof :/ and for all P it $\int_{0}^{p} \overline{x} dG = a$ in G and for all P it $\int_{0}^{p} \overline{x} dG = a$ in G

So $Px = a \in A$.But A is a neat-integral of B so

$$\int_{0}^{p} \overline{x_{1}} \, dB = a \quad \in A \subseteq B$$

$$\int_{0}^{p} \overline{x_{1}} dA = a = pd_{o} = pd_{o} = \text{for some } d_{o} \in A.$$

Hence,
$$\int_{0}^{p} \int_{0}^{-} dG = a = \int_{0}^{p} d dA$$

Therefore A is p-neat in G

ii) Let
$$b + A \in \overset{B}{\nearrow}_{A}$$
 and $\forall p (b \in B)$
$$\int_{0}^{p} \overline{x} d \overset{G}{\nearrow}_{A} = b + A \qquad , \quad \overline{x} \in \overset{G}{\nearrow}_{A}$$

So
$$\int_{0}^{p} g \, d \, G_{A} = b + A$$
 in G_{A}
 $P(g+A) = b + A \in G_{A}$
So $Pg + pA = b + A \implies Pg + A = b + A$
So $Pg = b \Rightarrow \int_{0}^{p} g \, dG = b$ in G
But B is P-neat integral in G
Thus, $\int_{0}^{p} g \, dG = b = \int_{0}^{p} b \, dB$

 $P b0 = b \text{ some } b0 \in B$

Since we have

$$\int_{0}^{p} g + A \quad d \quad G_{A}' = P(g + A) = b + A$$

$$P(g + A) = pbo + A = p(bo + A) = b + A$$

$$Thus, \int_{0}^{p} g + A \quad d \quad G_{A}' = \int_{0}^{p} bo + A \quad d \quad B_{A}'$$

We get $\frac{B}{A}$ is p-neat integral

References

[1] H.M.A. Abdulla .pure (1 – 2) and 3 subgroup in Abelian groups PU.M.A ser A , Vol 3 no 3 – 4 pp 135 – 139 Ital (1992) .

[2] L. fuchns , Abelian group U.S.A (1990).

[3] Tato Kimiko, On abelian group every subgroup of which is neat subgroup. Comment , Math , Univ . St . Pauli is (1980).