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Abstract  

Hadjidimos [1], proved that the Accelerated OverRelaxation (AOR) is more powerful compared with the 
other well-known method called the Successive OverRelaxation (SOR) for solving linear systems of 
equations. The formulation of group iterative schemes for approximating the solution of the two 
dimensional elliptic partial differential equations have been the subject of intensive study during the last 
few years. The recent convergence results of nine-point (N-P) group iterative schemes from the 
Successive OverRelaxation (SOR) family have been presented by Saeed [2]. In this paper, we extend 
the work of Saeed [2] with the new application of suitable preconditioning techniques to the N-P Group 
iterative schemes from the Accelerated OverRelaxation (AOR) for solving Poisson’s Equation. The 
results reveal the significant improvement in number of iterations and execution timings of the proposed 
preconditioned Group iterative method compared to Preconditioned N-P SOR. 

Keywords:  Preconditioning Techniques; Nine-Point Group Iterative Method; AOR.  

 

1. Introduction 

It has been confirmed that the discretisation of partial differential equations (PDEs) using finite difference schemes 

normally yield a system of linear equations, which are large and sparse in nature. Iterative methods are usually used 

to solve these types of systems since these methods need less storage and are capable of preserving the sparsity 

property of the large system. Many researchers have considered preconditioners which applied to these iterative 

methods for solving linear systems ([3], [4], [5], [6]). In Saeed [2], the application of the new preconditioner in 

block formulation for the N-P Group SOR iterative method is presented to accelerate the convergence rate of this 

group method. The resulted preconditioned system showed improvements in the number of iterations and the 

execution time. In this research the most efficient preconditioned group AOR iterative method for solving elliptic 

partial differential equations will be investigated. Furthermore, we will compare the proposed method with the 

original nine-point group AOR iterative method and the earlier preconditioned group SOR [2] for solving the two 

dimensional Poisson equation. 

Consider the Poisson equation in the form: 
2 2

2

2 2
( , ), ( , )

u u
u f x y x y

x y

 
    

 
                                                             (1.1) 

with specific Dirichlet boundary conditions 

( , ) ( , ),U x y g x y      ( x , y ) . 

In SOR method, we have to determine the parameter , where a suitable value of w could lead to drastic 

improvements in convergence. The AOR method involves two parameters, r and  . We observe that for specific 

values of these parameters, we can obtain Jacobi, Gauss-Seidel and SOR iterative methods. If 0r  and 1  , 

we have the Jacobi method. If 1 r , Gauss-Seidel method can be obtained, and for the SOR method, we 

consider r  [1]. It is well known that the AOR method is an iterative method for the numerical solution of the 

linear systems of equations, 

Au f                                                                                         (1.2) 

http://www.scitecresearch.com/journals
mailto:abdulkafi.ahmed@qu.edu.sa


                                                              Journal of Progressive Research in Mathematics(JPRM)                                                                                                                                                                 

ISSN: 2395-0218     

 
Volume 10, Issue 1 available at www.scitecresearch.com/journals/index.php/jprm                                                                1449|               

 

and also, we can consider the AOR method as a generalization method of Jacobi, Gauss-Seidel and SOR iterative 

methods. 

This paper is organised as follows: in Section 2, we present the derivation of the proposed preconditioned N-P AOR 

method. The numerical results are presented to show the efficiency of the preconditioned N-P AOR method in 

Section 3. Finally, we report a brief conclusion in Section 4. 

2. Derivation of The Proposed Preconditioned N-P AOR Method 

Suppose equation (1.1) is discretised using some finite difference scheme, this will normally lead to a large, block 

and sparse system of equation (1.2).  

Equation (1.1) may be approximated at the point ( , )i jx y in many ways. Assume that a rectangular grid in the 

(x,y) plane with equal grid spacing h in  both directions with 0 1ix ih , y jh( i , j , ,....N )   are used, where 

, ( , )i j i ju u x y  and 1/h N . By neglecting terms of 2( )O h , we obtain the simplest approximation for (1.1) which 

is known as the standard five-point difference formula:  
2

, 1 , 1 1, 1, 4i j i j i j i j ij iju u u u u h f                                                               (2.1) 

According to Saeed [2], the explicit 9-point group iterative equations are given by: 

1 2 7 0 5 6

1
[67 22 7 14 6 3 ],

224
     iju t t t t t t               

1, 19 8 9 0 20 10

1
[37 11 7 14 5 3 ],

112
      i ju t t t t t t  

2, 3 13 18 0 14 4

1
[67 22 7 14 6 3 ],

224
      i ju t t t t t t         

, 1 21 15 16 0 22 17

1
[37 11 7 14 5 3 ],

112
      i ju t t t t t t  

1, 1 11 0 12

1
[2 6 ],

16
    i ju t t t ,                                       

2, 1 22 17 16 0 21 15

1
[37 11 7 14 5 3 ],

112
       i ju t t t t t t  

, 2 4 14 18 0 13 3

1
[67 22 7 14 6 3 ],

224
      i ju t t t t t t          

1, 2 20 10 9 0 19 8

1
[37 11 7 14 5 3 ],

112
       i ju t t t t t t  

2, 2 6 5 7 0 2 1

1
[67 22 7 14 6 3 ]

224
       i ju t t t t t t  

 (2.2) 

where: 
2

0 1, 1,  i jt h f                                         2

1 1, , 1 1, 1,     i j i j i jt u u h f                 2 2

2 1, 1 1, 1 1, , 1,        i j i j i j i jt u u h f h f  

2

3 2, 1 3, 2, ,     i j i j i jt u u h f                   2

4 1, 2 , 3 , 2 ,     i j i j i jt u u h f                2 2

5 3, 1 1, 3 2, 1 1, 2 ,          i j i j i j i jt u u h f h f  

2

6 3, 2 2, 3 2, 2 ,       i j i j i jt u u h f                   
7 3 4 , t t t   

8 1 3, t t t
                 

2 2

9 3, 1 1, 1 2, 1 , 1,         i j i j i j i jt u u h f h f  

10 4 6 , t t t
   11 2 5, t t t

                           12 8 10 , t t t
                                  

2 2

13 1, 1 3, 1 1, 2, 1,         i j i j i j i jt u u h f h f  

2 2

14 1, 1 1, 3 , 1 1, 2 ,         i j i j i j i jt u u h f h f       
15 1 4 , t t t                                   2 2

16 1, 1 1, 3 1, 1, 2 ,         i j i j i j i jt u u h f h f  

17 3 6 , t t t
  18 1 6 , t t t

                   
2

19 1, 1 1, ,   i j i jt u h f
                     

2

20 1, 3 1, 2 ,    i j i jt u h f
    

2

21 1, 1 , 1,   i j i jt u h f  

2

22 3, 1 2, 1    i j i jt u h f
.
 

and then the nine-point SOR iterative scheme can be written as:   

( 1) ( )

1 2 7 0 5 6

1
[ (67 22 7 14 6 3 )] (1 ) ,

224

k k

ij iju t t t t t t u           

( 1) ( )

1, 19 8 9 0 20 10 1,

1
[ (37 11 7 14 5 3 )] (1 ) ,

112

k k

i j i ju t t t t t t u

           

( 1) ( )

2, 3 13 18 0 14 4 2,

1
[ (67 22 7 14 6 3 )] (1 ) ,

224

k k

i j i ju t t t t t t u

           

( 1) ( )

, 1 21 15 16 0 22 17 , 1

1
[ (37 11 7 14 5 3 )] (1 ) ,

112

k k

i j i ju t t t t t t u

           

( 1) ( )

1, 1 11 0 12 1, 1

1
[ (2 6 )] (1 ) ,

16

k k

i j i ju t t t u

                                   

 ( 1) ( )

2, 1 22 17 16 0 21 15 2, 1

1
[ (37 11 7 14 5 3 )] (1 ) ,

112

k k

i j i ju t t t t t t u

             

( 1) ( )

, 2 4 14 18 0 13 3 , 2

1
[ (67 22 7 14 6 3 )] (1 ) ,

224

k k

i j i ju t t t t t t u

           

( 1) ( )

1, 2 20 10 9 0 19 8 1, 2

1
[ (37 11 7 14 5 3 )] (1 ) ,

112

k k

i j i ju t t t t t t u
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( 1) ( )

2, 2 6 5 7 0 2 1 2, 2

1
[ (67 22 7 14 6 3 )] (1 ) ,

224

k k

i j i ju t t t t t t u

             

  (2.3) 

where 

          
2

0 1, 1,i jt h f         ( 1) ( 1) 2

1 1, , 1 , ,k k

i j i j i jt u u h f 

                        ( 1) ( 1) 2 2

2 1, 1 1, 1 1, , 1,
k k

i j i j i j i jt u u h f h f 

          

( 1) ( ) 2 2

3 2, 1 3, 3, 2, ,k k

i j i j i j i jt u u h f h f

                                      ( 1) ( ) 2

4 1, 2 , 3 , 2 ,k k

i j i j i jt u u h f

       

( ) ( ) 2 2

5 3, 1 1, 3 2, 1 1, 2 ,k k

i j i j i j i jt u u h f h f                                   ( ) ( ) 2

6 2, 2 2, 3 2, 2 ,k k

i j i j i jt u u h f         

 

7 3 4 ,t t t               
8 1 3,t t t                                                 ( ) ( 1) 2 2

9 3, 1 1, 1 2, 1 , 1,
k k

i j i j i j i jt u u h f h f

           

10 4 6 ,t t t    
11 2 5,t t t     

12 8 10,t t t                                    ( 1) ( ) 2 2

13 1, 1 3, 1 1, 2, 1,
k k

i j i j i j i jt u u h f h f

           

( 1) ( ) 2 2

14 1, 1 1, 3 , 1 1, 2 ,k k

i j i j i j i jt u u h f h f

               
15 1 4 ,t t t 

          
( 1) ( ) 2 2

16 1, 1 1, 3 1, 1, 2,
k k

i j i j i j i jt u u h f h f

           

17 3 6 ,t t t                     
18 1 6 ,t t t 

                                        
( 1) 2

19 1, 1 1, ,k

i j i jt u h f

     

( ) 2

20 1, 3 1, 2 ,k

i j i jt u h f      ( 1) 2

21 1, 1 , 1,
k

i j i jt u h f

                           ( ) 2

22 3, 1 2, 1 .k

i j i jt u h f    
 

 

Matrix A of (1.2) is also written as 

,  A D L U                                                                       (2.4) 

where D is a diagonal matrix and L and U are strictly lower and upper triangular matrices,  respectively. The AOR 

iterative method can be written as: 

 
( 1) ( ) 1

, ( )k k

ru L u D rL f                                                                     (2.5) 

where    
1 1 1 1

, ( ) [(1 ) ( ) ].           rL I rD L I r D L D U  

Equation (2.5) can be rewritten as 

( 1) ( ) ( ) ( )( ) ( ) (1 )k k k kD rL u r Lu Uu f Du                           (2.6) 

We also can write equation (2.6) as 

( 1) ( 1) ( ) ( ) ( ) ( )( ) (1 ) ,k k k k k kDu rL u u Lu Uu f Du                               (2.7) 

We can observe that the coefficient for expressions  
( 1)

1, ,k

i ju 


 

( 1)

, 1 ,k

i ju 


 

( 1)

1, 1,
k

i ju 

 
 

( 1)

2, 1,
k

i ju 

 
 

( 1)

1, 2

k

i ju 

 
 and ( 1)

1, 1

k

i ju 

 
 contained 

in L.  

In order to construct AOR scheme, we have to change these expressions to 
( )

1, ,k

i ju   
( )

, 1,
k

i ju   
( )

1, 1,
k

i ju    
( )

2, 1,
k

i ju    

( )

1, 2

k

i ju  
 and 

( )

1, 1

k

i ju  
. After that, add expressions 

( 1) ( )

1, 1,( ),k k

i j i jr u u

   ( 1) ( )

, 1 , 1( ),k k

i j i jr u u

  
( 1) ( )

1, 1 1, 1( ),k k

i j i jr u u

      

( 1) ( )

2, 1 2, 1( ),k k

i j i jr u u

      
( 1) ( )

1, 2 1, 2( )k k

i j i jr u u

      and  
( 1) ( )

1, 1 1, 1( )k k

i j i jr u u

     to correspond SOR iterative scheme, 

where   is the coefficient for those expressions.  

Hence, nine-point group AOR iterative scheme can be written as:  

( 1) ( )

1 2 7 0 5 6 7 8 9

1
[ (67 22 7 14 6 3 ) (67 22 7 ] (1 ) ,

224

k k

ij iju t t t t t t r c c c u              

( 1) ( )

1, 19 8 9 0 20 10 3 10 4 6 1,

1
[ (37 11 7 14 5 3 ) (37 11 7 3 ] (1 ) ,

112

k k

i j i ju t t t t t t r c c c c u

             

( 1) ( )

2, 3 13 18 0 14 4 5 3 7 4 6 2,

1
[ (67 22 7 14 6 3 ) (67 22 7 6 3 ] (1 ) ,

224

k k

i j i ju t t t t t t r c c c c c u

              

( 1) ( )

, 1 21 15 16 0 22 17 4 12 3 5 , 1

1
[ (37 11 7 14 5 3 ) (37 11 7 3 ] (1 ) ,

112

k k

i j i ju t t t t t t r c c c c u

             

( 1) ( )

1, 1 11 0 12 8 11 1, 1

1
[ (2 6 ) (2 ] (1 ) ,

16

k k

i j i ju t t t r c c u
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( 1) ( )

2, 1 22 17 16 0 21 15 5 3 4 12 2, 1

1
[ (37 11 7 14 5 3 ) (11 7 5 3 ] (1 ) ,

112

k k

i j i ju t t t t t t r c c c c u

               

( 1) ( )

, 2 4 14 18 0 13 3 6 4 7 3 5 , 2

1
[ (67 22 7 14 6 3 ) (67 22 7 6 3 ] (1 ) ,

224

k k

i j i ju t t t t t t r c c c c c u

              

( 1) ( )

1, 2 20 10 9 0 19 8 6 4 3 10 1, 2

1
[ (37 11 7 14 5 3 ) (11 7 5 3 ] (1 ) ,

112

k k

i j i ju t t t t t t r c c c c u

               

( 1) ( )

2, 2 6 5 7 0 2 1 9 8 7 2, 2

1
[ (67 22 7 14 6 3 ) (7 6 3 ] (1 )

224

k k

i j i ju t t t t t t r c c c u

                

where 
2

0 1, 1,i jt h f      
( ) ( ) 2

1 1, , 1 , ,k k

i j i j i jt u u h f      
( ) ( ) 2 2

2 1, 1 1, 1 1, , 1,
k k

i j i j i j i jt u u h f h f          

( ) ( ) 2 2

3 2, 1 3, 3, 2, ,k k

i j i j i j i jt u u h f h f                      
( ) ( ) 2

4 1, 2 , 3 , 2,k k

i j i j i jt u u h f       

 
( ) ( ) 2 2

5 3, 1 1, 3 2, 1 1, 2 ,k k

i j i j i j i jt u u h f h f                 
( ) ( ) 2

6 2, 2 2, 3 2, 2,k k

i j i j i jt u u h f         

7 3 4 ,t t t               8 1 3,t t t          
( ) ( ) 2 2

9 3, 1 1, 1 2, 1 , 1,
k k

i j i j i j i jt u u h f h f           

10 4 6 ,t t t    11 2 5,t t t     12 8 10,t t t    
( ) ( ) 2 2

13 1, 1 3, 1 1, 2, 1,
k k

i j i j i j i jt u u h f h f           

( ) ( ) 2 2

14 1, 1 1, 3 , 1 1, 2 ,k k

i j i j i j i jt u u h f h f                  15 1 4 ,t t t   

( ) ( ) 2 2

16 1, 1 1, 3 1, 1, 2 ,k k

i j i j i j i jt u u h f h f                 17 3 6 ,t t t      18 1 6 ,t t t   

( ) 2

19 1, 1 1, ,k

i j i jt u h f      
( ) 2

20 1, 3 1, 2,k

i j i jt u h f      
( ) 2

21 1, 1 , 1,
k

i j i jt u h f       
( ) 2

22 3, 1 2, 1,
k

i j i jt u h f               

( 1) ( )

1 1, 1, ,k k

i j i jc u u

         
( 1) ( )

2 , 1 , 1,
k k

i j i jc u u

          
( 1) ( )

3 1, 1 1, 1,
k k

i j i jc u u

      

( 1) ( )

4 1, 1 1, 1,
k k

i j i jc u u

       
( 1) ( )

5 2, 1 2, 1,
k k

i j i jc u u

       
( 1) ( )

6 1, 2 1, 2,k k

i j i jc u u

      

7 1 2 ,c c c           8 3 4 ,c c c            9 5 6 ,c c c      10 5 7 ,c c c   

11 10 6 ,c c c      12 6 7.c c c   

 

The convergence rates of the system (1.2) depend on the spectral properties of the coefficient matrix A. A 

preconditioner is a matrix that transforms the linear system into one that is equivalent in the sense that it has the 

same solution, but that has more favorable spectral properties. 

For the nine-point group method, the matrix A, vectors u
 

and f  are as defined in (1.2)). Therefore the 

precondetioner ,P   is obtained in the form: ; 1 2P I k L k    and then, we can write the preconditioned system 

as the following: 

( ) ( )( ) ( )P A u P f I k L A u I k L f                                       (2.8) 

It can be seen that the proposed preconditioned system (2.8) have same solution of the original system but these 

proposed scheme has more favorable convergence properties.    

 

3. Numerical Results and Discussions  

For comparison purpose, we will use the model problem of Poisson equation in the form [2]:  

2 2
2 2 2

2 2
( ) ,xyu u

u x y e
x y

 
    

 
                                                                                 (3.1) 

with                       ( ,0) (0, ) 1,u x u y     ( ,1) ,xu x e    (1, ) ,yu y e                  0 , 1.x y   

The exact solution for this problem is ( , ) .xyu x y e  In this experimental work, we choose the value of tolerance; 
6

10


  . The computer processing unit is Intel(R) Core(TM) i5 with memory of 4Gb and the software used to 

implement and generate the results was Developer C++ Version 4.9.9.2. We have computed the average absolute 

errors and record the number of iterations for convergence for different size of grids 45, 85, 105, 145, 185 and 225.  

Table 1 shows the comparison of the results for nine-point group AOR and preconditioned nine-point group AOR 

iterative methods. The results show the corresponding values of r and optimum w, number of iterations (k), the CPU 



                                                              Journal of Progressive Research in Mathematics(JPRM)                                                                                                                                                                 

ISSN: 2395-0218     

 
Volume 10, Issue 1 available at www.scitecresearch.com/journals/index.php/jprm                                                                1452|               

 

time, and the maximum error (e). In addition, Fig.1 shows the comparison of the number of iterations between these 

two methods. The graph explained that the preconditioned nine-point group AOR method gives the minimum 

number of iterations and the difference became obvious when the value of N increased. 

Table 1.  Comparison of number of iterations, execution time N-P AOR and preconditioned N-P AOR 

iterative methods 

N 
r w N-P Group AOR Preconditioned N-P Group AOR 

k t e k t e 

45 

85 

105 

145 

185 

225 

 

1.678 

1.784 

1.871 

1.895 

1.931 

1.934 

1.673-1.681 

1.704-1.713 

1.744-1.761 

1.763-1.779 

1.855-1.892 

1.903-1.944 

30 

35 

64 

88 

102 

114 

0.003 

0.011 

0.029 

0.034 

0.057 

0.108 

2.85E-06 

2.87E-06 

2.89E-06 

2.37E-06 

1.99E-06 

2.36E-06 

28 

32 

46 

72 

80 

96 

0.000 

0.000 

0.012 

0.019 

0.038 

0.088 

2.74E-06 

2.76E-06 

2.83E-06 

2.41E-06 

2.36E-06 

2.07E-06 

 

Since the convergence of the iteration methods relies on the spectral radius, which is defined as the largest of the 

moduli of the eigenvalues of the iteration matrix. It is stated and proven that a linear system with smaller value of 

spectral radius will have better convergence rate [7]. Thus, the spectral radius of the coefficient matrix of the 

original system and the preconditioned system will be compared in order to justify the performance and suitability 

of the preconditioner. Since there are no special theoretical formulas that can be used to determine the spectral 

radiuses of the preconditioned matrices, therefore, we use Matlab software to estimate the values of the spectral 

radius by the same manner of the work by Saeed [2]. 

 

 

Fig. 1: Comparison of number of iterations (k) for N-P AOR and preconditioned N-P AOR iterative methods 

 

Table 2 and Fig.2 show the comparison of the spectral radius between the original N-P Group AOR and the 

preconditioned N-P Group AOR systems. Clearly it can be seen that the spectral radius of the preconditioned 

system is smaller compared to the original system, thus justifying our findings.  

 

Table 2:  Comparison of spectral radius between the original and the preconditioned linear systems 

 

N 
Original N-P Group 

AOR system 

Preconditioned N-P Group 

AOR system 

45 

85 

105 

145 

185 

225 

0.6851 

0.7944 

0.8252 

0.8804 

0.8957 

0.9342 

 

0.4037 

0.4225 

0.4654 

0.5006 

0.5691 

0.6153 
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Furthermore, we can observe that the results reveal the significant improvement in number of iterations and 

execution timings of the proposed preconditioned Group iterative method compared to the results obtained in [2]. 

 

 

 
 

Fig. 2: Comparison of spectral radius for N-P AOR and preconditioned N-P AOR iterative methods 

 

4. Conclusion 

In this paper, we proposed a new preconditioner in block formulation for the N-P Group AOR iterative method to 

accelerate the convergence rate of this group method. From observation of all experimental results by imposing the 

N-P AOR and Preconditioned N-P AOR iterative methods, the number of iterations and the execution time for 

Preconditioned N-P AOR iterative method have been declined tremendously as compared with the original N-P 

AOR iterative method. Furthermore, we can see that our proposed method showed improvements in the number of 

iterations and the execution time compared to the earlier Preconditioned N-P SOR introduced by Saeed [2]. For 

future work, it would be worthwhile effort to investigate the application of Preconditioned N-P AOR iterative 

method for solving other types of equations.  
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