# Journal of Progressive Research in Mathematics <br> www.scitecresearch.com/journals 

## Wa-module

Montaha Abdul-Razaq, Abeer Jabbar


#### Abstract

. M.A.Hassin and A.B.Hussien introduced thefollowing concept : $(\mathrm{a}, \mathrm{H})$ is called aringoverG if H is asubgroup of groupG and $a \in G$ and a has finite order or infinite order , we called the ring ( $\mathrm{w}_{\mathrm{a}},+$, .) ; $(\mathrm{a}, \mathrm{H})$ Ring over G where


$\mathrm{w}_{\mathrm{a}}=\left\{\mathrm{a}^{\mathrm{m}} \mathrm{Ha}^{\mathrm{n}}, \mathrm{m}, \mathrm{n} \in \mathrm{Z}, \mathrm{a} \in \mathrm{G} \backslash \mathrm{H}\right\}$
with two binary operation + and. Such that $\forall \mathrm{a}^{\mathrm{ml}} \mathrm{Ha}^{\mathrm{nl}}, \mathrm{a}^{\mathrm{m} 2} \mathrm{Ha}^{\mathrm{n} 2} \in$ wa, $\mathrm{m}_{1}, \mathrm{~m}_{2}, \mathrm{n}_{1}, \mathrm{n}_{2} \in \mathrm{Z}$
$1-\mathrm{a}^{\mathrm{m} 1} \mathrm{Ha}^{\mathrm{n} 1}+\mathrm{a}^{\mathrm{m} 2} \mathrm{Ha}^{\mathrm{n} 2}=\mathrm{a}^{\mathrm{m} 1+\mathrm{m} 2} \mathrm{Ha}^{\mathrm{n} 1+\mathrm{n} 2}$
2-a $\mathrm{a}^{\mathrm{m} 1} \mathrm{Ha}^{\mathrm{n} 1} \cdot \mathrm{a}^{\mathrm{m} 2} \mathrm{Ha}^{\mathrm{n} 2}=\mathrm{a}^{\mathrm{m} 1+\mathrm{m} 2} \mathrm{Ha}^{\mathrm{n} 1+\mathrm{n} 2}$.
In [4] , $\left(w_{a},+,.\right)$ is commutative ring with unity aHa these lead us to give the definition of $w_{a}$-module define on the ring $\mathbb{R}$ which is for any commutative ring with unity element.

The main purpose of this work is to give definition of wa-module and some properties of $\mathrm{W}_{\mathrm{a}}$ module many new and useful results are

Obtain about this concept, and we illustrate that by examples
Key words: injective module; Homomorphism; R-balanced.

## Introduction :

The concept of module is very important in algebra [2], [3] . We give a definition of wa-module, where R is a commutative ring with unity. In this work, we define a quotient module of this module, homomorphism and injective module of this module.

## 1- Wa-module

In this section we introduce the concept of $\mathrm{w}_{\mathrm{a}}$-module where R is an abelian group ring with identity, and G is an abelian group and H is a subgroupof G ,then we can give a new definition .

## Definition:(1-1)

Let $R$ be a commutativering with unity $1 R$. An abelian group ( $\mathrm{w}_{\mathrm{a},+}$ ) is called a left R -module of there exist a map $\varphi: \mathrm{R} \times \mathrm{w}_{\mathrm{a}} \rightarrow \mathrm{w}_{\mathrm{a}}$ with
$\varphi\left(\mathrm{r}, \mathrm{a}^{\mathrm{m}} \mathrm{H} \mathrm{a}^{\mathrm{n}}\right)=\mathrm{a}^{\mathrm{m}} \mathrm{r}$ Ha ${ }^{\mathrm{n}}$ satisfies the following:
1- $\left(r_{1}+r_{2}\right)\left(a^{m} \mathrm{Ha}^{\mathrm{n}}\right)=\mathrm{a}^{\mathrm{m}} \mathrm{r}_{1} \mathrm{Ha}^{\mathrm{n}}+\mathrm{a}^{\mathrm{m}} \mathrm{r}_{2} \mathrm{Ha}^{\mathrm{n}}$
2- $\mathrm{r}\left(\mathrm{a}^{\mathrm{m}}{ }_{1} \mathrm{Ha}^{\mathrm{n}}{ }_{1}+\mathrm{a}^{\mathrm{m}}{ }_{2} \mathrm{Ha}^{\mathrm{n}}{ }_{2}\right)=\mathrm{a}^{\mathrm{m}}{ }_{1} \mathrm{rHa}^{\mathrm{n}}{ }_{1}+\mathrm{a}^{\mathrm{m}}{ }_{2} \mathrm{rHa}^{\mathrm{n}}{ }_{2}$
3- $\left(\mathrm{r}_{1} \mathrm{r}_{2}\right) \mathrm{a}^{\mathrm{m}} \mathrm{Ha}^{\mathrm{n}}=\mathrm{r}_{1}\left(\mathrm{r}_{2} \mathrm{a}^{\mathrm{m}} \mathrm{Ha}^{\mathrm{n}}\right)$
4- $\quad 1_{\mathrm{R}} \cdot \mathrm{a}^{\mathrm{m}} \mathrm{Ha}^{\mathrm{n}}=\mathrm{a}^{\mathrm{m}} \mathrm{Ha}^{\mathrm{n}} \forall \mathrm{r}, \mathrm{r}_{1}, \mathrm{r}_{2} \in \mathrm{R}, \forall \mathrm{a}^{\mathrm{m}} \mathrm{Ha}^{\mathrm{n}}, \mathrm{a}^{\mathrm{m}}{ }_{1} \mathrm{Ha}^{\mathrm{n}}{ }_{1}, \mathrm{a}^{\mathrm{m}}{ }_{2} \mathrm{Ha}^{\mathrm{n}}{ }_{2} \in \mathrm{w}_{\mathrm{a}}$
To satisfy that.

$$
\begin{aligned}
& \text { 1-( } \left.\mathrm{r}_{1}+\mathrm{r}_{2}\right)\left(\mathrm{a}^{\mathrm{m}} \mathrm{Ha}^{\mathrm{n}}\right)=\mathrm{a}^{\mathrm{m}}\left(\mathrm{r}_{1}+\mathrm{r}_{2}\right) \mathrm{Ha}^{\mathrm{n}} \\
& =\mathrm{a}^{\mathrm{m}}\left(\mathrm{r}_{1} \mathrm{H}+\mathrm{r}_{2} \mathrm{H}\right) \mathrm{a}^{\mathrm{n}} \\
& =a^{m} r_{1} \mathrm{Ha}^{\mathrm{n}}+\mathrm{a}^{\mathrm{m}} \mathrm{r}_{2} \mathrm{Ha}^{\mathrm{n}} \\
& 2-\mathrm{r}\left(\mathrm{a}^{\mathrm{m}}{ }_{1} \mathrm{Ha}^{\mathrm{n}}{ }_{1}+\mathrm{a}^{\mathrm{m}}{ }_{2} \mathrm{Ha}^{\mathrm{n}}{ }_{2}\right)=\mathrm{r}\left(\mathrm{a}_{1}^{\mathrm{m}}+{ }_{1}{ }_{2} \mathrm{Ha}^{\mathrm{n}}{ }_{1}{ }^{\mathrm{n}}{ }_{2}\right) \\
& =\mathrm{a}_{1} \mathrm{~m}_{1}+{ }_{2} \mathrm{rHa}_{1}{ }_{1}{ }^{+\mathrm{n}}{ }_{2} \\
& =\mathrm{a}^{\mathrm{m}}{ }_{1} \mathrm{rHa}^{\mathrm{n}}{ }_{1}+\mathrm{a}^{\mathrm{m}}{ }_{2} \mathrm{rHa}^{\mathrm{n}}{ }_{2} \\
& \text { 3-( }\left(r_{1} r_{2}\right) a^{m} H a^{n}=a^{m}\left(r_{1} r_{2}\right) H a^{n} \\
& =\mathrm{r}_{1}\left(\mathrm{a}^{\mathrm{m}} \mathrm{r}_{2} \mathrm{Ha}^{\mathrm{n}}\right) \\
& =\mathrm{r}_{1}\left(\mathrm{r}_{2} \mathrm{a}^{\mathrm{m}} \mathrm{Ha}^{\mathrm{n}}\right)
\end{aligned}
$$

$4-1 . a^{m} \mathrm{Ha}^{\mathrm{n}}=\mathrm{a}^{\mathrm{m}} 1 \mathrm{Ha}^{\mathrm{n}}=\mathrm{a}^{\mathrm{m}} \mathrm{H} \mathrm{a}^{\mathrm{n}}$

## Note (1-2)

If R is a commutative ring then every left R -module can be considered as a right R -module

## Example (1-3) :

1 - Let $\mathrm{G}=\mathbb{R}, \mathrm{H}=2 \mathrm{Z} \& \mathbf{R}=\mathbb{R}$ then $\mathrm{w}_{\mathrm{a}}$-module is
$\left\{\mathrm{a}^{\mathrm{m}}(2 \mathrm{Z}) \mathrm{a}^{\mathrm{n}} ; \mathrm{m}, \mathrm{n} \in \mathrm{Z}, \mathrm{a} \in 2 \mathrm{z}\right\}$
identity element is (2) since $\forall x \in M$
$x=\mathrm{a}^{\mathrm{m}}(2 \mathrm{Z}) \mathrm{a}^{\mathrm{n}}$ such that $\mathrm{x}+\mathrm{I}=\mathrm{x}$ where $\mathrm{I}=\mathrm{a}^{0}(2 \mathrm{Z}) \mathrm{a}^{0}$
so $\mathbb{R}$ is $\mathrm{w}_{\mathrm{a}}-$ module
2- Z is not Wa - module since $\mathrm{a}^{\mathrm{m}} \notin \mathrm{Zif} \mathrm{m}=\mathrm{Z}^{-}$

## Theorem (1.4)

Let N be anon empty subset of $\mathrm{W}_{\mathrm{a}}$ such that $\mathrm{N}=\left\{\mathrm{a}^{\mathrm{m}} \mathrm{H} ; \mathrm{a} \notin \mathrm{H}, \mathrm{H}\right.$ subgroup of $\left.\mathrm{G}, \mathrm{a} \in \mathrm{G}\right\}$
Then ( $\mathrm{N},+$ ) sub-module of ( $\mathrm{W}_{\mathrm{a}},+$ )
Proof:

Let $x=\mathrm{a}^{\mathrm{m} 1} \mathrm{H} \in \mathrm{N}, \mathrm{y}=\mathrm{a}^{\mathrm{m} 2} \mathrm{H} \in \mathrm{N}$
$x+y=\mathrm{a}^{\mathrm{ml}} \mathrm{H}+\mathrm{a}^{\mathrm{m} 2} \mathrm{H}$
$x+\mathrm{y}=\mathrm{a}^{\mathrm{m} 1+\mathrm{m} 2} \mathrm{H} \epsilon \mathrm{N}$
So $\mathrm{x}+\mathrm{y} \in \mathrm{N}$
Let $\mathrm{r} \in \mathrm{R}, \forall x \in \mathrm{~N} ; x=\mathrm{a}^{\mathrm{m}} \mathrm{H}$
So $r x=r\left(\mathrm{a}^{\mathrm{m}} \mathrm{H}\right)=\mathrm{a}^{\mathrm{m}}(\mathrm{rH}) ; \mathrm{a}^{\mathrm{m}} \notin \mathrm{rH}$
$\therefore \mathrm{rx} \in$ NImplies that N is a sub-module of $\mathrm{W}_{\mathrm{a}}$

## Remark (1.5):

1- Every sub-module of wa-module is wa-module
2- Since ( $\mathrm{W}_{\mathrm{a}},+$ ) is abelian group in [4] , and we prove ( $\mathrm{N},+$ ) submodule of ( $\mathrm{M},+$ ) for each $\mathrm{N} \neq \boldsymbol{Q}$ so ( $\mathrm{N},+$ ) is normal submodule of (M,+) , by definition of normal submodule in [5]

We can give the definition

## Definition (1.6) : Quotient module

Let M be wa-module and N be normal submodule of M then
$\mathrm{M} / \mathrm{N}=\{\mathrm{x}+\mathrm{N} ; x \in \mathrm{M}\}=\left\{\mathrm{a}^{\mathrm{m}} \mathrm{Ha}^{\mathrm{n}}+\mathrm{N} ; \mathrm{m}, \mathrm{n} \in \mathrm{Z} ; \mathrm{a} \in \mathrm{G} / \mathrm{H}\right\}$
$=\left\{\mathrm{a}^{\mathrm{m}} \mathrm{Ha}^{\mathrm{n}}+\mathrm{a}^{\mathrm{k}} \mathrm{H} ; \mathrm{m}, \mathrm{n}, \mathrm{k} \in \mathrm{Z}, \mathrm{a} \in \mathrm{G} / \mathrm{H}\right.$
$=\left\{\mathrm{a}^{\mathrm{m}+\mathrm{k}} \mathrm{Ha} \mathrm{a}^{\mathrm{n}} ; \mathrm{m}, \mathrm{n}, \mathrm{k} \in \mathrm{Z}, \mathrm{a} \in \mathrm{G} / \mathrm{H}\right\}$
To prove $\mathrm{M} / \mathrm{N}$ is wa-module we give the theorem .

## Theorem (1.7) :

Let M be wa-module, N be normal submodule of then $\mathrm{M} / \mathrm{N}$ is $\mathrm{W}_{\mathrm{a}}$ - module .

## Proof:

We must prove $(\mathrm{M} / \mathrm{N}, \oplus)$ is abellian group
$1-\oplus$ closed
$\forall x_{1}, x_{2} \in \mathrm{M} / \mathrm{N}$ to prove $x_{1}+x_{2} \in \mathrm{M} / \mathrm{N}$
Let $x_{1}=\mathrm{a}^{\mathrm{ml}} \mathrm{Ha}^{\mathrm{n} 1}+\mathrm{N} ; \mathrm{m}, \mathrm{n}, \mathrm{k} \in \mathrm{Z}$

$$
=\mathrm{a}^{\mathrm{ml}+\mathrm{k}} \mathrm{Ha}^{\mathrm{nl}} \in \mathrm{M} / \mathrm{N}
$$

Let $x_{2}=\mathrm{a}^{\mathrm{m} 2} \mathrm{Ha}^{\mathrm{n} 2}+\mathrm{N}=\mathrm{a}^{\mathrm{m} 2} \mathrm{Ha}^{\mathrm{n} 2}+\mathrm{a}^{\mathrm{k}} \mathrm{H} ; \mathrm{m}_{2}, \mathrm{n}_{2}, \mathrm{k} \in \mathrm{Z}$

$$
=\mathrm{a}^{\mathrm{m} 2+\mathrm{k}} \mathrm{Ha} \mathrm{a}^{\mathrm{n} 2} \in \mathrm{M} / \mathrm{N}
$$

$x_{1}+x_{2}=\mathrm{a}^{\mathrm{m} 1+\mathrm{k}} \mathrm{Ha}^{\mathrm{n} 1}+\mathrm{a}^{\mathrm{m} 2+\mathrm{k}} \mathrm{Ha}^{\mathrm{n} 2}$

$$
=\mathrm{a}^{\mathrm{m} 1+\mathrm{k}+\mathrm{m} 2+\mathrm{k}} \mathrm{Ha}^{\mathrm{n} 1+\mathrm{n} 2}
$$

$$
=\mathrm{a}^{\mathrm{w}} \mathrm{Ha}^{\mathrm{n}} ; \mathrm{w}=\mathrm{m} 1+\mathrm{k}+\mathrm{m} 2+\mathrm{k} \in \mathrm{Z}, \mathrm{n}=\mathrm{n}_{1}+\mathrm{n}_{2} \in \mathrm{Z}
$$

$x_{1+} x_{2} \in \mathrm{M} / \mathrm{N}$
So $\bigoplus$ is closed

2- $\bigoplus$ is associative since + is associative on $Z$
3- identity of $\mathrm{M} / \mathrm{N}$ is $\mathrm{H}+\mathrm{N}=\mathrm{N}$ since
$H=\mathrm{a}^{0} \mathrm{Ha}^{0} \quad \& \quad \mathrm{~N}=\mathrm{a}^{\mathrm{n}} \mathrm{H}$ so $\mathrm{H}+\mathrm{N}=\left(\mathrm{a}^{0} \mathrm{Ha}^{0} \oplus \mathrm{a}^{\mathrm{n}} \mathrm{H}\right)$

$$
=\mathrm{a}^{\mathrm{n}} \mathrm{H}=\mathrm{N}
$$

So $\forall(x+\mathrm{N}) \in \mathrm{M} / \mathrm{N}$ where $x \in \mathrm{M}$ implies
That $(x+\mathrm{N}) \oplus \mathrm{N}=x+\mathrm{N} \quad \forall x \in \mathrm{M}$
4- inverse : $\forall x+\mathrm{N} \epsilon \mathrm{M} / \mathrm{N}$ implies
$-\mathrm{x}+\mathrm{N} \in \mathrm{M} / \mathrm{N} ; \quad-\mathrm{x}=\mathrm{a}^{-\mathrm{m}} \mathrm{Ha}^{-\mathrm{n}}$
$(x+\mathrm{N}) \oplus(-x+\mathrm{N})=(x+(-x))+\mathrm{N}$
$=\left(\mathrm{a}^{\mathrm{m}} \mathrm{Ha}^{\mathrm{n}}+\mathrm{a}^{-\mathrm{m}} \mathrm{Ha}^{-\mathrm{n}}\right)+\mathrm{N}$
$=\left(\mathrm{a}^{\mathrm{m}-\mathrm{m}} \mathrm{Ha}^{\mathrm{n}-\mathrm{n}}\right)+\mathrm{N}$
$=\mathrm{a}^{0} \mathrm{Ha}^{0}+\mathrm{N}$
$=\mathrm{H}+\mathrm{N}=\mathrm{N}$
5-abelian : $\forall x_{1}+\mathrm{N}, x_{2}+\mathrm{N} \epsilon \mathrm{M} / \mathrm{N} \forall x_{1}, x_{2} \in \mathrm{M}$
$\left(x_{1}+\mathrm{N}\right) \oplus\left(x_{2}+\mathrm{N}\right)=\left(x_{1}+x_{2}\right)+\mathrm{N}$
$=\left(x_{2}+x_{1}\right)+\mathrm{N}$
$=\left(x_{2}+\mathrm{N}\right) \oplus\left(x_{1}+\mathrm{N}\right) \quad \mid$
So $(\mathrm{M} / \mathrm{N}, \oplus)$ is abelian group
Let $R$ be any commutative ring with the unity $1_{R}$
Let $\emptyset: R \times M / N \rightarrow M / N$ S.t $\emptyset(r, x+N)=a^{m+k} r H a^{n}$
Similarly we can prove
6- $\mathrm{r}\left(x_{1}+x_{2}\right)+\mathrm{N}=\mathrm{r} x_{1}+\mathrm{r} x_{2}+\mathrm{N} \forall \mathrm{r} \in \boldsymbol{R}, \mathrm{x}_{1}, \mathrm{X}_{2} \in \mathrm{M}$
7- to prove $\left(\mathrm{r}_{1}+\mathrm{r}_{2}\right)(x+\mathrm{N})=\mathrm{r}_{1} x+\mathrm{N}+\mathrm{r}_{2} x+\mathrm{N}$
$\forall \mathrm{r}_{1}, \mathrm{r}_{2} \in \mathrm{R}, x \in \mathrm{M}$
8- $\mathrm{r}_{1} \mathrm{r}_{2}\left(x_{2}+\mathrm{N}\right)=\mathrm{r}_{1}\left(\mathrm{r}_{2}(\mathrm{X}+\mathrm{N})\right)$
So M\Nis wa-module

## 2- Homomorphism and injective module:

In this section we give the definition of homomorphism map on wa-module .in [4] we can see the definition of homomorphism module.

Definition 2.1 :
Let $\mathrm{N}, \mathrm{M}$ be two wa-modules then $Q: \mathrm{M} \rightarrow N$ can define by $Q\left(\mathrm{a}^{\mathrm{m}} \mathrm{Ha}^{\mathrm{n}}\right)=\mathrm{a}^{\Omega(\mathrm{m})} \mathrm{Ha}{ }^{\Omega(\mathrm{n})} ; \mathrm{m}, \mathrm{n} \in \mathrm{Z}$

## Definition(2.2): (Homomorphism on $\mathrm{W}_{\mathrm{a}}$-module)

Let $\mathrm{M}, \mathrm{N}$ be two $\mathrm{W}_{\mathrm{a}}$-modules, then mapping $\mathrm{Q}: \mathrm{M} \rightarrow \mathrm{N}$ is homomorphism if
$Q\left(\mathrm{a}^{\mathrm{m}} \mathrm{Ha}^{\mathrm{n}}+\mathrm{a}^{\mathrm{ml} 1} H \mathrm{a}^{\mathrm{nl}}\right)=Q\left(\mathrm{a}^{\mathrm{m}} \mathrm{Ha}^{\mathrm{n}}\right)+Q\left(\mathrm{a}^{\mathrm{ml}} \mathrm{Ha}^{\mathrm{nl}}\right) ; \mathrm{m}, \mathrm{n}, \mathrm{m}_{1}, \mathrm{n}_{1} \in \mathrm{Z}$
2- $Q\left(\mathrm{ra}^{\mathrm{m}} \mathrm{Ha}^{\mathrm{n}}\right)=\mathrm{r} Q\left(\mathrm{a}^{\mathrm{m}} \mathrm{Ha}^{\mathrm{n}}\right) ; \mathrm{m}, \mathrm{n} \in \mathrm{Z}, \mathrm{r} \in \mathrm{R}$
Thus we have the following theorem.
Theorem (2.3): Let $Q: M \rightarrow K$ be homomorphism such that $M, K$ be two $W_{a}$-module then if $N$ be $W_{a-}$ submodule of $M$ then $Q(N)$ is wa-submodule of $K$.

Proof:
Let , $\mathrm{y} \in Q(\mathrm{~N}), \mathrm{a}, \mathrm{b} \in \mathrm{N}, \mathrm{m}, \mathrm{n} \in \mathrm{Z}$
$x=Q(\mathrm{c}) ; \quad$ so $\mathrm{c}=\mathrm{a}^{\mathrm{m}} \mathrm{H}$
$y=a(b) ; b=a^{n} H$
$\mathrm{x}=\mathrm{Q}\left(\mathrm{a}^{\mathrm{m}} \mathrm{H}\right)$

$$
\mathrm{y}=\mathrm{Q}\left(\mathrm{a}^{\mathrm{n}} \mathrm{H}\right)
$$

$x+y=Q\left(a^{m} H\right)+Q\left(a^{n} H\right)=a^{a(m)} H+a^{\imath(n)} H$

$$
\begin{gathered}
=a^{a(m)+\theta(n)} \mathrm{H} \\
=\mathrm{a}^{\mathrm{a}(\mathrm{~m}+\mathrm{n})} \mathrm{H} \in Q(\mathrm{~N})
\end{gathered}
$$

2- let $\mathrm{r} \in \mathrm{R}, x \in Q(\mathrm{~N})$ to prove $\mathrm{r} x \in(\mathrm{~N}), x \in Q(\mathrm{~N})$ so
$x=Q(\mathrm{~b}) ; \mathrm{b} \in \mathrm{N}$
so $\mathrm{b}=\mathrm{a}^{\mathrm{m}} \mathrm{H} ; \mathrm{m} \in \mathrm{Z}$
so $x=Q\left(\mathrm{a}^{\mathrm{m}} \mathrm{H}\right)=\mathrm{a}$

$$
\begin{aligned}
\mathrm{rx} & =\mathrm{r} Q\left(\mathrm{a}^{\mathrm{m}} \mathrm{H}\right) \\
& =Q\left[\left(\mathrm{a}^{\mathrm{m}}(\mathrm{rH})\right]\right. \\
& =\mathrm{a}^{\otimes(\mathrm{m})}(\mathrm{rH}) \in Q(\mathrm{~N})
\end{aligned}
$$

$\therefore Q(\mathrm{~N})$ is submodule of K

## Definition (2-4):

Let $\mathrm{f}: \mathrm{M} \rightarrow \mathrm{M}$ be homomorphism where M be wa- module
Ker $\mathrm{f}=\left\{\mathrm{x} \in \mathrm{M} ; \varnothing\left(\mathrm{a}^{\mathrm{m}} \mathrm{Ha}^{\mathrm{n}}\right)=\mathrm{H}\right\}$
$=\left\{\mathrm{a} \in \mathrm{M} ;=\mathrm{a}^{\propto(\mathrm{m})} \mathrm{Ha}^{\propto(\mathrm{n})} ; \mathrm{m}, \mathrm{n} \in \mathrm{Z}\right\}$
$=\left\{\mathrm{a} \in \mathrm{m} ; \mathrm{a} \emptyset(m) \mathrm{H}=\mathrm{Ha} \emptyset^{-\mathrm{n}} ; \mathrm{m}, \mathrm{n} \in \mathrm{z}\right.$

We can find the relation between wa-module and injective module where a module is called injective if for each monomorphism $\mathrm{f}: \mathrm{A} \rightarrow \mathrm{B}$ where $\mathrm{A}, \mathrm{B}$ are two module and for each homomorphism $\mathrm{g}: \mathrm{A} \rightarrow \mathrm{M}$ there exist a homomorphism $\mathrm{h}: \mathrm{B} \quad \rightarrow \quad$ M s.t h of $=\mathrm{g}$ see [5]
f
A
B
${ }^{\mathrm{g}} \mathrm{\Xi} \mathrm{\exists コ}^{\mathrm{h}}$
M

hof $=\mathrm{g}$

## Theorem 2.5

If M is R - wa - module then M is injective module

## Proof

Let $\mathrm{f}: \mathrm{A} \rightarrow \mathrm{AXA} ; \mathrm{A}$ be any module such that $\mathrm{f}(\mathrm{a})=(\mathrm{a}, \mathrm{a})$
f is monomorphism since f is I-I
if $\mathrm{f}\left(\mathrm{a}_{1}\right)=\mathrm{f}\left(\mathrm{a}_{2}\right)$ for each $\mathrm{a}_{1, \mathrm{a}_{2} \in \mathrm{~A}}$
$\rightarrow \quad\left(a_{1}, a_{1}\right)=\left(a_{2}, a_{2}\right)$
$\rightarrow \mathrm{a}_{1}=\mathrm{a}_{2}$
so f is $\mathrm{I}-\mathrm{I}$

A f AX A
$\mathrm{g} \exists \mathrm{h}$

hof $=\mathrm{M} \quad \mathrm{M}$
$1-\mathrm{f}\left(\mathrm{a}_{1}+\mathrm{a}_{2}\right)=\left(\mathrm{a}_{1}+\mathrm{a}_{2}, \mathrm{a}_{1}+\mathrm{a}_{2}\right) \forall \mathrm{a}_{1}, \mathrm{a}_{2} \in \mathrm{~A}$
$=\left(\mathrm{a}_{1}, \mathrm{a}_{1}\right)+\left(\mathrm{a}_{2}, \mathrm{a}_{2}\right)$

$$
=\mathrm{f}\left(\mathrm{a}_{1}\right)+\mathrm{f}\left(\mathrm{a}_{2}\right)
$$

$2-\mathrm{f}(\mathrm{ra})=(\mathrm{ra}, \mathrm{ra})$

$$
=r(a, a)=\operatorname{rf}(a)
$$

Then f is homomorphism so f is monomorphism
Let there exist homomorphism function

```
\(\mathrm{g}: \mathrm{A} \rightarrow \mathrm{M} ; \mathrm{g}(\mathrm{a})=\mathrm{aHa}\)
    1- \(g\left(a_{1}+a_{2}\right)=\left(a_{1}+a_{2}\right) H\left(a_{1}+a_{2}\right) \forall a_{1}, a_{2} \in A\)
        \(=\mathrm{a}_{1} \mathrm{Ha}_{1}+\mathrm{a}_{2} \mathrm{Ha}_{2}\)
        \(=g\left(a_{1}\right)+g\left(a_{2}\right)\)
\(g(r a)=a(r H) a ; r \in R, a \in A\)
    \(=r(\mathrm{aHa})\)
    \(=r g(a)\)
```

So $g$ is homomorphism, there exit homomorphism $h: A x A \rightarrow M ; h((a, a))=a H a$
$1-h\left(a_{1}, a_{1}\right)+h\left(a_{2}, a_{2}\right)=h\left(\left(a_{1}+a_{2}, a_{1}+a_{2}\right)\right)$
$=\left(a_{1}+a_{2}\right) H\left(a_{1}+a_{2}\right)$

$$
\begin{aligned}
& =\mathrm{a}_{1} \mathrm{Ha}_{1}+\mathrm{a}_{2} \mathrm{Ha}_{2} \\
& =\mathrm{h}\left(\mathrm{a}_{1}\right)+\mathrm{h}\left(\mathrm{a}_{2}\right)
\end{aligned}
$$

$2-\mathrm{h}\left(\mathrm{r}\left(\mathrm{a}_{1}, \mathrm{a}_{1}\right)\right)=\mathrm{h}\left(\mathrm{ra}_{1}, \mathrm{ra}_{2}\right)$

$$
\begin{aligned}
& =a_{1}(r h) a_{2} \\
= & r\left(a_{1} H_{a 2}\right)=r h\left(a_{1}\right) \\
= & r h\left(a_{1}\right)
\end{aligned}
$$

$\therefore h$ is homomorphism to prove hof $(a)=g(a) h$ of
ho $f(a)=h(f(a))$

$$
=\mathrm{h}((\mathrm{a}, \mathrm{a}))=\mathrm{aHa}
$$

$h$ of $(a)=g(a)$
then M is injective
but the converse of theorem is not true for example :
Q as z -module is injective since by theorem an abelian group if Z is injective module [5] but Q is not Z - wamodule.

## 3- R-balanced and wa- module

In this section we study the relation between R - balanced and wa- module
Definition (3.1) $\mathbf{R}$ - balanced [1]Let $\mathrm{M}, \mathrm{N}$ be two module over ring R and let $G$ be abelian group , a function $\mathrm{f}: \mathrm{MXN} \longrightarrow G$ is said to be R-balanced in case for all $\mathrm{m}_{1}, \mathrm{~m}_{2} \in \mathrm{M}, \mathrm{n}_{1}, \mathrm{n}_{2} \in \mathrm{~N}$ and $\mathrm{r} \in \mathrm{R}$
$1-f\left(m_{1}+m_{2}, n\right)=f\left(m_{1}, n\right)+f\left(m_{2}, n\right)$
$2-\mathrm{f}\left(\mathrm{m}, \mathrm{n}_{1}+\mathrm{n}_{2}\right)=\mathrm{f}\left(\mathrm{m}, \mathrm{n}_{1}\right)+\mathrm{f}\left(\mathrm{m}, \mathrm{n}_{2}\right)$
$3-\mathrm{f}(\mathrm{mr}, \mathrm{n})=\mathrm{f}\left(\mathrm{m}_{1} \mathrm{rn}\right)$

## Theorem 3.2

Every function from wa-module to an abelian group is R - balanced

## Proof:

Let M,N between wa-module and $G$ be abelian group
Let the function $\mathrm{f}: \mathrm{MXN} \rightarrow \mathrm{G} ; \mathrm{f}(\mathrm{a}, \mathrm{b})=\mathrm{ab}$
$1-\mathrm{f}\left(\mathrm{m}_{1}+\mathrm{m}_{2}, \mathrm{n}\right)=\left(\mathrm{m}_{1}+\mathrm{m}_{2}\right) \mathrm{n} ; \mathrm{m}_{1}, \mathrm{~m}_{2} \in \mathrm{M}, \mathrm{n} \in \mathrm{N}$ let
$\mathrm{m}_{1}=\mathrm{a}^{\mathrm{k}} \mathrm{Ha}^{\mathrm{w}}$
$\mathrm{m}_{2}=\mathrm{a}^{\mathrm{k} 1} \mathrm{Ha}^{\mathrm{w}}$
$\mathrm{n}=\mathrm{a}^{\mathrm{k} 2} \mathrm{Ha}^{\mathrm{w} 2} ; \mathrm{k}_{1}, \mathrm{k}_{2}, \mathrm{k}, \mathrm{w}, \mathrm{w}_{1}, \mathrm{w}_{2} \in \mathrm{Z}$
$=\left(\mathrm{a}^{\mathrm{k}} \mathrm{Ha}{ }^{\mathrm{w}}+\mathrm{a}^{\mathrm{k} 1} \mathrm{Ha}^{\mathrm{w} 1}\right)\left(\mathrm{a}^{\mathrm{k} 2} \mathrm{Ha}^{\mathrm{w} 2}\right)$
$=\left(\mathrm{a}^{\mathrm{k}+\mathrm{k} 1} \mathrm{Ha}^{\mathrm{w}+\mathrm{w} 1}\right)\left(\mathrm{a}^{\mathrm{k} 2} \mathrm{Ha}{ }^{\mathrm{w} 2}\right)$
$=\mathrm{a}^{(\mathrm{k}+\mathrm{k} 1) \mathrm{k} 2} \mathrm{Ha}^{(\mathrm{w}+\mathrm{w} 1) \mathrm{w} 2}$
$=\mathrm{a}^{\mathrm{kk} 2+\mathrm{k} 1 \mathrm{k} 2} \mathrm{Ha}^{\mathrm{ww} 2+\mathrm{w} 1 \mathrm{w} 2}$
$=\mathrm{a}^{\mathrm{kk} 2} \mathrm{Ha}^{\mathrm{ww} 2}+\mathrm{a}^{\mathrm{k} 1 \mathrm{k} 2} \mathrm{Ha}^{\mathrm{w} 1 \mathrm{w} 2}$
$=\left(\mathrm{a}^{\mathrm{k}} \mathrm{Ha}^{\mathrm{w}}\right)\left(\mathrm{a}^{\mathrm{k} 2} \mathrm{Ha}^{\mathrm{w} 2}\right)+\left(\mathrm{a}^{\mathrm{k} 1} \mathrm{Ha}^{\mathrm{w} 1}\right)\left(\mathrm{a}^{\mathrm{k} 2} \mathrm{Ha}^{\mathrm{w} 2}\right)$
$=\mathrm{m}_{1} \mathrm{n}+\mathrm{m}_{2} \mathrm{n}$
$=\mathrm{f}\left(\mathrm{m}_{1}, \mathrm{n}\right)+\mathrm{f}\left(\mathrm{m}_{2}, \mathrm{n}\right)$
2- to prove $\mathrm{f}\left(\mathrm{m}, \mathrm{n}_{1}+\mathrm{n}_{2}\right)=\mathrm{f}\left(\mathrm{m}, \mathrm{n}_{1}\right)+\mathrm{f}\left(\mathrm{m}, \mathrm{n}_{2}\right) \mathrm{f}\left(\mathrm{m}_{1,} \mathrm{n}_{1}+\mathrm{n}_{2}\right)=\mathrm{m}_{1}\left(\mathrm{n}_{1+} \mathrm{n}_{2}\right) ; \mathrm{m}_{1}=\mathrm{a}^{\mathrm{k}} \mathrm{Ha}^{\mathrm{w}}, \mathrm{n}_{1}=\mathrm{a}^{\mathrm{k} 1} H \mathrm{a}^{\mathrm{w} 1} \mathrm{n}_{2}=\mathrm{a}^{\mathrm{k} 2} H \mathrm{a}^{\mathrm{w} 2}$ $; \mathrm{k}, \mathrm{k}_{1}, \mathrm{k}_{2} ; \mathrm{w}, \mathrm{w}_{1} \mathrm{w}_{2} \in \mathrm{z}$

$$
\begin{aligned}
& =a^{k} H a^{w} \cdot\left(a^{k 1} H a^{w 1}+a^{k 2} H a^{w 2}\right) \\
& =a^{k} H a^{w}\left(a^{k 1+k 2} H a^{w 1+w 2}\right) \\
& =a^{k(k 1+k 2)} H a^{w(w 1+w 2)} \\
& =a^{k k 1+k k 2} H a^{w w 1+w w 2} \\
& =a^{k k 1} H a^{w w 1}+a^{k k 2} H a^{w w 2} \\
& =\left(a^{k} H a^{w}\right)\left(a^{k 1} H a^{w 1}\right)+\left(a^{k} H a^{w}\right)\left(a^{k 2} H a^{w 2}\right) \\
& =m n_{1}+m n_{2} \\
& =f\left(m_{1} n_{1}\right)+f\left(m_{1} n_{2}\right)
\end{aligned}
$$

3- to prove $f(\mathrm{mr}, \mathrm{n})=\mathrm{f}(\mathrm{m}, \mathrm{rn})$ let $\mathrm{m}=\mathrm{a}^{\mathrm{k}} \mathrm{Ha}^{\mathrm{w}}, \mathrm{n}=\mathrm{a}^{\mathrm{k} 1} \mathrm{Ha}^{\mathrm{w} 1}$

$$
\begin{aligned}
\mathrm{f}(\mathrm{mr}, \mathrm{n}) & =(\mathrm{mr}) \mathrm{n} \\
& =\left(\mathrm{a}^{\mathrm{k}} H \mathrm{a}^{\mathrm{w}}\right) \mathrm{r}\left(\mathrm{a}^{\mathrm{k} 1} \mathrm{H}^{\mathrm{aw} 1}\right) \\
& =\left(\mathrm{a}^{\mathrm{k}} H a^{\mathrm{w}}\right)\left(\mathrm{a}^{\mathrm{k} 1}(\mathrm{rH}) \mathrm{a}^{\mathrm{w} 1}\right. \\
& =\mathrm{m}(\mathrm{rn}) \\
& =\mathrm{f}(\mathrm{~m}, \mathrm{rn})
\end{aligned}
$$

So wa- module is R-balanced.

## References:

[1] Anderson, frank wand fuller R. kent,1973, Ring and categories of modules, department of ma the metics, Eugene, oreg on.
[2] Dwyer, w.g and Greeuless , j.p, zool ,complete and torsion Modules
[3] Kasck .f ,1979, modules and rings, academic press, London
[4] Razak, M.Hassin and A.B. Hussien, 2011,on (a,H). Ring over G, AL Mustanseria University, department of mathematics.
[5] Sharpe, D.w, 1972, injective module, Cambridge, university, press.

م . منتهى عبد الرزاق م.م عبير جبار
 و غير منتهية . حيث نسمي الحقة (., wa,+) بالحلقة (a,H) على الزمرة G G

$$
\begin{aligned}
& \mathrm{Wa}=\left\{\mathrm{a}^{\mathrm{m}} \mathrm{Ha}^{\mathrm{n}} ; \mathrm{m}, \mathrm{n} \in \mathrm{Z}, \mathrm{a} \in \mathrm{G} \backslash \mathrm{H}\right\} \\
& \text { مع عمليتين ثثائيتين + , . بحيث ان :- } \\
& \text { 1- } \mathrm{a}^{\mathrm{m} 1} \mathrm{Ha}^{\mathrm{n} 1}+\mathrm{a}^{\mathrm{m} 2} \mathrm{Ha}^{\mathrm{n} 2}=\mathrm{a}^{\mathrm{m} 1+\mathrm{m} 2} \mathrm{Ha}^{\mathrm{n} 1+\mathrm{n} 2} \\
& \text { 2- } \mathrm{a}^{\mathrm{m} 1} \mathrm{Ha}^{\mathrm{n} 1} \cdot \mathrm{a}^{\mathrm{m} 2} \mathrm{Ha}^{\mathrm{n} 2}=\mathrm{a}^{\mathrm{m} 1 \mathrm{~m} 2} \mathrm{Ha}^{\mathrm{n} 1 \mathrm{n} 2} \\
& \square \mathrm{~m} 1, \mathrm{~m} 2, \mathrm{n} 1, \mathrm{n} 2 \in \mathrm{Z}, \mathrm{a}^{\mathrm{ml}} \mathrm{Ha}^{\mathrm{n} 1}, \mathrm{a}^{\mathrm{n} 2} \mathrm{Ha}^{\mathrm{n} 2} \in \mathrm{wa}
\end{aligned}
$$

وفي المصدر[4] تم بر هان ان (., wa,+) زمرة ابدالبة مع عنصر محابد وهذه قادتتا الى تتريف wa-module على الحلقة R و وهي مجموعة من الاعداد الحقيقية .

الهـف الرئبسي من هذا العمل ان نجد تعريف (wa-module) وبعض خو اصـه ولقد وجدنا مجمو عة من النتائج المفبدة والجديدة حول هذا المفهوم واوضحنا المفاهيم بالامتلكه .

