Volume 11, Issue 3

Published online: March 24, 2017

Journal of Progressive Research in Mathematics www.scitecresearch.com/journals

Wa-module

Montaha Abdul-Razaq, Abeer Jabbar

Abstract.

M.A.Hassin and A.B.Hussien introduced the following concept :(a,H) is called aringover G if H is a subgroup of group G and a ϵ G and a has finite order or infinite order , we called the ring (w_a,+,.) ; (a,H) Ring over G where

$$w_a = \{a^m H a^n, m, n \in \mathbb{Z}, a \in \mathbb{G} \setminus H \}$$

with two binary operation + and. Such that $\forall \ a^{m1} \ Ha^{n1}$, $a^{m2} Ha^{n2} \epsilon \ wa$, $m_1, m_2, n_1, n_2 \epsilon Z$

$$1-a^{m1}Ha^{n1}+a^{m2}Ha^{n2}=a^{m1+m2}Ha^{n1+n2}$$
.

$$2-a^{m1}Ha^{n1} \cdot a^{m2}Ha^{n2} = a^{m1+m2}Ha^{n1+n2} \cdot a^{m1+n2}$$

In [4], $(w_a,+,.)$ is commutative ring with unity aHa these lead us to give the definition of w_a -module define on the ring $\mathbb R$ which is for any commutative ring with unity element.

Obtain about this concept, and we illustrate that by examples

Key words: injective module; Homomorphism; R-balanced.

Introduction:

The concept of module is very important in algebra [2],[3]. We give a definition of wa-module, where R is a commutative ring with unity. In this work, we define a quotient module of this module, homomorphism and injective module of this module.

1- Wa-module

In this section we introduce the concept of w_a -module where R is an abelian group ring with identity, and G is an abelian group and H is a subgroup of G, then we can give a new definition.

Definition:(1-1)

Let R be a commutative ring with unity 1R. An abelian group $(w_{a,+})$ is called a left R-module of there exist a map $\varphi \colon R \times w_a \longrightarrow w_a$ with

 φ (r,a^mH aⁿ)=a^mr Haⁿ satisfies the following:

1-
$$(r_1+r_2)(a^m Ha^n)=a^m r_1 Ha^n+a^m r_2 Ha^n$$

2-
$$r(a_1^m Ha_1^n + a_2^m Ha_2^n) = a_1^m r Ha_1^n + a_2^m r Ha_2^n$$

3-
$$(r_1 r_2)a^m Ha^n = r_1 (r_2 a^m Ha^n)$$

4-
$$1_R . a^m H a^n = a^m H a^n \forall r, r_1, r_2 \in R$$
, $\forall a^m H a^n, a^m_1 H a^n_1, a^m_2 H a^n_2 \in w_a$

To satisfy that.

$$\begin{split} 1\text{-}(r_1 + r_2)(a^m H a^n) &= a^m (r_1 + r_2) H a^n \\ &= a^m (r_1 H + r_2 H) a^n \\ &= a^m \, r_1 H a^n \, + a^m r_2 H a^n \\ 2\text{-}r(a^m_1 H a^n_1 + a^m_2 H a^n_2) &= r(a^m_1 + m_2 H a^n_1 + n_2) \\ &= a^m_1 + m_2 r H a^n_1 + n_2 \\ &= a^m_1 r H a^n_1 + a^m_2 r H a^n_2 \\ 3\text{-}(r_1 r_2) a^m H a^n &= a^m (r_1 r_2) H a^n \\ &= r_1 (a^m r_2 H a^n) \\ &= r_1 (r_2 a^m H a^n) \end{split}$$

Note (1-2)

If R is a commutative ring then every left R-module can be considered as a right R-module

Example (1-3):

1- Let
$$G=\mathbb{R}$$
, $H=2$ $\mathbb{Z} \& \mathbf{R} = \mathbb{R}$ then w_a -module is

$$\{a^{m}(2Z) a^{n}; m, n \in \mathbb{Z}, a \in 2\mathbb{Z}\}$$

 $4-1.a^{m}Ha^{n} = a^{m}1Ha^{n} = a^{m}Ha^{n}$

identity element is (2) since $\forall x \in M$

$$x = a^{m}(2 Z) a^{n}$$
 such that $x+I = x$ where $I = a^{0}(2Z)a^{0}$

soℝ is w_a- module

2- Z is not Wa – module since $a^m \notin Zif m = Z^{-1}$

Theorem (1.4)

Let N be anon empty subset of W_a such that $N=\{a^mH;a\notin H,H \text{ subgroup of }G, a\in G\}$

Then (N,+) sub-module of $(W_a,+)$

Proof:

Let
$$x = a^{m1}H \in N$$
, $y=a^{m2}H \in N$

$$x+y = a^{m1}H + a^{m2}H$$

$$x+y=a^{m1+m2}H \in N$$

So
$$x+y \in N$$

Let
$$r \in R$$
, $\forall x \in N$; $x = a^m H$

So
$$rx = r(a^mH) = a^m(rH)$$
; $a^m \notin rH$

 \therefore rx \in NImplies that N is a sub-module of W_a

Remark (1.5):

- 1- Every sub-module of wa-module is wa-module
- 2- Since (W_a ,+) is abelian group in [4] , and we prove (N,+) submodule of (M,+) for each $N \neq \infty$ so (N,+) is normal submodule of (M,+) , by definition of normal submodule in [5]

We can give the definition

Definition (1.6): Quotient module

Let M be wa-module and N be normal submodule of M then

$$M/N = \{x+N; x \in M\} = \{a^m H a^n + N; m, n \in Z; a \in G/H\}$$

$$= \{a^m H a^n + a^k H; m, n, k \in \mathbb{Z}, a \in \mathbb{G} / \mathbb{H} \}$$

$$= \{a^{m+k}Ha^n; m, n, k \in \mathbb{Z}, a \in \mathbb{G}/H\}$$

To prove M/N is wa-module we give the theorem .

Theorem (1.7):

Let M be wa-module, N be normal submodule of then M/N is Wa - module .

Proof:

We must prove $(M/N, \bigoplus)$ is abelian group

1 -⊕closed

 $\forall x_1, x_2 \in M/N$ to prove $x_1 + x_2 \in M/N$

Let
$$x_1 = a^{m1}Ha^{n1} + N$$
; m,n,k $\in Z$

$$=a^{m1+k}Ha^{n1}\in M/N$$

Let
$$x_2=a^{m2}Ha^{n2}+N=a^{m2}Ha^{n2}+a^kH$$
; $m_2,n_2,k\in\mathbb{Z}$

$$=a^{m2+k}Ha^{n2}\in M/N$$

$$x_1+x_2=a^{m1+k}Ha^{n1}+a^{m2+k}Ha^{n2}$$

$$=a^{m1+k+m2+k}Ha^{n1+n2}$$

$$=a^wHa^n; w=m1+k+m2+k \in Z, n=n_1+n_2 \in Z$$

 $x_{1+}x_2 \in M/N$

So ⊕ is closed

- 2- \bigoplus is associative since + is associative on Z
- 3- identity of M/N is H+N=N since

$$H = a^{0}Ha^{0} \& N = a^{n}H \text{ so } H + N = (a^{0}Ha^{0} \oplus a^{n}H)$$

$$= a^n H = N$$

So \forall $(x+N)\in M/N$ where $x\in M$ implies

That
$$(x+N) \oplus N = x+N$$
 $\forall x \in M$

4- inverse : $\forall x + N \in M/N$ implies

$$-x+N \in M/N$$
; $-x=a^{-m}Ha^{-n}$

$$(x+N)\bigoplus (-x+N) = (x+(-x))+N$$

$$= (a^{m}Ha^{n}+a^{-m}Ha^{-n})+N$$

$$= (a^{m-m}Ha^{n-n})+N$$

$$= a^0 H a^0 + N$$

$$= H+N=N$$

5-abelian : $\forall x_1+N$, $x_2+N\in M/N \ \forall x_1,x_2\in M$

$$(x_1+N) \oplus (x_2+N) = (x_1+x_2) + N$$

$$=(x_2+x_1)+N$$

$$= (x_2+N) \oplus (x_1+N)$$

So $(M/N, \oplus)$ is abelian group

Let R be any commutative ring with the unity 1_R

Let
$$\emptyset: R \times M / N \rightarrow M/N$$
 S.t $\emptyset(r, x+N) = a^{m+k} rH a^n$

Similarly we can prove

6-
$$r(x_1+x_2)+N = rx_1 + rx_2 + N \ \forall \ r \in R, x_1, x_2 \in M$$

7- to prove
$$(r_1+r_2)(x+N) = r_1x + N + r_2x + N$$

$$\forall r_1, r_2 \in R, x \in M$$

8-
$$r_1r_2(x_2+N) = r_1 (r_2(X+N))$$

So M\Nis wa-module

2- Homomorphism and injective module:

In this section we give the definition of homomorphism map on wa-module .in [4] we can see the definition of homomorphism module.

Definition 2.1:

Let N, M be two wa-modules then $\infty: M \longrightarrow N$ can define by $\infty(a^m H a^n) = a^{\infty(m)} H a^{\infty(n)}$; m,n $\in \mathbb{Z}$

Definition(2.2): (Homomorphism on Wa-module)

Let M,N be two W_a-modules, then mapping ${\tt a}:M\to\!\! N$ is homomorphism if

$$\text{$\Large \varpi(a^mHa^n+a^{m1}Ha^{n1})=\varpi(a^mHa^n)+\varpi(a^{m1}Ha^{n1})$; $m,n,m_1,n_1\in Z$}$$

2-
$$\otimes$$
 (ra^mHaⁿ) = r \otimes (a^mHaⁿ); m,n \in Z, r \in R

Thus we have the following theorem.

Theorem (2.3): Let $oldsymbol{o}: M \to K$ be homomorphism such that $oldsymbol{o}: M$, $oldsymbol{o}: M \to K$ be homomorphism such that $oldsymbol{o}: M$, $oldsymbol{o}: M \to K$ be homomorphism such that $oldsymbol{o}: M \to K$ be two $oldsymbol{o}: M \to K$ be homomorphism such that $oldsymbol{o}: M \to K$ be two $oldsymbol{o}: M \to K$ be

Proof:

Let , y
$$\in \infty$$
 (N) ,a,b \in N ,m,n \in Z

$$x = \infty(c)$$
; so $c = a^m H$

$$y= \infty(b)$$
; $b=a^n H$

$$x=\infty (a^m H)$$

$$v=\infty (a^n H)$$

$$x + y = \!\! \varpi \; (a^m \; H) + \varpi(a^n H) = a^{\varpi(m)} H + a^{\varpi(n)} \; H$$

$$=a^{\varpi(m)+\varpi(n)}H$$

$$=a^{\infty(m+n)}H \in \infty(N)$$

2- let
$$r \in \mathbb{R}$$
, $x \in \infty(N)$ to prove $rx \in \infty(N)$, $x \in \infty(N)$ so

$$x = \infty$$
 (b); b \in N

so
$$b=a^mH$$
; $m \in Z$

so
$$x = \infty$$
 (a^m H)=a

$$rx = r \otimes (a^m H)$$

= $\infty[(a^m (rH)]$

$$=a^{\infty(m)}(rH) \in \infty(N)$$

∴ (N) is submodule of K

Definition (2-4):

Let $f: M \to M$ be homomorphism where M be wa-module

Ker f = {
$$x \in M$$
 ; \emptyset ($a^m H a^n$) = H }
={ $a \in M$;= $a^{\circ (m)} H a^{\circ (n)}$; $m, n \in Z$ }
= { $a \in m$; $a \emptyset (m)$ H = $H a \emptyset^{-n}$; $m, n \in Z$

.

We can find the relation between wa-module and injective module where a module is called injective if for each monomorphism $f: A \rightarrow B$ where A, B are two module and for each homomorphism $g: A \rightarrow M$ there exist a homomorphism $h: B \rightarrow M$ s.t h of = g see [5]

f

A

В

g $\exists \exists$

hof = g

Theorem 2.5

If M is R – wa – module then M is injective module

M

Proof

Let $f: A \rightarrow AXA$; A be any module such that f(a) = (a,a)

f is monomorphism since f is I-I

if $f(a_1) = f(a_2)$ for each $a_1, a_2 \in A$

$$\rightarrow (a_1,a_1)=(a_2,a_2)$$

 $\rightarrow a_1 = a_2$

so f is I-I

A f AX A

g∃h

$$hof = M$$
 M

1-
$$f(a_1+a_2) = (a_1+a_2,a_1+a_2) \forall a_1, a_2 \in A$$

= $(a_1,a_1)+(a_2,a_2)$
= $f(a_1)+f(a_2)$
2- $f(ra) = (ra,ra)$
= $r(a,a) = rf(a)$

Then f is homomorphism so f is monomorphism

Let there exist homomorphism function

g:A
$$\rightarrow$$
M; g (a)=aHa
1- g(a₁+a₂) = (a₁+a₂)H(a₁+a₂) \forall a₁,a₂ \in A
=a₁Ha₁+a₂Ha₂
=g(a₁) + g(a₂)
g(ra) = a(rH) a ; r \in R, a \in A
=r(a H a)
=r g(a)

So g is homomorphism, there exit homomorphism $h : AxA \rightarrow M$; h((a,a)) = aHa

1-
$$h(a_1,a_1) + h(a_2,a_2) = h((a_1+a_2,a_1+a_2))$$

= $(a_1+a_2) H(a_1+a_2)$
= $a_1 H a_1+a_2Ha_2$
= $h(a_1) + h(a_2)$
2- $h(r(a_1,a_1)) = h(ra_1,ra_2)$
= $a_1(rh) a_2$
= $r(a_1H_{a2}) = rh(a_1)$

=rh (a_1)

 \therefore h is homomorphism to prove hof (a) =g(a) h of

ho
$$f(a) = h(f(a))$$

= $h((a,a)) = aHa$

$$h of (a) = g(a)$$

then M is injective

but the converse of theorem is not true for example:

Q as z-module is injective since by theorem an abelian group if Z is injective module [5] but Q is not Z – wa-module.

3- R-balanced and wa- module

In this section we study the relation between R – balanced and wa- module

<u>Definition (3.1) R – balanced [1]</u>Let M,N be two module over ring R and let G be abelian group ,a function f:MXN→ G is said to be R-balanced in case for all $m_1, m_2 \in M, n_1, n_2 \in N$ and $r \in R$

1-
$$f(m_1+m_2,n)=f(m_1,n)+f(m_2,n)$$

2-
$$f(m,n_1+n_2)=f(m,n_1)+f(m,n_2)$$

3-
$$f(mr,n) = f(m_1rn)$$

Theorem 3.2

Every function from wa-module to an abelian group is R - balanced

Proof:

Let M,N between wa-module and G be abelian group

Let the function f: MXN \rightarrow G; f(a,b)=ab

1-
$$f(m_1+m_2,n) = (m_1+m_2) n ; m_1,m_2 \in M , n \in N$$
let

$$m_1 = a^k H a^w$$

$$m_2 = a^{k1}Ha^w$$

$$n=a^{k2}Ha^{w2};k_1,k_2,k,w,w_1,w_2\in Z$$

$$= (a^k H a^w + a^{k1} H a^{w1})(a^{k2} H a^{w2})$$

$$= (a^{k+k1}Ha^{w+w1})(a^{k2}Ha^{w2})$$

$$= a^{(k+k1)k2} Ha^{(w+w1)w2}$$

$$= a^{kk2+k1k2} Ha^{ww2+w1w2}$$

$$= a^{kk2}Ha^{ww2} + a^{k1k2}Ha^{w1w2}$$

$$= (a^{k}Ha^{w})(a^{k2}Ha^{w2}) + (a^{k1}Ha^{w1})(a^{k2}Ha^{w2})$$
$$= m_{1}n + m_{2}n$$

 $= f(m_1,n)+f(m_2,n)$

 $\text{2- to prove } f(m, n_1 + n_2) = f(m, n_1) \, + \, f(m, n_2) \, f(m_1, n_1 + n_2) = m_1(n_1 + n_2) \; ; \; m_1 = a^k H a^w, n_1 = a^{k1} \; H \; a^{w1} n_2 = a^{k2} \; H \; a^{w2} ; k, k_1 \, , \; k_2 ; \; w, w_1 w_2 \in z$

$$= a^{k} H a^{w} . (a^{k1}Ha^{w1} + a^{k2}Ha^{w2})$$

$$= a^{k}Ha^{w} (a^{k1+k2} Ha^{w1+w2})$$

$$= a^{k(k1+k2)} H a^{w(w1+w2)}$$

$$= a^{kk1+kk2} Ha^{ww1+ww2}$$

$$= a^{kk1} Ha^{ww1} + a^{kk2} Ha^{ww2}$$

$$= (a^{k}Ha^{w})(a^{k1}Ha^{w1}) + (a^{k}Ha^{w}) (a^{k2} Ha^{w2})$$

$$= mn_{1}+mn_{2}$$

$$= f(m_{1}n_{1})+ f(m_{1}n_{2})$$

3- to prove f(mr,n) = f(m,rn) let $m = a^k H a^w$, $n = a^{k1} H a^{w1}$

$$f(mr,n) = (mr)n$$

$$= (a^kHa^w) r(a^{k1}H^{aw1})$$

$$= (a^kHa^w) (a^{k1}(rH)a^{w1})$$

$$= m (rn)$$

$$= f(m,rn)$$

So wa- module is R-balanced.

References:

- [1] Anderson, frank wand fuller R. kent,1973, Ring and categories of modules, department of ma the metics, Eugene, oreg on.
- [2] Dwyer, w.g and Greeuless, j.p, zool, complete and torsion Modules
- [3] Kasck .f ,1979, modules and rings, academic press, London
- [4] Razak, M.Hassin and A.B. Hussien, 2011, on (a,H). Ring over G, AL Mustanseria University, department of mathematics.
- [5] Sharpe, D.w, 1972, injective module, Cambridge, university, press.

المقاس من الخط wa

م. منتهى عبد الرزاق و م . أحمدباقر قدما المفهوم الأتي يقال (a,H) انه حلقة اذا كان H زمرة جزئية من الزمرة G و G و وغير منتهيه وغير منتهية . حيث نسمى الحلقة (x, +, +, +) بالحلقة (x, +, +, +) على الزمرة G

$$Wa = \{a^m Ha^n ; m, n \in \mathbb{Z}, a \in G \setminus H \}$$

مع عمليتين ثنائيتين + . . بحيث ان :-

1-
$$a^{m1}Ha^{n1}$$
+ $a^{m2}Ha^{n2}$ = $a^{m1+m2}Ha^{n1+n2}$

$$2 - a^{m1}Ha^{n1} \cdot a^{m2}Ha^{n2} = a^{m1m2}Ha^{n1n2}$$

 \square m1,m2, n1, n2 \in Z, $a^{m1}Ha^{n1}$, $a^{n2}Ha^{n2}$ \in wa

وفي المصدر[4] تم برهان ان (.,+,x) زمرة ابدالية مع عنصر محايد وهذه قادتنا الى تعريف wa-module على الحلقة R وهي مجموعة من الاعداد الحقيقية .

الهدف الرئيسي من هذا العمل ان نجد تعريف (wa-module) وبعض خواصه ولقد وجدنا مجموعة من النتائج المفيدة والجديدة حول هذا المفهوم واوضحنا المفاهيم بالامثله .