

RESEARCH ORGANISATION| Published online: June 30, 2016|

SCITECH Volume 8, Issue 1

Journal of Progressive Research in Mathematics www.scitecresearch.com/journals

On Invertible Weighted Composition Operator on Hardy Space ℍ .

Abood E. H. and Mohammed A. H.

Department of Mathematics, College of science, University of Baghdad, Jadirya, Baghdad, Iraq.

Abstract. In this paper we study the product of a weighted composition operator $W_{f,\varphi}$ with the adjoint of a weighted composition operator $\mathcal{W}^*_{f, \psi}$ on the Hardy space \mathbb{H}^2 . The order of the product give rise to different cases . We will try to completely describe when the operator $W_{f,\varphi}W_{f,\psi}^*$ is invertible, isometric and unitary and when the operator $\mathcal{W}_{f,\psi}^*\mathcal{W}_{f,\varphi}$ is isometric and unitary.

1. Introduction

 Let U denote the open unite disc in the complex plan, let ℍ*[∞]* denote the collection of all holomorphic function on U and let \mathbb{H}^2 is consisting of all holomorphic self-map on U such that $f(z) = \sum_{n=0}^{\infty} a_n z^n$ whose Maclaurin coefficients are square summable (i.e) $f(z) = \sum_{n=0}^{\infty} |a_n|^2 < \infty$. More precisely $f(z) = \sum_{n=0}^{\infty} a_n z^n$ if and only if $||f|| = \sum_{n=0}^{\infty} |a_n|^2 < \infty$. The inner product inducing the \mathbb{H}^2 norm is given by $\langle f,g \rangle = \sum_{n=0}^{\infty} a_n \overline{b_n}$.

Given any holomorphic self-map φ on U, recall that the composition operator

is called the composition operator with symbol φ , is necessarily bounded. Let $f \in \mathbb{H}^{\infty}$, the operator $T_f: \mathbb{H}^2 \to \mathbb{H}^2$ defined by

$$
T_f(h(z)) = f(z)h(z), \quad \text{for all } z \in U, h \in \mathbb{H}^2
$$

is called the Toeplitz operator with symbol f. Since $f \in \mathbb{H}^{\infty}$, then we call T_f a holomorphic Toeplitz operator. If T_f is a holomorphic Toeplitz operator, then the operator $T_f C_\varphi$ is bounded and has the form

$$
T_f C_\varphi g = f(g \circ \varphi) \qquad (g \in \mathbb{H}^2).
$$

We call it the weighted composition operator with symbols f and φ [1] and [3], the linear operator

$$
\mathcal{W}_{f,\varphi} g = f(g \circ \varphi) \qquad (g \in \mathbb{H}^2).
$$

We distinguish between the two symbols of weighted composition operator $W_{f,\omega}$, by calling f the multiplication symbol and φ composition symbol.

For given holomorphic self-maps f and φ of U, $W_{f,\varphi}$ is bounded operator even if $f \notin \mathbb{H}^{\infty}$. To see a trivial example, consider $\varphi(z) = p$ where $p \in U$ and $f \in \mathbb{H}^2$, then for all $g \in \mathbb{H}^2$, we have

$$
\left\| \mathcal{W}_{f,\varphi} g \right\|_2 = \|g(p)\| \|f\|_2 = \|f\|_2 |\langle g, K_p \rangle| \le \|f\|_2 \|g\|_2 \|K_p\|_2.
$$

In fact, if $f \in \mathbb{H}^{\infty}$, then $\mathcal{W}_{f,\omega}$ is bounded operator on \mathbb{H}^2 with norm

$$
\| \mathcal{W}_{f,\varphi} \| = \| T_f C_{\varphi} \| \le \| f \|_{\infty} \| C_{\varphi} \| = \| f \|_{\infty} \sqrt{\frac{1 + |\varphi(0)|}{1 - |\varphi(0)|}}.
$$

2. Basic Concepts

We start this section, by giving the following results which are collect some properties of Toeplitz and composition operators.

Lemma (2.1): [4, 6] Let φ be a holomorphic self-map of U, then

- (a) $C_{\varphi} T_f = T_{f \circ \varphi} C_{\varphi}$.
- (b) $T_g T_f = T_{gf}$.
- (c) $T_{f + \gamma q} = T_f + \gamma T_q$.

(d)
$$
T_f^* = T_{\bar{f}}
$$
.

Proposition (2.2): [1] Let φ and ψ be two holomorphic self-map of U, then

- **1.** $C_{\varphi}^n = C_{\varphi_n}$ for all positive integer n.
- **2.** C_{φ} is the identity operator if and only if φ is the identity map.
- **3.** $C_{\varphi} = C_{\psi}$ if and only if $\varphi = \psi$.
- **4.** The composition operator cannot be zero operator.

For each $\alpha \in U$, the reproducing kernel at α , defined by $K_{\alpha}(z) = \frac{1}{1-z}$ $1-\overline{\alpha}z$

It is easily seen for each $\alpha \in U$ and $f \in H^2$, $f(z) = \sum_{n=0}^{\infty} a_n z^n$ that

$$
\langle f, K_{\alpha} \rangle = \sum_{n=0}^{\infty} a_n \alpha^n = f(\alpha).
$$

When $\varphi(z) = (az + b)/cz + d$) is linear-fractional self-map of U,Cowen in [2] establishes $C^*_{\varphi} =$ $T_g C_\sigma T_h^*$, where the Cowen auxiliary functions *g*, σ and *h* are defined as follows:

 $g(z) = \frac{1}{-\overline{b}z + \overline{d}}$, $\sigma(z) = \frac{\overline{a}z - \overline{c}}{-\overline{b}z + \overline{d}}$ and $h(z) = cz + d$.

If φ is linear fractional self-map U, then $W_{f,\varphi}^* = (T_f C_{\varphi})^* = C_{\varphi}^* T_f^* = T_g C_{\sigma} T_h^*$.

Proposition (2.4):[5] Let each of $\varphi_1, \varphi_2, ..., \varphi_n$ be holomorphic self-mapsof Uand $f_1, f_2, ..., f_n \in \mathbb{H}^{\infty}$, then

$$
\mathcal{W}_{f_1,\varphi_1}.\mathcal{W}_{f_2,\varphi_2}...\mathcal{W}_{f_n,\varphi_n} = T_h \mathcal{C}_{\phi}
$$

Where $T_h = f_1 \cdot (f_2 o \varphi_1) \cdot (f_3 o \varphi_2 o \varphi_1) \cdot ... \cdot (f_2 o \varphi_{n-1} o \varphi_{n-2} o \cdot ... \cdot o \varphi_1)$ and

 $C_{\phi} = \varphi_n o \varphi_{n-1} o \dots o \varphi_1.$

Corollary (2.5): Let φ be a holomorphic self-map of U and $f \in \mathbb{H}^{\infty}$ then

$$
\mathcal{W}_{f,\varphi}^n = T_{f \left(f \circ \varphi \right)}(f \circ \varphi_2) \dots (f \circ \varphi_{n-1}) C_{\varphi_n}
$$

The following lemma discuss the adjoint of weighted composition operator .

Lemma (2.6):[3] If the operator $\mathcal{W}_{f,\varphi}$: $\mathbb{H}^2 \to \mathbb{H}^2$ is bounded, then for each $\alpha \in U$

$$
\mathcal{W}_{f,\varphi}^* K_{\alpha} = \overline{f(\alpha)} K_{\varphi(\alpha)}.
$$

3- Invertible Weighted Composition Operator

In this section, we study the product of a weighted composition operator $W_{f,\varphi}$ with the adjoint of a weighted composition operator $W_{f,\psi}^*$ on the Hardy space \mathbb{H}^2 . The order of the product give rise to different cases. We will try to completely describe when the operator $W_{f,\varphi}W_{f,\psi}^*$ is invertible, isometric and unitary and when the operator $W_{f,\psi}^* W_{f,\varphi}$ is isometric and unitary. First we try to obtain some properties of the operator $\mathcal{W}_{f,\varphi} \mathcal{W}_{f,\psi}^*$.

Proposition (3.1): Suppose φ and ψ be two holomorphic self-map of U and $f \in \mathbb{H}^{\infty}$, such that 0 is not a fixed point of U then $W_{f,\varphi} W_{f,\psi}^*$ is self-adjoint if and only if

 $\psi(z) = \lambda \varphi(z)$, for all $z \in U$.

Proof : Let $\beta \in U$, then for each $z \in U$, we have

$$
(\mathcal{W}_{f,\varphi} \mathcal{W}_{f,\psi}^*)^* K_{\beta}(z) = \mathcal{W}_{f,\psi} \mathcal{W}_{f,\varphi}^* K_{\beta}(z)
$$

= $T_f C_{\psi} \left(\overline{f(\beta)} K_{\varphi(\beta)}(z) \right)$
= $\overline{f(\beta)} f(z) K_{\varphi(\beta)}(\psi(z))$.

On the other hand, for each $z \in U$, we have

$$
\mathcal{W}_{f,\varphi} \mathcal{W}_{f,\psi}^* K_{\beta}(z) = T_f C_{\varphi} \left(\overline{f(\beta)} K_{\psi(\beta)}(z) \right)
$$

=
$$
\overline{f(\beta)} f(z) K_{\psi(\beta)}(\varphi(z)) .
$$

Therefore, $W_{f,\varphi} W_{f,\psi}^*$ is self-adjoint if and only if for each $z \in U$

$$
K_{\varphi(\beta)}(\psi(z)) = K_{\psi(\beta)}(\varphi(z))
$$

Hence,

$$
\frac{1}{1 - \overline{\varphi(\beta)}\psi(z)} = \frac{1}{1 - \overline{\psi(\beta)}\varphi(z)}\tag{1}
$$

In particular letting $\beta = 0$ in equation (3.1), we get

 $\psi(z) = \lambda \varphi(z)$ where $\lambda = \frac{\psi(0)}{\varphi(0)}$ $\frac{\overline{\psi(0)}}{\overline{\psi(0)}}$ (note that $\varphi(0) \neq 0$).

Recall that [2] an operator T is an isometry if $||Tx|| = ||x||$ for all x or equivalently $T^*T = I$.

Nordgren E.M [7] characterized the isometry composition operator as follows.

Theorem (3.2): A composition operator C_{φ} is an isometry if and only if φ is an inner function and $\varphi(0) = 0$.

Now, to characterize the inevitability of $W_{f,\varphi} W_{f,\psi}^*$, we need the following results.

Lemma (3.3): Suppose that φ be a holomorphic self-map of U and $\in \mathbb{H}^{\infty}$. If $\mathcal{W}_{f,\varphi}$ is an isometry, then φ must be inner function and $||f|| = 1$.

Proof : Let the operator $W_{f,\varphi}$ is an isometry, then $W_{f,\varphi}^*$. $W_{f,\varphi} = I$. Thus for each $p \in U$, we have

 $\|\mathcal{W}_{f,g} K_n\| = \|K_n\|$, then $\|T_f C_{g} K_n\| = \|K_n\|$.

This implies that $|| f(K_p \circ \varphi) || = || K_p ||$. Hence, by taking $p = 0$, then $K_0 = 1$

and thus $|| f(1 \circ \varphi) || = ||1||$, then $||f|| = 1$

In addition that, if $g(z) = z$, then it is clear that $||g|| = 1$. Therefore

 $\|\mathcal{W}_{f,\varphi}g\| = \|g\|$, and then $\|T_f C_{\varphi} g\| = \|g\|$.

Thus, $|| f(g \circ \varphi) || = ||g||$, then $||f \circ \varphi|| = 1$.

Since $|\varphi(e^{it})| \leq 1$ a.e. $t \in [0, 2\pi)$

and both $||f||$ and $||f \phi||$ are 1. Then, by the integral representation of $||f||_{\mathbb{H}^2}$

$$
||f||_{\mathbb{H}^2}^2 = \frac{1}{2\pi} \int_{0}^{2\pi} |f(e^{it})|^2 dt
$$

So that $|\varphi(e^{it})| = 1$ a.e. on U, then φ is an inner function **.**

Gunatillake G. [5] studied the invertible weighted composition operator on Hardy space \mathbb{H}^2 . He give the following result .

Theorem (3.4):[5] The operator $W_{f,\varphi}$ on \mathbb{H}^2 is invertible if and only if f is both bounded and bounded away from zero on the unit disc and φ is an automorphism of the unit disc. The inverse operator is the weighted composition operator $\mathcal{W}_{f,\varphi}^{-1} = \mathcal{W}_{1}$ $\frac{1}{(f \circ \varphi^{-1})}$, φ^{-1} .

We are ready to discuss the inevitability of the operator of the operator $W_{f,\varphi}W_{f,\psi}^*$.

Theorem (3.5): Suppose that φ and ψ be two holomorphic self-map of U and $f \in \mathbb{H}^{\infty}$. Then $W_{f,\varphi}W_{f,\psi}^*$ is invertible if and only if each of $W_{f,\varphi}$ and $W_{f,\psi}$ is invertible operator.

Proof : Suppose that $W_{f,\varphi}W_{f,\psi}^*$ is invertible, then the operator $W_{f,\varphi}W_{f,\psi}^*$ is one-to-one and onto. Hence, $W_{f,\varphi}$ is onto. Therefore it is clear that, φ is non- constant map.

Thus, $W_{f,\varphi}$ is one-to-one. Hence $W_{f,\varphi}$ is invertible.

Now, since each of $W_{f,\varphi} W_{f,\psi}^*$ and $W_{f,\varphi}$ is invertible, then we have $W_{f,\psi}$ must be invertible operator.

The reverse induction follows immediately.

A straightforward consequence can obtained from theorem (3.4).

Corollary (3.6): Suppose that φ and ψ be two holomorphic self-map of U and $f \in \mathbb{H}^{\infty}$. Then $W_{f,\varphi}W_{f,\psi}^*$ is invertible if and only if f is bounded and bounded away from zero on U and each of φ and ψ is an automorphism of U.

Corollary (3.7): Let φ and ψ be two holomorphic self-map of U and $f \in \mathbb{H}^{\infty}$. If $\mathcal{W}_{f,\varphi} \mathcal{W}_{f,\psi}^{*}$ is invertible, then $(W_{f,\varphi}.W_{f,\psi}^*)^{-1} = C_{\psi}^* - 1. W_{[1/(f\circ\psi^{-1})(f\circ\varphi^{-1})],\varphi^{-1}}$.

Proof : Since by theorem (3.1.3) we have

$$
\mathcal{W}_{f,\varphi}^{-1} = \mathcal{W}_{\frac{1}{(f \circ \varphi^{-1})},\varphi^{-1}} \quad \text{and} \quad \mathcal{W}_{f,\psi}^{-1} = \mathcal{W}_{\frac{1}{(f \circ \psi^{-1})},\psi^{-1}} \text{ . Then,}
$$
\n
$$
(\mathcal{W}_{f,\psi}^{*})^{-1} = (\mathcal{W}_{f,\psi}^{-1})^{*} = (\mathcal{W}_{\frac{1}{(f \circ \psi^{-1})},\psi^{-1}})^{*} = (\mathcal{T}_{\frac{1}{(f \circ \psi^{-1})}} C_{\psi^{-1}})^{*}
$$
\n
$$
= C_{\psi^{-1}}^{*} \mathcal{T}_{\frac{1}{(f \circ \psi^{-1})}}.
$$

Hence, $(W_{f,\varphi}.W_{f,\psi}^*)^{-1} = (W_{f,\psi}^*)^{-1}(W_{f,\varphi})^{-1}$

$$
= (C_{\psi}^* - T_{\frac{1}{(f \circ \psi^{-1})}}) \cdot (T_{\frac{1}{(f \circ \psi^{-1})}} C_{\varphi^{-1}})
$$

$$
= C_{\psi}^* - T_{\frac{1}{(f \circ \psi^{-1})(f \circ \varphi^{-1})}} C_{\varphi^{-1}}
$$

$$
= C_{\psi}^* - T_{\frac{1}{(f \circ \psi^{-1})(f \circ \varphi^{-1})}} C_{\varphi^{-1}}
$$

In the following, we give the necessary and sufficient condition to the operator $W_{f,\varphi} W_{f,\psi}^*$ to be isometry first we need the next lemma .

Lemma (3.8)[9]: If T is isometry operator and S is unitary operator, then TS^* is an isometry.

Theorem (3.9): Suppose that φ and ψ be two holomorphic self-maps of U and $f \in \mathbb{H}^\infty$ such that $||f||_{\mathbb{H}^{\infty}} = 1$. Then $W_{f,\varphi} W_{f,\psi}^{*}$ is an isometry if and only if $W_{f,\varphi}$ is an isometry and $W_{f,\psi}$ is an unitary operator .

Proof : Suppose that $W_{f,\varphi}W_{f,\psi}^*$ is an isometry, therefore

 $(W_{f,\varphi} \mathcal{W}_{f,\psi}^*)^*$ $W_{f,\varphi} \mathcal{W}_{f,\psi}^* = I$. Thus

 $W_{f,\psi}W_{f,\varphi}^* W_{f,\varphi}W_{f,\psi}^* = I$. Hence one can easily see that $W_{f,\psi}$ is onto.

This it is clear that, ψ is non- constant map. Therefore by lemma (2.4.3) we have $W_{f,y}$ is one-toone.

Thus $W_{f,\psi}$ invertible. Therefore by theorem (3.1.5) and corollary (3.1.6) ψ must be an automorphismof U. So that there exists $n \in \partial U$ and $p \in U$, that for each $z \in U$

$$
\psi(z) = \eta\left(\frac{p-z}{1-\bar{p}z}\right), \text{ where } \psi(p) = 0.
$$

But $W_{f,\varphi} W_{f,\psi}^*$ is an isometry, then for every $p \in U$, we conclude that

$$
\|\mathcal{W}_{f,\varphi} \ \mathcal{W}_{f,\psi}^* K_p\| = \|K_p\|.
$$

Thus, $\|\mathcal{W}_{f,\varphi}(\overline{f(p)}K_{\psi(p)})\| = \|K_p\|$.

Hence, $||T_f C_{\varphi}(\overline{f(p)} K_0)|| = ||K_p||$.

Then, $\|\overline{f(p)}T_f C_{\varphi}(K_0)\| = \|K_p\|$.

Therefore , $\left\| \overline{f(p)} f(K_0 \circ \varphi) \right\| = \left\| K_n \right\|$.

But $(K_0 \circ \varphi = 1 \circ \varphi = 1)$, $\|\overline{f(p)} f\| = \|K_p\|$.

Hence, $|\overline{f(p)}| \| f \| = \|K_p \|$.

Then,
$$
|\langle f, K_p \rangle| = ||K_p|| = ||f|| ||K_p||
$$
.

Thus, by Cauchy –Schwartz inequality , we have

$$
f(z) = \alpha K_p(z) = \frac{\alpha}{1 - \bar{p}z} \qquad \text{for some } \alpha \in \mathbb{C}
$$

But $|| f || = 1$, then it easily see that $f(z) = r \frac{K_p}{||z||}$ $\frac{N_p}{\|K_p\|}$ where $|r| = 1$ and $\psi(p) = 0$

Hence by theorem (2.9) we have $\mathcal{W}_{f, \psi}$ is unitary operator.

Conversely, if $W_{f,\varphi}$ is an isometry and $W_{f,\psi}$ is unitary, then

$$
\mathcal{W}_{f,\varphi}^* \mathcal{W}_{f,\varphi} = \mathcal{W}_{f,\psi}^* \mathcal{W}_{f,\psi} = \mathcal{W}_{f,\psi} \mathcal{W}_{f,\psi}^* = I (2)
$$

Hence from (3.2) we have

 $(W_{f,\varphi} \mathcal{W}_{f,\psi}^*)^* \mathcal{W}_{f,\varphi} \mathcal{W}_{f,\psi}^* = \mathcal{W}_{f,\psi} \mathcal{W}_{f,\varphi}^* \mathcal{W}_{f,\varphi} \mathcal{W}_{f,\psi}^* = I$.

Therefore $W_{f,\varphi}W_{f,\psi}^*$ is an isometry ,as desired .

Corollary (3.10): Suppose φ and ψ be two holomorphic self-map of U and $f \in \mathbb{H}^\infty$ such that $||f||_{\mathbb{H}^{\infty}} = 1$. Then $W_{f,\varphi} W_{f,\psi}^*$ is unitary if and only if each of $W_{f,\varphi}$ and $W_{f,\psi}$ is an unitary operator .

Proof : Suppose that $W_{f,\varphi}W_{f,\psi}^*$ is an unitary operator, then it is isometry. Therefore by theorem (3.9) we have $W_{f,\psi}$ is unitary operator. But since $W_{f,\varphi} W_{f,\psi}^*$ is unitary, then $W_{f,\psi} W_{f,\varphi}^*$ is also unitary, thus by theorem (3.9) we have $\mathcal{W}_{f,\omega}$ is unitary operator.

The converse is clear .

Now , the corollary (3.9) and theorem (2.9) we get the following consequence .

Corollary (3.11): Suppose φ and ψ be two holomorphic self-map of U and $f \in \mathbb{H}^\infty$ such that $||f||_{\mathbb{H}^{\infty}} = 1$. Then $\mathcal{W}_{f,\varphi} \mathcal{W}_{f,\psi}^{*}$ is unitary if and only if each of φ and ψ is an automorphism of U and $f(z) = r \frac{K_p}{\ln z}$ $\frac{R_p}{\|K_p\|}$ such that $p \in U$ where $|r| = 1$ and

$$
\varphi (p) = \psi (p) = 0 .
$$

We are in a position to examine when $W_{f,\psi}^* W_{f,\varphi}$ dose admit characterization analogous to the operator $\mathcal{W}_{f,\varphi} \mathcal{W}_{f,\psi}^*$, we first record result regarding norm.

Theorem (3.12): Suppose φ and ψ be two holomorphic self-map of U and $f \in \mathbb{H}^{\infty}$ such that $||f||_{\mathbb{H}^{\infty}} = |f(0)|^2 = 1$. Then $||\mathcal{W}_{f,\psi}^* \mathcal{W}_{f,\varphi}|| = 1$ if and only if

$$
\psi(0)=\varphi(0)=0.
$$

Proof : If $\|\mathcal{W}_{f,\psi}^*\mathcal{W}_{f,\varphi}\| = 1$, then for each $\alpha, z \in U$ we get that

 $W_{f,\psi}^* W_{f,\varphi} K_{\alpha}(z) = W_{f,\psi}^* (f(z) K_{\alpha}(\varphi(z))$.

Thus by letting $\alpha = 0$ and $z = 0$, yields

$$
\mathcal{W}_{f,\psi}^* \mathcal{W}_{f,\varphi} \; K_{\alpha}(z) = \mathcal{W}_{f,\psi}^* \mathcal{W}_{f,\varphi} \; K_0(0)
$$

= $\mathcal{W}_{f,\psi}^* (f(0) \; K_0 \circ \varphi(0))$
= $f(0) \mathcal{W}_{f,\psi}^* \; (K_0)$

 $= f(0) \overline{f(0)} K_{\psi(0)}$ $= |f(0)|^2 K_{\psi(0)}$ $= K_{\psi(0)}$.

Hence , we have

$$
||K_{\psi(0)}|| \le ||\mathcal{W}_{f,\psi}^* \mathcal{W}_{f,\varphi}|| = 1
$$
\n(3.3)

Thus ,

$$
||K_{\psi(0)}||^2 = \frac{1}{1 - |\psi(0)|^2} \leq 1
$$

which implies that $\psi(0) = 0$. But we know that,

$$
\|\mathcal{W}_{f,\psi}^*\mathcal{W}_{f,\varphi}\|=\|\mathcal{W}_{f,\varphi}^*\mathcal{W}_{f,\psi}\|=1.
$$

Therefore, similarly we obtain that $\varphi(0) = 0$, as desired.

Conversely, assume that $\varphi(0) = \psi(0) = 0$. Thus,

$$
\|W_{f,\psi}^*W_{f,\varphi}\| \leq \|W_{f,\psi}\|\|W_{f,\varphi}\|
$$

$$
\leq \|f\|_{\mathbb{H}^\infty}^2 \|C_{\psi}\| \|C_{\varphi}\|
$$

$$
\leq \|f\|_{\mathbb{H}^\infty}^2 \sqrt{\frac{1+|\varphi(0)||1+\psi(0)|}{1-|\varphi(0)||1-\psi(0)|}}
$$

And the hypothesis $\varphi(0) = \psi(0) = 0$ and $||f|| = 1$ implies that

 $\|\mathcal{W}_{f,\psi}^*\mathcal{W}_{f,\varphi}\| \leq 1$. Moreover, from (3) we have

$$
\|\mathcal{W}_{f,\psi}^*\mathcal{W}_{f,\varphi}\| \ge \|K_{\psi(0)}\| = 1.
$$

Hence , $\|\mathcal{W}_{f,\psi}^*\mathcal{W}_{f,\varphi}\| = 1$.

Corollary (3.13): Suppose φ and ψ be two holomorphic self-map of U and $f \in \mathbb{H}^\infty$ such that $||f||_{\mathbb{H}^{\infty}} = |f(0)|^2 = 1$. If $\mathcal{W}_{f,\psi}^* \mathcal{W}_{f,\varphi}$ is an isometry, then $\psi(0) = \varphi(0) = 0$.

Proof : If $W_{f,\psi}^* W_{f,\varphi}$ is an isometry, then its norm is one .Thus by theorem(3.1.12) we conclude that $\psi(0) = \varphi(0) = 0$.

Now, consider the case $W_{f,\psi}^* W_{f,\varphi}$ is an isometry. We will require some preliminary results.

Proposition (3.14)[9]: Let S and T be contractive operators on a Hilbert space. If S^*T is an isometry, then T is an isometry and we have $T = SS^*T$.

Lemma (3.15)[9]: Suppose φ and ψ are holomorphic self-maps of U such that φ is non-constant and $C_{\varphi} = C_{\psi} T$ for some $T \in B(\mathbb{H}^2)$. Thus there is a holomorphic self-map α of U such that $T = C_{\alpha}$ and $\varphi = \alpha \circ \psi$.

Corollary (3.16):

Suppose φ and ψ are holomorphic self-maps of U such that $f \in \mathbb{H}^{\infty}/\{0\}$. If φ is nonconstant map and $W_{f,\varphi} = W_{f,\psi} S$ for some $S \in B(\mathbb{H}^2)$. Then there is a holomorphic self-map α of U such that $S = C_{\alpha}$ and $\varphi = \alpha \circ \psi$.

Proof : It follows from $W_{f,\omega} = W_{f,\omega} S$ that for each $z \in U$, $g \in \mathbb{H}^2$

 $f(z)C_{\varphi}g(z) = f(z)C_{\psi}S g(z)$. Hence, $C_{\varphi} = C_{\psi}S$. Hence the consequence follows immediately by $lemma(3.15)$.

We are now in a position to analyze $W_{f,\psi}^* W_{f,\varphi}$ in the case where the product is isometry.

Theorem (3.17): Suppose φ and ψ be two holomorphic self-map of U and $f \in \mathbb{H}^{\infty}$ such that $||f||_{\mathbb{H}^{\infty}} = |f(0)|^2 = 1$. If $\mathcal{W}_{f,\psi}^* \mathcal{W}_{f,\varphi}$ is an isometry, each of φ and ψ is an inner function with $\psi(0) = \varphi(0) = 0$ and $\varphi = \alpha \circ \psi$ where $\alpha: U \to U$ is inner with $\alpha(0) = 0$.

Proof : Suppose $W_{f,\psi}^* W_{f,\varphi}$ is an isometry. By corollary (3.1.13) we have $\psi(0) = \varphi(0) = 0$. This implies that ,

$$
\|\mathcal{W}_{f,\varphi}\| \le \|f\|_{\mathbb{H}^\infty} \|C_{\varphi}\| \le \|f\|_{\mathbb{H}^\infty} \sqrt{\frac{1+|\varphi(0)|}{1-|\varphi(0)|}} = 1.
$$

Similarly $\|\mathcal{W}_{f,\psi}\| \leq 1$, therefore each of $\mathcal{W}_{f,\psi}$ and $\mathcal{W}_{f,\varphi}$ is contractive on \mathbb{H}^2 . Now, applying corollary (3.1.16) with $S = W_{f,\psi}$ and $T = W_{f,\varphi}$, we get that $W_{f,\varphi}$ is isometry and $W_{f,\varphi}$ =

 $W_{f,\psi}W_{f,\psi}^*W_{f,\varphi}$. Therefore, by lemma (3.3) we get that φ is an inner function. Thus it is clear that φ is non-constant.

Now, by corollary (3.16) there exists a holomorphic self-map α of U such that

 $C_{\alpha} = \mathcal{W}_{f,\psi}^* \mathcal{W}_{f,\varphi}$ and $\varphi = \alpha \circ \psi$.

Now, C_{α} is an isometry, then by theorem (3.2) we have α is inner function such that $\alpha(0) = 0$. Since each of φ and α is inner function, then ψ is also.

Conversely, if each of φ and ψ is inner function such that $\varphi(0) = \psi(0) = 0$

 $\varphi = \alpha \circ \psi$ where $\alpha: U \to U$ is inner with $\alpha(0) = 0$. Using the identity $C_{\alpha} = \mathcal{W}_{f,\psi}^* \mathcal{W}_{f,\varphi}$, we obtain by theorem (3.2) that C_{α} is an isometry, as desired .■

Now, we are ready to use the isometric characterization to describe precisely when $W_{f,\psi}^* W_{f,\varphi}$ is a unitary operator*.*

Corollary (3.18): Suppose φ and ψ be two holomorphic self-map of U and $f \in \mathbb{H}^\infty$ such that $||f||_{\mathbb{H}^{\infty}} = |f(0)|^2 = 1$. Then $\mathcal{W}_{f,\psi}^* \mathcal{W}_{f,\varphi}$ is unitary if and only if each of φ and ψ is an inner function with $\psi(0) = \varphi(0) = 0$ and there exists inner function α with $\alpha(0) = 0$ such that $\varphi = \alpha \circ \psi$.

Proof : Suppose $W_{f,\psi}^* W_{f,\varphi}$ is unitary, then by theorem (3.17) both φ and ψ is an inner function with $\psi(0) = \varphi(0) = 0$ and there exists inner function α with $\alpha(0) = 0$ such that $\varphi = \alpha \circ \psi$.

As in theorem (3.17) we have $W_{f,\psi}^* W_{f,\varphi} = C_\alpha$, and so C_α is unitary. This implies $\alpha(z) = \lambda z$ for some λ with $|\lambda| = 1$. Therefore $\varphi(z) = \lambda \psi(z)$. The reverse induction is clear. ■

Now, we are ready to recover the inevitability of the operator $W_{f,\psi}^* W_{f,\varphi}$. We need the following lemma.

Lemma (3.19)[10]: Suppose φ be univalent, holomorphic self-map of U. Then C_{φ} has closed range on \mathbb{H}^2 if and only if φ is an automorphism of U.

Theorem (3.20): Suppose φ and ψ be two holomorphic self-map of U such that ψ is univalent and $f \in \mathbb{H}^2$ which is bounded and bounded away from zero. Then $\mathcal{W}_{f,\psi}^* \mathcal{W}_{f,\varphi}$ is invertible if and only if each of φ and ψ are automorphism of U.

Proof : Suppose that $W_{f,\psi}^* W_{f,\varphi}$ is invertible, then $W_{f,\psi}^* = C_{\psi}^* T_f^*$ is onto. Therefore, it is clear that C^*_{ψ} is onto. This implies that C_{ψ} is bounded from below and so the range of C_{ψ} is closed. Thus by lemma (3.19) we have ψ is an automorphism . Therefore by applying theorem (3.4) we have that $W_{f,\psi}$ is invertible operator. Hence $W_{f,\psi}^*$ is invertible and then $W_{f,\phi}$ is invertible.

Therefore again by theorem (3.4) that φ is an automorphism.

The converse is follows immediately by theorem (3.4) .

References

[1] Abood E.H., " The composition operator on Hardy space H^{2} ", Ph.D. Thesis, University of Baghdad, (2003).

- [2] Berberian, S.K., Introduction to Hilbert Space, Sec. Ed., Chelesa publishing Com., New York, N.Y., 1976.
- [3] CowenC. C. and Ko E., "Hermitian weighted composition operator on 2 "Trans.Amer. Math. Soc., 362(2010), 5771-5801.
- [4] Deddnes J. A., "Analytic Toeplitz and Composition Operators", Con. J. Math., vol(5), 859-865, (1972).
- [5] Gunatillake G.,"invertible weighted composition operator ",J. Funct. Anal., 261(2011), 831-860.
- [6] Halmos P. R.,"A Hilbert space problem book", Sprinrer- Verlag, NewYork,(1974).
- [7] Nordgren, E. A., Composition operator, Can. J. Math. 20(1968), 442-449.
- [8] Shapiro J.H., "Composition Operators and Classical Function Theory", Springer-Verlage, New York, (1993).
- [9] Clifford, J. H. , Le, T. and Wiggins, A. ,Invertible composition operators : The product of a composition operators with adjoint of a composition operators,
- [10] Akeroyd, J. R. and Ghatage, P. G., Closed range composition operators on A^2 , Illinois J. Math. 52 (2008), 533-549.