Journal of Progressive Research in Mathematics(JPRM) ISSN: 2395-0218

Volume 8, Issue 1

Published online: June 30, 2016

Journal of Progressive Research in Mathematics www.scitecresearch.com/journals

On Invertible Weighted Composition Operator on Hardy Space \mathbb{H}^2 .

Abood E. H. and Mohammed A. H.

Department of Mathematics, College of science, University of Baghdad, Jadirya, Baghdad, Iraq.

Abstract. In this paper we study the product of a weighted composition operator $\mathcal{W}_{f,\phi}$ with the adjoint of a weighted composition operator $\mathcal{W}_{f,\psi}^*$ on the Hardy space \mathbb{H}^2 . The order of the product give rise to different cases . We will try to completely describe when the operator $\mathcal{W}_{f,\phi}^*\mathcal{W}_{f,\psi}^*$ is invertible, isometric and unitary and when the operator $\mathcal{W}_{f,\psi}^*\mathcal{W}_{f,\phi}$ is isometric and unitary.

1. Introduction

Let U denote the open unite disc in the complex plan, let \mathbb{H}^{∞} denote the collection of all holomorphic function on U and let \mathbb{H}^2 is consisting of all holomorphic self-map on U such that $f(z) = \sum_{n=0}^{\infty} a_n z^n$ whose Maclaurin coefficients are square summable (i.e) $f(z) = \sum_{n=0}^{\infty} |a_n|^2 < \infty$. More precisely $f(z) = \sum_{n=0}^{\infty} a_n z^n$ if and only if $||f|| = \sum_{n=0}^{\infty} |a_n|^2 < \infty$. The inner product inducing the \mathbb{H}^2 norm is given by $\langle f, g \rangle = \sum_{n=0}^{\infty} a_n \overline{b_n}$.

Given any holomorphic self-map φ on U, recall that the composition operator

is called the composition operator with symbol φ , is necessarily bounded. Let $f \in \mathbb{H}^{\infty}$, the operator $T_f \colon \mathbb{H}^2 \to \mathbb{H}^2$ defined by

$$T_f(h(z)) = f(z)h(z), \quad for \ all \ z \in \mathbb{U}, h \in \mathbb{H}^2$$

is called the Toeplitz operator with symbol f. Since $f \in \mathbb{H}^{\infty}$, then we call T_f a holomorphic Toeplitz operator. If T_f is a holomorphic Toeplitz operator, then the operator $T_f C_{\varphi}$ is bounded and has the form

$$T_f C_{\varphi} g = f(go\varphi)$$
 $(g \in \mathbb{H}^2).$

We call it the weighted composition operator with symbols f and φ [1] and [3], the linear operator

$$\mathcal{W}_{f,\varphi}\,g=f(go\varphi)\qquad (g\in\mathbb{H}^2).$$

We distinguish between the two symbols of weighted composition operator $\mathcal{W}_{f,\varphi}$, by calling f the multiplication symbol and φ composition symbol.

For given holomorphic self-maps f and φ of U, $\mathcal{W}_{f,\varphi}$ is bounded operator even if $f \notin \mathbb{H}^{\infty}$. To see a trivial example, consider $\varphi(z) = p$ where $p \in U$ and $f \in \mathbb{H}^2$, then for all $g \in \mathbb{H}^2$, we have

$$\| \mathcal{W}_{f,\varphi} g \|_{2} = \| g(p) \| \| f \|_{2} = \| f \|_{2} |\langle g, K_{p} \rangle| \le \| f \|_{2} \| g \|_{2} \| K_{p} \|_{2}.$$

In fact, if $f \in \mathbb{H}^{\infty}$,then $\mathcal{W}_{f,\varphi}$ is bounded operator on $\mathbb{H}^{\mathbf{2}}$ with norm

$$\| \mathcal{W}_{f,\varphi} \| = \| T_f C_{\varphi} \| \le \| f \|_{\infty} \| C_{\varphi} \| = \| f \|_{\infty} \sqrt{\frac{1 + |\varphi(0)|}{1 - |\varphi(0)|}}.$$

2. Basic Concepts

We start this section, by giving the following results which are collect some properties of Toeplitz and composition operators.

Lemma (2.1): [4, 6] Let φ be a holomorphic self-map of U, then

- (a) $C_{\varphi}T_f = T_{fo\varphi}C_{\varphi}$.
- (b) $T_a T_f = T_{af}$.
- (c) $T_{f+\gamma g} = T_f + \gamma T_g$.
- (d) $T_f^* = T_{\bar{f}}$.

Proposition (2.2):[1] Let φ and ψ be two holomorphic self-map of U, then

- 1. $C_{\varphi}^{n} = C_{\varphi_{n}}$ for all positive integer n.
- **2.** C_{φ} is the identity operator if and only if φ is the identity map.
- 3. $C_{\varphi} = C_{\psi}$ if and only if $\varphi = \psi$.
- **4.** The composition operator cannot be zero operator.

For each $\alpha \in U$, the reproducing kernel at α , defined by $K_{\alpha}(z) = \frac{1}{1 - \overline{\alpha}z}$

It is easily seen for each $\alpha \in U$ and $f \in H^2$, $f(z) = \sum_{n=0}^{\infty} a_n z^n$ that

$$\langle f, K_{\alpha} \rangle = \sum_{n=0}^{\infty} a_n \, \alpha^n = f(\alpha).$$

When $\varphi(z) = (az + b)/cz + d$) is linear-fractional self-map of U,Cowen in [2] establishes $C_{\varphi}^* = T_g C_{\sigma} T_h^*$, where the Cowen auxiliary functions g, σ and h are defined as follows:

$$g(z) = \frac{1}{-\overline{b}z + \overline{d}}$$
 , $\sigma(z) = \frac{\overline{a}z - \overline{c}}{-\overline{b}z + \overline{d}}$ and $h(z) = cz + d$.

If φ is linear fractional self-map U, then $W_{f,\varphi}^* = (T_f C_{\varphi})^* = C_{\varphi}^* T_f^* = T_g C_{\sigma} T_h^*$.

Proposition (2.4):[5] Let each of $\varphi_1, \varphi_2, ..., \varphi_n$ be holomorphic self-maps of U and $f_1, f_2, ..., f_n \in \mathbb{H}^{\infty}$, then

$$\mathcal{W}_{f_1,\varphi_1}.\mathcal{W}_{f_2,\varphi_2}....\mathcal{W}_{f_n,\varphi_n}=T_hC_{\phi}$$

Where $T_h = f_1 \cdot (f_2 o \varphi_1) \cdot (f_3 o \varphi_2 o \varphi_1) \cdot ... \cdot (f_2 o \varphi_{n-1} o \varphi_{n-2} o \dots o \varphi_1)$ and

$$C_{\phi} = \varphi_n o \varphi_{n-1} o \dots o \varphi_1.$$

Corollary (2.5): Let φ be a holomorphic self-map of U and $f \in \mathbb{H}^{\infty}$ then

$$\mathcal{W}_{f,\varphi}^n = T_{f-(f-o\varphi)(f-o\varphi_2)\dots(f-o\varphi_{n-1})} C_{\varphi_n}$$

The following lemma discuss the adjoint of weighted composition operator .

Lemma (2.6):[3] If the operator $W_{f,\varphi} \colon \mathbb{H}^2 \to \mathbb{H}^2$ is bounded, then for each $\alpha \in U$

$$\mathcal{W}_{f,\varphi}^* K_{\alpha} = \overline{f(\alpha)} K_{\varphi(\alpha)}.$$

3- Invertible Weighted Composition Operator

In this section, we study the product of a weighted composition operator $\mathcal{W}_{f,\phi}$ with the adjoint of a weighted composition operator $\mathcal{W}_{f,\psi}^*$ on the Hardy space \mathbb{H}^2 . The order of the product give rise to different cases. We will try to completely describe when the operator $\mathcal{W}_{f,\phi} \mathcal{W}_{f,\psi}^*$ is invertible, isometric and unitary and when the operator $\mathcal{W}_{f,\psi}^* \mathcal{W}_{f,\phi}$ is isometric and unitary. First we try to obtain some properties of the operator $\mathcal{W}_{f,\phi} \mathcal{W}_{f,\psi}^*$.

Proposition (3.1): Suppose φ and ψ be two holomorphic self-map of U and $f \in \mathbb{H}^{\infty}$, such that 0 is not a fixed point of U then $\mathcal{W}_{f,\varphi}\mathcal{W}_{f,\psi}^*$ is self-adjoint if and only if

$$\psi(z) = \lambda \varphi(z)$$
 , for all $z \in U$.

Proof: Let $\beta \in U$, then for each $z \in U$, we have

$$(\mathcal{W}_{f,\varphi} \mathcal{W}_{f,\psi}^*)^* K_{\beta}(z) = \mathcal{W}_{f,\psi} \mathcal{W}_{f,\varphi}^* K_{\beta}(z)$$
$$= T_f C_{\psi} \left(\overline{f(\beta)} K_{\varphi(\beta)}(z) \right)$$
$$= \overline{f(\beta)} f(z) K_{\varphi(\beta)}(\psi(z)) .$$

On the other hand, for each $z \in U$, we have

$$\mathcal{W}_{f,\varphi} \mathcal{W}_{f,\psi}^* K_{\beta}(z) = T_f C_{\varphi} \left(\overline{f(\beta)} K_{\psi(\beta)}(z) \right)$$

$$= \overline{f(\beta)} f(z) K_{\psi(\beta)}(\varphi(z)) .$$

Therefore, $W_{f,\varphi}W_{f,\psi}^*$ is self-adjoint if and only if for each $z \in U$

$$K_{\varphi(\beta)}(\psi(z)) = K_{\psi(\beta)}(\varphi(z))$$

Hence,

$$\frac{1}{1 - \overline{\varphi(\beta)}\psi(z)} = \frac{1}{1 - \overline{\psi(\beta)}\varphi(z)} \tag{1}$$

In particular letting $\beta = 0$ in equation (3.1), we get

$$\psi(z) = \lambda \varphi(z)$$
 where $\lambda = (\frac{\overline{\psi(0)}}{\varphi(0)})$ (note that $\varphi(0) \neq 0$).

Recall that [2] an operator T is an isometry if ||Tx|| = ||x|| for all x or equivalently $T^*T = I$.

Nordgren E.M [7] characterized the isometry composition operator as follows.

Theorem (3.2): A composition operator C_{φ} is an isometry if and only if φ is an inner function and $\varphi(0) = 0$.

Now , to characterize the inevitability of $\mathcal{W}_{f, \varphi} \mathcal{W}_{f, \psi}^*$, we need the following results .

Lemma (3.3): Suppose that φ be a holomorphic self-map of U and $\in \mathbb{H}^{\infty}$. If $\mathcal{W}_{f,\varphi}$ is an isometry, then φ must be inner function and ||f|| = 1.

Proof: Let the operator $\mathcal{W}_{f,\varphi}$ is an isometry, then $\mathcal{W}_{f,\varphi}^*$. $\mathcal{W}_{f,\varphi}=I$. Thus for each $p\in U$, we have

$$\|\mathcal{W}_{f,\varphi}K_p\| = \|K_p\|$$
 , then $\|T_fC_{\varphi}K_p\| = \|K_p\|$.

This implies that $\|f(K_p \circ \varphi)\| = \|K_p\|$. Hence, by taking p = 0, then $K_0 = 1$

and thus
$$||f(1 \circ \varphi)|| = ||1||$$
, then $||f|| = 1$

In addition that, if g(z) = z, then it is clear that ||g|| = 1. Therefore

$$\left\| \mathcal{W}_{f,\varphi} g \right\| = \left\| g \right\|$$
 , and then $\left\| T_f C_{\varphi} g \right\| = \left\| g \right\|$.

Thus,
$$||f(go\varphi)|| = ||g||$$
, then $||f.\varphi|| = 1$.

Since
$$|\varphi(e^{it})| \le 1$$
 a.e. $t \in [0,2\pi)$

and both ||f|| and $||f| \cdot \varphi||$ are 1. Then, by the integral representation of $||f||_{\mathbb{H}^2}$

$$||f||_{\mathbb{H}^2}^2 = \frac{1}{2\pi} \int_{0}^{2\pi} |f(e^{it})|^2 dt$$
.

So that $|\varphi(e^{it})| = 1$ a.e. on U, then φ is an inner function.

Gunatillake G. [5] studied the invertible weighted composition operator on Hardy space \mathbb{H}^2 . He give the following result .

Theorem (3.4):[5] The operator $\mathcal{W}_{f,\varphi}$ on \mathbb{H}^2 is invertible if and only if f is both bounded and bounded away from zero on the unit disc and φ is an automorphism of the unit disc. The inverse operator is the weighted composition operator $\mathcal{W}_{f,\varphi}^{-1} = \mathcal{W}_{\frac{1}{(f \circ \varphi^{-1})^2} \varphi^{-1}}$.

We are ready to discuss the inevitability of the operator of the operator $\mathcal{W}_{f,\varphi} \mathcal{W}_{f,\psi}^*$.

Theorem (3.5): Suppose that φ and ψ be two holomorphic self-map of U and $f \in \mathbb{H}^{\infty}$. Then $\mathcal{W}_{f,\varphi} \mathcal{W}_{f,\psi}^*$ is invertible if and only if each of $\mathcal{W}_{f,\varphi}$ and $\mathcal{W}_{f,\psi}$ is invertible operator.

Proof: Suppose that $\mathcal{W}_{f,\varphi}\mathcal{W}_{f,\psi}^*$ is invertible, then the operator $\mathcal{W}_{f,\varphi}\mathcal{W}_{f,\psi}^*$ is one-to-one and onto. Hence, $\mathcal{W}_{f,\varphi}$ is onto. Therefore it is clear that, φ is non-constant map.

Thus, $\mathcal{W}_{f, \varphi}$ is one-to-one . Hence $\mathcal{W}_{f, \varphi}$ is invertible.

Now, since each of $\mathcal{W}_{f,\phi}\mathcal{W}_{f,\psi}^*$ and $\mathcal{W}_{f,\phi}$ is invertible, then we have $\mathcal{W}_{f,\psi}$ must be invertible operator.

The reverse induction follows immediately.

A straightforward consequence can obtained from theorem (3.4).

Corollary (3.6): Suppose that φ and ψ be two holomorphic self-map of U and $f \in \mathbb{H}^{\infty}$. Then $\mathcal{W}_{f,\varphi}\mathcal{W}_{f,\psi}^*$ is invertible if and only if f is bounded and bounded away from zero on U and each of φ and ψ is an automorphism of U.

Corollary (3.7): Let φ and ψ be two holomorphic self-map of U and $f \in \mathbb{H}^{\infty}$. If $\mathcal{W}_{f,\varphi}\mathcal{W}_{f,\psi}^*$ is invertible, then $(\mathcal{W}_{f,\varphi},\mathcal{W}_{f,\psi}^*)^{-1} = C_{\psi^{-1}}^* \cdot \mathcal{W}_{\lceil 1/(f \circ \psi^{-1})(f \circ \varphi^{-1})\rceil,\varphi^{-1}}$.

Proof: Since by theorem (3.1.3) we have

$$\mathcal{W}_{f, \varphi}^{-1} = \mathcal{W}_{\frac{1}{(f \circ \varphi^{-1})}, \varphi^{-1}} \quad \text{and} \quad \mathcal{W}_{f, \psi}^{-1} = \mathcal{W}_{\frac{1}{(f \circ \psi^{-1})}, \psi^{-1}} \cdot \text{Then} ,$$

$$(\mathcal{W}_{f, \psi}^*)^{-1} = (\mathcal{W}_{f, \psi}^{-1})^* = (\mathcal{W}_{\frac{1}{(f \circ \psi^{-1})}, \psi^{-1}})^* = (T_{\frac{1}{(f \circ \psi^{-1})}} C_{\psi^{-1}})^*$$

$$= C_{\psi^{-1}}^* T_{\frac{1}{(f \circ \psi^{-1})}} \cdot$$

Hence ,
$$(\mathcal{W}_{f,\varphi}.\mathcal{W}_{f,\psi}^*)^{-1} = (\mathcal{W}_{f,\psi}^*)^{-1}(\mathcal{W}_{f,\varphi})^{-1}$$

$$= (C_{\psi^{-1}}^* T_{\frac{1}{(f \circ \psi^{-1})}}) \cdot (T_{\frac{1}{(f \circ \varphi^{-1})}} C_{\varphi^{-1}})$$

$$= C_{\psi^{-1}}^* T_{\frac{1}{(f \circ \psi^{-1})(f \circ \varphi^{-1})}} C_{\varphi^{-1}}$$

$$= C_{\psi^{-1}}^* \cdot \mathcal{W}_{\frac{1}{(f \circ \psi^{-1})(f \circ \varphi^{-1})}, \varphi^{-1}} . \blacksquare$$

In the following, we give the necessary and sufficient condition to the operator $\mathcal{W}_{f,\phi}\mathcal{W}_{f,\psi}^*$ to be isometry first we need the next lemma.

Lemma (3.8)[9]: If T is isometry operator and S is unitary operator, then TS^* is an isometry.

Theorem (3.9): Suppose that φ and ψ be two holomorphic self-maps of U and $f \in \mathbb{H}^{\infty}$ such that $||f||_{\mathbb{H}^{\infty}} = 1$. Then $\mathcal{W}_{f,\varphi}\mathcal{W}_{f,\psi}^*$ is an isometry if and only if $\mathcal{W}_{f,\varphi}$ is an isometry and $\mathcal{W}_{f,\psi}$ is an unitary operator.

Proof: Suppose that $W_{f,\omega}W_{f,\psi}^*$ is an isometry, therefore

$$(\mathcal{W}_{f,\omega}\mathcal{W}_{f,\psi}^*)^* \mathcal{W}_{f,\omega}\mathcal{W}_{f,\psi}^* = I$$
. Thus

 $\mathcal{W}_{f,\psi}\mathcal{W}_{f,\varphi}^* \mathcal{W}_{f,\varphi}\mathcal{W}_{f,\psi}^* = I$. Hence one can easily see that $\mathcal{W}_{f,\psi}$ is onto .

This it is clear that, ψ is non- constant map. Therefore by lemma (2.4.3) we have $\mathcal{W}_{f,\psi}$ is one-to-one.

Thus $\mathcal{W}_{f,\psi}$ invertible. Therefore by theorem (3.1.5) and corollary (3.1.6) ψ must be an automorphism of U. So that there exists $\eta \in \partial U$ and $p \in U$, that for each $z \in U$

$$\psi(z) = \eta\left(\frac{p-z}{1-\bar{p}z}\right), where \psi(p) = 0$$
.

But $\mathcal{W}_{f,\varphi}\mathcal{W}_{f,\psi}^*$ is an isometry, then for every $p \in U$, we conclude that

$$\|\mathcal{W}_{f,\varphi} \mathcal{W}_{f,\psi}^* K_p\| = \|K_p\| .$$

Thus,
$$\|\mathcal{W}_{f,\omega}(\overline{f(p)}K_{\psi(p)})\| = \|K_p\|.$$

Hence,
$$||T_f C_{\varphi}(\overline{f(p)}K_0)|| = ||K_p||.$$

Then,
$$\|\overline{f(p)}T_fC_{\varphi}(K_0)\| = \|K_p\|$$
.

Therefore,
$$\|\overline{f(p)} f(K_0 \circ \varphi)\| = \|K_p\|$$
.

But
$$(K_0 \circ \varphi = 1 \circ \varphi = 1)$$
 , $\|\overline{f(p)} f\| = \|K_p\|$.

Hence,
$$|\overline{f(p)}| || f || = ||K_p||$$

Then,
$$|\langle f, K_p \rangle| = ||K_p|| = ||f|| ||K_p||$$
.

Thus, by Cauchy -Schwartz inequality, we have

$$f(z) = \alpha K_p(z) = \frac{\alpha}{1 - \bar{p}z}$$
 for some $\alpha \in \mathbb{C}$

But $\|f\|=1$, then it easily see that $f(z)=r\frac{K_p}{\|K_p\|}$ where |r|=1 and $\psi(p)=0$

Hence by theorem (2.9) we have $\mathcal{W}_{f,\psi}$ is unitary operator.

Conversely , if $\mathcal{W}_{f,\varphi}$ is an isometry and $\mathcal{W}_{f,\psi}$ is unitary , then

$$\mathcal{W}_{f,\varphi}^* \mathcal{W}_{f,\varphi} = \mathcal{W}_{f,\psi}^* \mathcal{W}_{f,\psi} = \mathcal{W}_{f,\psi} \mathcal{W}_{f,\psi}^* = I (2)$$

Hence from (3.2) we have

$$(\mathcal{W}_{f,\varphi}\mathcal{W}_{f,\psi}^*)^* \mathcal{W}_{f,\varphi}\mathcal{W}_{f,\psi}^* = \mathcal{W}_{f,\psi} \mathcal{W}_{f,\varphi}^* \mathcal{W}_{f,\varphi} \mathcal{W}_{f,\psi}^* = I.$$

Therefore $W_{f,\omega}W_{f,\psi}^*$ is an isometry ,as desired.

Corollary (3.10): Suppose φ and ψ be two holomorphic self-map of U and $f \in \mathbb{H}^{\infty}$ such that $\|f\|_{\mathbb{H}^{\infty}} = 1$. Then $\mathcal{W}_{f,\varphi}\mathcal{W}_{f,\psi}^*$ is unitary if and only if each of $\mathcal{W}_{f,\varphi}$ and $\mathcal{W}_{f,\psi}$ is an unitary operator.

Proof: Suppose that $\mathcal{W}_{f,\phi}\mathcal{W}_{f,\psi}^*$ is an unitary operator, then it is isometry. Therefore by theorem (3.9) we have $\mathcal{W}_{f,\psi}$ is unitary operator. But since $\mathcal{W}_{f,\phi}\mathcal{W}_{f,\psi}^*$ is unitary, then $\mathcal{W}_{f,\psi}\mathcal{W}_{f,\phi}^*$ is also unitary, thus by theorem (3.9) we have $\mathcal{W}_{f,\phi}$ is unitary operator.

The converse is clear.

Now, the corollary (3.9) and theorem (2.9) we get the following consequence.

Corollary (3.11): Suppose φ and ψ be two holomorphic self-map of U and $f \in \mathbb{H}^{\infty}$ such that $||f||_{\mathbb{H}^{\infty}} = 1$. Then $\mathcal{W}_{f,\varphi}\mathcal{W}_{f,\psi}^*$ is unitary if and only if each of φ and ψ is an automorphism of U and $f(z) = r \frac{K_p}{||K_p||}$ such that $p \in U$ where |r| = 1 and

$$\varphi(p) = \psi(p) = 0 .$$

We are in a position to examine when $\mathcal{W}_{f,\psi}^*\mathcal{W}_{f,\varphi}$ dose admit characterization analogous to the operator $\mathcal{W}_{f,\varphi}\mathcal{W}_{f,\psi}^*$, we first record result regarding norm.

Theorem (3.12): Suppose φ and ψ be two holomorphic self-map of U and $f \in \mathbb{H}^{\infty}$ such that $||f||_{\mathbb{H}^{\infty}} = |f(0)|^2 = 1$. Then $||\mathcal{W}_{f,\psi}^* \mathcal{W}_{f,\varphi}|| = 1$ if and only if

$$\psi(0) = \varphi(0) = 0.$$

Proof: If $\|\mathcal{W}_{f,\psi}^* \mathcal{W}_{f,\varphi}\| = 1$, then for each $\alpha, z \in U$ we get that

$$W_{f,\psi}^* W_{f,\varphi} K_{\alpha}(z) = W_{f,\psi}^* (f(z) K_{\alpha}(\varphi(z))$$
.

Thus by letting $\alpha = 0$ and z = 0, yields

$$\mathcal{W}_{f,\psi}^{*} \mathcal{W}_{f,\varphi} K_{\alpha}(z) = \mathcal{W}_{f,\psi}^{*} \mathcal{W}_{f,\varphi} K_{0}(0)$$

$$= \mathcal{W}_{f,\psi}^{*} (f(0) K_{0} \circ \varphi(0))$$

$$= f(0) \mathcal{W}_{f,\psi}^{*} (K_{0})$$

$$= f(0) \overline{f(0)} K_{\psi(0)}$$

$$= |f(0)|^{2} K_{\psi(0)}$$

$$= K_{\psi(0)}.$$

Hence, we have

$$||K_{\psi(0)}|| \le ||\mathcal{W}_{f,\psi}^* \mathcal{W}_{f,\varphi}|| = 1$$
 (3.3)

Thus,

$$||K_{\psi(0)}||^2 = \frac{1}{1 - |\psi(0)|^2} \le 1$$

which implies that $\psi(0) = 0$. But we know that,

$$\|\mathcal{W}_{f,\psi}^*\mathcal{W}_{f,\varphi}\| = \|\mathcal{W}_{f,\varphi}^*\mathcal{W}_{f,\psi}\| = 1$$
.

Therefore, similarly we obtain that $\varphi(0) = 0$, as desired.

Conversely , assume that $\varphi(0) = \psi(0) = 0$. Thus ,

$$\|\mathcal{W}_{f,\psi}^* \mathcal{W}_{f,\varphi}\| \le \|\mathcal{W}_{f,\psi}\| \|\mathcal{W}_{f,\varphi}\|$$
$$\le \|f\|_{\mathbb{H}^{\infty}}^2 \|C_{tb}\| \|C_{\varphi}\|$$

$$\leq \|f\|_{\mathbb{H}^{\infty}}^{2} \sqrt{\frac{1 + |\varphi(0)||1 + \psi(0)|}{1 - |\varphi(0)||1 - \psi(0)|}}$$

And the hypothesis $\varphi(0) = \psi(0) = 0$ and ||f|| = 1 implies that

 $\|\mathcal{W}_{f,\psi}^* \mathcal{W}_{f,\varphi}\| \leq 1$. Moreover, from (3) we have

$$\|\mathcal{W}_{f,\psi}^* \mathcal{W}_{f,\varphi}\| \ge \|K_{\psi(0)}\| = 1$$
.

Hence , $\|\mathcal{W}_{f,\psi}^*\mathcal{W}_{f,\varphi}\| = 1$.

Corollary (3.13): Suppose φ and ψ be two holomorphic self-map of U and $f \in \mathbb{H}^{\infty}$ such that $||f||_{\mathbb{H}^{\infty}} = |f(0)|^2 = 1$. If $\mathcal{W}_{f,\psi}^* \mathcal{W}_{f,\varphi}$ is an isometry, then $\psi(0) = \varphi(0) = 0$.

Proof: If $\mathcal{W}_{f,\psi}^* \mathcal{W}_{f,\varphi}$ is an isometry, then its norm is one .Thus by theorem(3.1.12) we conclude that $\psi(0) = \varphi(0) = 0$.

Now, consider the case $\mathcal{W}_{f,\psi}^* \mathcal{W}_{f,\varphi}$ is an isometry . We will require some preliminary results.

Proposition (3.14)[9]: Let S and T be contractive operators on a Hilbert space. If S^*T is an isometry, then T is an isometry and we have $T = SS^*T$.

Lemma (3.15)[9]: Suppose φ and ψ are holomorphic self-maps of U such that φ is non-constant and $C_{\varphi} = C_{\psi}T$ for some $T \in B(\mathbb{H}^2)$. Thus there is a holomorphic self-map α of U such that $T = C_{\alpha}$ and $\varphi = \alpha \circ \psi$.

Corollary (3.16):

Suppose φ and ψ are holomorphic self-maps of U such that $f \in \mathbb{H}^{\infty}/\{0\}$. If φ is non-constant map and $\mathcal{W}_{f,\varphi} = \mathcal{W}_{f,\psi}S$ for some $S \in B(\mathbb{H}^2)$. Then there is a holomorphic self-map α of U such that $S = C_{\alpha}$ and $\varphi = \alpha \circ \psi$.

Proof: It follows from $\mathcal{W}_{f,\varphi} = \mathcal{W}_{f,\psi}S$ that for each $z \in U$, $g \in \mathbb{H}^2$

 $f(z)C_{\varphi}g(z)=f(z)C_{\psi}S$ g(z). Hence, $C_{\varphi}=C_{\psi}S$. Hence the consequence follows immediately by lemma(3.15).

We are now in a position to analyze $\mathcal{W}_{f,\psi}^* \mathcal{W}_{f,\varphi}$ in the case where the product is isometry.

Theorem (3.17): Suppose φ and ψ be two holomorphic self-map of U and $f \in \mathbb{H}^{\infty}$ such that $||f||_{\mathbb{H}^{\infty}} = |f(0)|^2 = 1$. If $\mathcal{W}_{f,\psi}^* \mathcal{W}_{f,\varphi}$ is an isometry, each of φ and ψ is an inner function with $\psi(0) = \varphi(0) = 0$ and $\varphi = \alpha \circ \psi$ where $\alpha: U \to U$ is inner with $\alpha(0) = 0$.

<u>Proof</u>: Suppose $W_{f,\psi}^*W_{f,\varphi}$ is an isometry . By corollary (3.1.13) we have $\psi(0)=\varphi(0)=0$. This implies that ,

$$\left\|\mathcal{W}_{f,\varphi}\right\| \leq \|f\|_{\mathbb{H}^\infty} \left\|C_\varphi\right\| \leq \|f\|_{\mathbb{H}^\infty} \sqrt{\frac{1+|\varphi(0)|}{1-|\varphi(0)|}} \ = 1 \ .$$

Similarly $\|\mathcal{W}_{f,\psi}\| \leq 1$, therefore each of $\mathcal{W}_{f,\psi}$ and $\mathcal{W}_{f,\varphi}$ is contractive on \mathbb{H}^2 . Now, applying corollary (3.1.16) with $S = \mathcal{W}_{f,\psi}$ and $T = \mathcal{W}_{f,\varphi}$, we get that $\mathcal{W}_{f,\varphi}$ is isometry and $\mathcal{W}_{f,\varphi} = \mathcal{W}_{f,\varphi}$

 $W_{f,\psi}W_{f,\psi}^*W_{f,\varphi}$. Therefore, by lemma (3.3) we get that φ is an inner function. Thus it is clear that φ is non-constant.

Now, by corollary (3.16) there exists a holomorphic self-map α of U such that

$$C_{\alpha} = \mathcal{W}_{f,\psi}^* \mathcal{W}_{f,\varphi}$$
 and $\varphi = \alpha \circ \psi$.

Now, C_{α} is an isometry, then by theorem (3.2) we have α is inner function such that $\alpha(0) = 0$. Since each of φ and α is inner function, then ψ is also.

Conversely, if each of φ and ψ is inner function such that $\varphi(0) = \psi(0) = 0$

 $\varphi = \alpha \circ \psi$ where $\alpha: U \to U$ is inner with $\alpha(0) = 0$. Using the identity $C_{\alpha} = \mathcal{W}_{f,\psi}^* \mathcal{W}_{f,\varphi}$, we obtain by theorem (3.2) that C_{α} is an isometry, as desired.

Now, we are ready to use the isometric characterization to describe precisely when $\mathcal{W}_{f,\psi}^* \mathcal{W}_{f,\varphi}$ is a unitary operator.

Corollary (3.18): Suppose φ and ψ be two holomorphic self-map of U and $f \in \mathbb{H}^{\infty}$ such that $||f||_{\mathbb{H}^{\infty}} = |f(0)|^2 = 1$. Then $\mathcal{W}_{f,\psi}^* \mathcal{W}_{f,\varphi}$ is unitary if and only if each of φ and ψ is an inner function with $\psi(0) = \varphi(0) = 0$ and there exists inner function α with $\alpha(0) = 0$ such that $\varphi = \alpha \circ \psi$.

Proof: Suppose $W_{f,\psi}^* W_{f,\varphi}$ is unitary, then by theorem (3.17) both φ and ψ is an inner function with $\psi(0) = \varphi(0) = 0$ and there exists inner function α with $\alpha(0) = 0$ such that $\varphi = \alpha \circ \psi$.

As in theorem (3.17) we have $\mathcal{W}_{f,\psi}^*\mathcal{W}_{f,\varphi} = \mathcal{C}_{\alpha}$, and so \mathcal{C}_{α} is unitary. This implies $\alpha(z) = \lambda z$ for some λ with $|\lambda| = 1$. Therefore $\varphi(z) = \lambda \psi(z)$. The reverse induction is clear.

Now , we are ready to recover the inevitability of the operator $\mathcal{W}_{f,\psi}^* \mathcal{W}_{f,\varphi}$. We need the following lemma.

Lemma (3.19)[10]: Suppose φ be univalent, holomorphic self-map of U. Then C_{φ} has closed range on \mathbb{H}^2 if and only if φ is an automorphism of U.

Theorem (3.20): Suppose φ and ψ be two holomorphic self-map of U such that ψ is univalent and $f \in \mathbb{H}^2$ which is bounded and bounded away from zero . Then $\mathcal{W}_{f,\psi}^* \mathcal{W}_{f,\varphi}$ is invertible if and only if each of φ and ψ are automorphism of U.

Proof: Suppose that $\mathcal{W}_{f,\psi}^*\mathcal{W}_{f,\varphi}$ is invertible, then $\mathcal{W}_{f,\psi}^*=C_{\psi}^*T_f^*$ is onto. Therefore, it is clear that C_{ψ}^* is onto . This implies that C_{ψ} is bounded from below and so the range of C_{ψ} is closed. Thus by lemma (3.19) we have ψ is an automorphism . Therefore by applying theorem (3.4) we have that $\mathcal{W}_{f,\psi}$ is invertible operator. Hence $\mathcal{W}_{f,\psi}^*$ is invertible and then $\mathcal{W}_{f,\varphi}$ is invertible.

Therefore again by theorem (3.4) that φ is an automorphism.

The converse is follows immediately by theorem (3.4).

References

[1] Abood E.H., "The composition operator on Hardy space H^2 ", Ph.D. Thesis, University of Baghdad, (2003).

- [2] Berberian, S.K., Introduction to Hilbert Space, Sec. Ed., Chelesa publishing Com., New York, N.Y., 1976.
- [3] CowenC. C. and Ko E.,"Hermitian weighted composition operator on H^2 "Trans.Amer. Math. Soc., 362(2010), 5771-5801.
- [4] Deddnes J. A., "Analytic Toeplitz and Composition Operators", Con. J. Math., vol(5), 859-865, (1972).
- [5] Gunatillake G.,"invertible weighted composition operator ",J. Funct. Anal., 261(2011), 831-860.
- [6] Halmos P. R.,"A Hilbert space problem book", Sprinrer- Verlag, New York, (1974).
- [7] Nordgren, E. A., Composition operator, Can. J. Math. 20(1968), 442-449.
- [8] Shapiro J.H., "Composition Operators and Classical Function Theory", Springer-Verlage, New York, (1993).
- [9] Clifford, J. H., Le, T. and Wiggins, A., Invertible composition operators: The product of a composition operators with adjoint of a composition operators,
- [10] Akeroyd, J. R. and Ghatage, P. G., Closed range composition operators on A^2 , Illinois J. Math. 52 (2008), 533-549.