RESEARCH ORGANISATION

Volume 8, Issue 1

Published online: June 14, 2016

Journal of Progressive Research in Mathematics www.scitecresearch.com/journals

Some results on integer cordial graph

T.Nicholas¹ and P.Maya² ¹Department of Mathematics St. Jude's College Thoothoor – 629176 Kanyakumari, Tamil Nadu, India ²Department of Mathematics Ponjesly College of Engineering Nagercoil - 629003, Tamil Nadu, India

SCITECH

Abstract:

An *integer cordial labeling* of a graph G(V, E) is an injective map f from V to $\left[-\frac{p}{2} . . \frac{p}{2}\right]^*$ or $\left[-\frac{p}{2}] . . \left[\frac{p}{2}\right]$ as p is even or odd, which induces an edge labeling $f^*: E \to \{0, 1\}$ defined by $f^*(uv) = 1$ if $f(u) + f(v) \ge 0$ and 0 otherwise such that the number of edges labeled with1 and the number of edges labeled with 0 differ atmost by 1. If a graph has integer cordial labeling, then it is called *integer cordial graph*. In this paper, we introduce the concept of integer cordial labeling and prove that some standard graphs are integer cordial.

Key Words: Cordial labeling; integer cordial labeling.

AMS Mathematical Subject Classification (2010): 05C78.

1. INTRODUCTION

By a graph we mean a finite undirected graph without loops and multiple edges. For terms not defined here we refer to Harary [9].

An *integer cordial labeling* of a graph G (V, E) is an injective map f from V to $\left[-\frac{p}{2} . . \frac{p}{2}\right]^*$ or $\left[-\frac{p}{2}] . . \left[\frac{p}{2}\right]$ as p is even or odd, which induces an edge labeling f^* : E $\rightarrow \{0, 1\}$ defined by $f^*(uv) = 1$ if $f(u) + f(v) \ge 0$ and 0 otherwise such that the number of edges labeled with 1 and the number of edges labeled with 0 differ at most by 1. If a graph has integer cordial labeling, then it is called *integer cordial graph*. The concept of cordial graph originated from I.Cahit [1,2] in 1987 as a weaker version of graceful and harmonious graphs and was based on $\{0,1\}$ binary labeling of vertices.

Let f: V \rightarrow {0, 1} be a mapping that induces an edge labeling $\overline{f} : E \rightarrow$ {0, 1} defined by $\overline{f(uv)} = |f(u) - f(v)|$. Cahit called such a labeling cordial if the following condition is satisfied: $|v_f(0) - v_f(1)| \leq 1$ and $|e_f(0) - e_f(1)| \leq 1$, where $v_f(i)$ and $e_f(i)$, i = 0, 1 are the number of vertices and edges of G respectively with label *i* (under *f* and \overline{f} respectively). A graph G is called cordial if it admits cordial labeling.

In [1], Cahit showed that (i) every tree is cordial (ii) K_n is cordial if and only if $n \le 3$ (iii) $K_{r,s}$ is cordial for all r and s (iv) the wheel W_n is cordial if and only if $n \equiv 3 \pmod{4}$ (v) C_n is cordial if and only if $n \not\equiv 2 \pmod{4}$ (vi) an Eulerian graph is not cordial if its size is congruent to 2 modulo 4.

Du [4] investigated cordial complete k-partite graphs. Kuo et al. [13] determined all m and n for which mK_n is cordial. Lee et al. [14] exhibited some cordial graphs. Generalised Peterson graphs that are cordial are characterised in [7]. Hoet.al [6] investigated the construction of cordial graphs using Cartesian products and composition of graphs. Shee and Ho [7] determined the cordiality of $C_m^{(n)}$; the one-point union of n copies of C_m . Several constructions of cordial graphs were proposed in [10-12, 15-18]. Other results and open problems concerning cordial graph are seen in [2, 6]. Other types of cordial graphs were considered in [3, 4, 8, 20]. Vaidya et.al [21] have also discussed the cordiality of various graphs.

Definition 1.1[25]

Let f be a binary edge labeling of graph G = {V, E} and the induced vertex labeling is given by $f(v) = \sum_{\forall u} f(u, v) (mod2)$ where $v \in V$ and $\{u, v\} \in E$. f is called an *E-cordial labeling* of G if $|e_f(0) - e_f(1)| \le 1$ and $|v_f(0) - v_f(1)| \le 1$, where $e_f(0)$ and $e_f(1)$ denote the number of edges, and $v_f(0)$ and $v_f(1)$ denote the number of vertices with 0's and 1's respectively. The graph G is called *E-cordial* if it admits E-cordial labeling.

In 1997 Yilmaz and Cahit [25] have introduced E-cordial labeling as a weaker version of edge–graceful labeling. They proved that the trees with n vertices, K_n , C_n are E-cordial if and only if $n \neq 2 \pmod{4}$ while $K_{m,n}$ admits E-cordial labeling if and only if $m + n \neq 2 \pmod{4}$.

Definition 1.2 [20]

A *prime cordial labeling* of a graph G with vertex set V is a bijection f from V to $\{1, 2, 3, \ldots, |V|\}$ where each edge uv is assigned the label 1 if gcd (f(u), f(v)) = 1 and 0 if gcd (f(u), f(v)) > 1, such that the number of edges having label 0 and edges having label 1 differ by at most 1.

Sundaram et.al. [19] introduced the notion of prime cordial labeling. They proved the following graphs are prime cordial: C_n if and only if $n \ge 6$; P_n if and only if $n \ne 3$ or 5; $K_{1,n}(n, odd)$; the graph obtained by subdividing each edge of $K_{1,n}$ if and only if $n \ge 3$; bi-stars; dragons; crowns; triangular snakes if and only if the snake has at least three triangles; ladders. J. Babujee and L.Shobana [23] proved the existence of prime cordial labeling for sun graph, kite graph and coconut tree and Y-tree, $\langle K_{1,n}: 2 \rangle$ ($n \ge 1$); Hoffman tree, and $K_2 \Theta C_n(C_n)$

In this paper we introduce the concept of integer cordial labeling and we prove that some standard graphs such as cycle C_n , Path P_n , Wheel graph W_n ; n >3, Star graph $K_{1,n}$, Helm graph H_n , Closed helm graph CH_n are integer cordial, K_n is not integer cordial and $K_{n,n}$ is integer cordial iff n is even. It is also proved that $K_{nn} \setminus M$ is integer cordial for any n where M is a perfect matching of $K_{n,n}$.

Notation: 1.3

(i) $[-x..x] = \{t/t \text{ is an integer and } |t| \le x\}$ (ii) $[-x..x]^* = [-x..x] - \{0\}$

Definition 1.4

Let G = (V,E) be a simple connected graph with p vertices. Let $f: V \to \left[-\frac{p}{2} \dots \frac{p}{2}\right]^*$ or $\left[-\left[\frac{p}{2}\right] \dots \left[\frac{p}{2}\right]\right]$ as p is even or odd be an injective map, which induces an edge labeling f^* such that f(uv) = 1, if $f(u) + f(v) \ge 0$ and f(uv) = 0 otherwise. Let $e_f(i)$ = number of edges labeled with i, where i = 0 or 1. *f* is said to be *integer cordial* if $|e_f(0) - e_f(1)| \le 1$.

A graph G is called integer cordial if it admits a *integer cordial labeling*.

Fig: 1 Integer Cordial Graph

2. Main Results

Theorem 2.1

The cycle C_n is integer cordial graph.

Proof:

Let v_1, v_2, \ldots, v_n be the n vertices of the cycle C_n . Here p = n and q = n.

Case (i) p is even. Let p = 2n.

We define $f : V \rightarrow [-n \dots n]^*$ as follows:

$$f(v_i) = -i ; \quad 1 \le i \le n$$

$$f(v_{n+i}) = i ; 1 \le i \le n$$

Then $f(v_n) = -n$ and $f(v_{n+1}) = 1$, the edge $f(v_n v_{n+1}) = -n + 1$

When $n \ge 2$, $f(v_n v_{n+1})$ will be negative. That is, $f(v_n v_{n+1}) = 0$

Similarly, $f(v_1) = -1$ and $f(v_{2n}) = n$ and the edge $f(v_1v_{2n}) = n - 1$

When $n \ge 2$, $f(v_1 v_n)$ will be positive. That is, $f(v_1 v_n) = 1$

Obviously, the sum of consecutive negative integers is negative and sum of consecutive positive integers is positive. There is $\frac{q}{2}$ such negative integers and $\frac{q}{2}$ positive integers. Thus $e_f(0) = e_f(1) = \frac{q}{2}$.

Case (ii) p is odd. Let p = 2n + 1

We define $f : V \rightarrow [-n \dots n]$ as follows:

$$f(v_i) = -i; \quad 1 \le i \le n$$

$$f(v_{n+i}) = i; 1 \le i \le n$$
$$f(v_{2n+1}) = 0$$

Since $f(v_n) = -n$ and $f(v_{n+1}) = 1$, we have $f(v_n v_{n+1}) < 0$, which implies the edge $v_n v_{n+1}$ receives the label 0.

Similarly, since $f(v_1) = -1$ and $f(v_{2n+1}) = 0$, we have $f(v_1v_n) = -1$, hence the edge v_1v_{2n+1} receives the label 0. This implies that n +1 edges receive label 0 and n edges receive label 1.

Therefore, $e_f(0) = n + 1$ and $e_f(1) = n$.

Thus $|e_f(0) - e_f(1)| = 1$.

Case (iii)

As a special case, we consider a cycle when n = 3

We define the labelling $f: V \rightarrow [-1, 0, 1]$ as follows:

Let $f(v_1) = -1$; $f(v_2) = 1$; $f(v_3) = 0$

Then $f(v_1v_2)$ receives label 1, $f(v_1v_3)$ receives label 0 and $f(v_2v_3)$ receives label 0

Therefore $|e_f(0) - e_f(1)| = 1$.

From all the cases $|e_f(0) - e_f(1)| \le 1$.

Thus C_n is integer cordial graph.

Fig: 2. C_{12} and C_{11} are integer cordial graph

Note: 2. 2 Similar argument proves that Path P_n is also an integer cordial graph.

Theorem 2.3

Complete graph K_n , where n > 3, is not integer cordial.

Proof:

Let $v_1, v_2, ..., v_n$ be the n vertices of K_n . Here p = n and $q = \frac{n(n-1)}{2}$. Since each vertex is adjacent to every vertex, $\frac{n(n-2)}{4}$ integers are negative and $\frac{n(n-2)}{4} + \frac{n}{2}$ integers will be positive. That is $\frac{n(n-2)}{4}$ edges receive label 0 and $\frac{n^2}{4}$ edges receive label 1.

Thus,
$$e_f(0) = \frac{n(n-2)}{4}$$
; $e_f(1) = \frac{n^2}{4}$.

Therefore, $|e_f(0) - e_f(1)| \leq 1$. Hence, K_n is not an integer cordial.

Theorem 2.4

The Wheel graph W_n ; n > 3 is integer cordial.

Proof:

Let u be the apex vertex and $v_1, v_2, \dots v_n$ be the rim vertices. Here p = n + 1 and q = 2n.

Case (i) p is even

We define
$$f: V \to \text{to}\left[-\frac{p}{2} \cdot \cdot \frac{p}{2}\right]^*$$
 as follows:

$$f(u) = 1$$

$$f(v_i) = -i \; ; \; 1 \leq i \leq \lfloor \frac{n}{2} \rfloor$$

$$f\left(v_{\lceil \frac{n}{2} \rceil + i}\right) = i + 1 \; ; \; 1 \leq i \leq \lfloor \frac{n}{2} \rfloor$$

It can be checked that $e_f(0) = e_f(1) = \frac{q}{2}$.

Therefore, $|e_f(0) - e_f(1)| = 0$

Case (ii) p is odd

We define $f: V \to \left[-\left\lfloor \frac{p}{2} \right\rfloor . , \left\lfloor \frac{p}{2} \right\rfloor \right]$ as follows:

$$f(u) = 0$$

$$f(v_i) = -i ; 1 \le i \le \frac{n}{2}$$

$$f(v_{\frac{n}{2}+i}) = i ; 1 \le i \le \frac{n}{2}$$

We observe that $\left(\frac{2n}{2} - 1\right) + 1$ edges receive label 0.

That is, $e_f(0) = e_f(1) = \frac{q}{2}$. Therefore, $|e_f(0) - e_f(1)| = 0$.

Thus from both the cases $|e_f(0) - e_f(1)| \le 1$.

Hence W_n ; n > 3 is integer cordial

Fig: 3 W₁₂ is integer cordial

Note: 2.5

 W_3 is not integer cordial.

The result follows from Theorem 2.3.

Theorem 2.6

The Star graph $K_{1,n}$ is integer cordial.

Proof:

Let G = $K_{1,n}$ be the star graph. Let u be the apex vertex and $\{v_1, v_2, \dots, v_n\}$ be the pendant vertices. Here p = n + 1 and q = n. We consider two cases:

Case (i) p is odd.

We define $f : V \to \left[-\left\lfloor\frac{p}{2}\right\rfloor .. \left\lfloor\frac{p}{2}\right\rfloor\right]$ as follows:

$$f(u) = 0$$

$$f(v_i) = -i ; 1 \le i \le \frac{n}{2}$$

$$f(v_{\frac{n}{2}+i}) = i ; 1 \le i \le \frac{n}{2}$$

The apex vertex u is given label 0, and edges incident to positive integers receive positive label and edges incident to negative integers receives negative label. There are $\frac{n}{2}$ such edges receiving positive labels and $\frac{n}{2}$ edges receiving negative labels.

That is, $e_f(0) = e_f(1) = \frac{q}{2}$.

Thus, $|e_f(0) - e_f(1)| = 0.$

Case (ii) p is even

We define $f: V \to \text{to} \left[-\frac{p}{2} \cdot \cdot \frac{p}{2}\right]^*$ as follows:

$$f(u) = 1$$

$$f(v_i) = -i \; ; \; 1 \leq i \leq \lceil \frac{n}{2} \rceil$$

$$f(v_{\lceil \frac{n}{2} \rceil + i}) = i + 1 \; ; \; 1 \leq i \leq \lfloor \frac{n}{2} \rfloor$$

Since the apex vertex is labeled as 1 and $\lfloor \frac{q}{2} \rfloor$ edges receive label 0 and $\lceil \frac{q}{2} \rceil$ edges receive label 1.

That is,
$$e_f(0) = \lfloor \frac{q}{2} \rfloor$$
 and $e_f(1) = \lceil \frac{q}{2} \rceil$

Hence, $|e_f(0) - e_f(1)| = 1$.

From both the cases $|e_f(0) - e_f(1)| \le 1$

Thus, $K_{1,n}$ is integer cordial.

Fig: 4. $K_{1,8}$ is integer cordial

Theorem 2.7

Helm graph H_n is integer cordial.

Proof:

Helm graph H_n is always of odd order. Let v be the apex vertex, $v_1, v_2, ..., v_n$ be the vertices of inner cycle and $u_1, u_2, ..., u_n$ be the pendant vertices. Let $H_n = G$, then p = 2n + 1 and q = 3n.

Case (i).n is odd (p is odd)

We define $f: V \to \left[-\left\lfloor\frac{p}{2}\right\rfloor .. \left\lfloor\frac{p}{2}\right\rfloor\right]$ as follows:

f(v) = 0 $f(v_i) = -i; \ 1 \le i \le \lceil \frac{n}{2} \rceil$

$$\begin{split} f\left(v_{\left\lfloor\frac{n}{2}\right\rfloor+i}\right) &= i; \ 1 \le i \le \lfloor\frac{n}{2}\rfloor \\ f(u_i) &= -\left(\lceil\frac{n}{2}\rceil + i\right) \ ; \ 1 \le i \le \lfloor\frac{n}{2}\rfloor \\ f\left(u_{\lfloor\frac{n}{2}\rfloor+i}\right) &= \left(\lfloor\frac{n}{2}\rfloor + i\right) \ ; \ 1 \le i \le \lfloor\frac{n}{2}\rfloor \end{split}$$

Since the apex vertex is given the label 0, out of n edges incident to v, $\lceil \frac{n}{2} \rceil$ edges receive label 0 and $\lfloor \frac{n}{2} \rfloor$ edges receive label 1. Similarly, $\lceil \frac{n}{2} \rceil$ edges receive label 0 and $\lfloor \frac{n}{2} \rfloor$ edges receive 1 from the cycle. The pendant vertices have n edges. Out of n edges, $\lfloor \frac{n}{2} \rfloor$ edges receive 0 and $\lceil \frac{n}{2} \rceil$ edges receive 1. That is, $e_f(0) = \frac{3n+1}{2} = \lceil \frac{q}{2} \rceil$ and $e_f(1) = \frac{3n-1}{2} = \lfloor \frac{q}{2} \rfloor$.

Thus $|e_f(0) - e_f(1)| = 1$.

Case (ii) n is even (p is odd)

$$f(v) = 0$$

$$f(v_i) = -i; \ 1 \le i \le \frac{n}{2}$$

$$f(v_{\frac{n}{2}+i}) = i \ ; \ 1 \le i \le \frac{n}{2}$$

$$f(u_i) = -(\frac{n}{2}+i) \ ; \ 1 \le i \le \frac{n}{2}$$

$$f(u_{\frac{n}{2}+i}) = (\frac{n}{2}+i) \ ; \ 1 \le i \le \frac{n}{2}$$

The apex vertex is labeled 0, so out of n edges incident to v, $\frac{n}{2}$ edges receive label 1 and $\frac{n}{2}$ edges receive label 0.

Similarly out of n edges in the cycle, $\frac{n}{2}$ edges receive label 1 and $\frac{n}{2}$ edges receive label 0.

That is, $e_f(0) = e_f(1) = \frac{q}{2}$.

Thus $|e_f(0) - e_f(1)| = 1.$

Hence, H_n is integer cordial.

Volume 8, Issue 1 available at www.scitecresearch.com/journals/index.php/jprm

Fig: 5. H₆ is integer cordial

Theorem 2.8

The closed helm graph CH_n is integer cordial.

Proof:

Let v be the apex vertex, $\{v_1, v_2, \dots v_n\}$ be the vertices of inner cycle and $\{u_1, u_2, \dots u_n\}$ be the rim vertices.

Let $CH_n = G$. Then p = 2n + 1 and q = 4n. We define $f: V \to \left[-\left\lfloor\frac{p}{2}\right\rfloor, \left\lfloor\frac{p}{2}\right\rfloor\right]$ as follows:

f(v) = 0 $f(v_i) = -i; \ 1 \le i \le n$ $f(u_i) = i; \ 1 \le i \le n$

From the above labeling we observe that $\frac{q}{2}$ edges receive label 1 and $\frac{q}{2}$ edges receive label 0.

That is, $e_f(0) = e_f(1) = \frac{q}{2}$. Thus $|e_f(0) - e_f(1)| = 0$.

Hence, CH_n is integer cordial.

Fig: 6 CH₈ is integer cordial

Theorem 2.9

The complete bipartite graph $K_{n,n}$ is integer cordial if and only if n is even.

Proof:

Let $G = K_{n,n}$ be a complete bipartite graph with the partitions $\{U, V\}$ where $U = \{u_1, u_2, ..., u_n\}$ and $V = \{v_1, v_2, ..., v_n\}$. Then p = 2n and $q = n^2$. We define $f : V \rightarrow \left[-\frac{p}{2} \cdot \frac{p}{2}\right]^*$ as follows:

$$f(u_i) = \begin{cases} -\left(\frac{i+1}{2}\right) & \text{if } i \text{ is odd }; 1 \le i \le n \\ \frac{i}{2} & \text{if } i \text{ is even }; 1 \le i \le n \end{cases}$$
$$f(v_i) = \begin{cases} -\left(\frac{n+i+1}{2}\right) & \text{if } i \text{ is odd }; 1 \le i \le n \\ \left(\frac{n+i}{2}\right) & \text{if } i \text{ is even }; 1 \le i \le n \end{cases}$$

From the above labeling, we observe that there are $\frac{n^2}{2}$ edges receive label 0 and also $\frac{n^2}{2}$ edges receive label 1.

That is, $e_f(0) = e_f(0) = \frac{n^2}{2} = \frac{q}{2}$.

Hence $|e_f(0) - e_f(0)| = 0$.

Thus G is integer cordial when n is even.

Fig: 7. $K_{6,6}$ is integer cordial

Conversely, when n is odd

Suppose K_{n,n} is integer cordial graph let us consider the labeling

 $f(u_i) = -i$; $1 \le i \le n$ and $f(v_i) = i$; $1 \le i \le n$. K_{n,n} being a complete bipartite graph there are $\frac{n(n-1)}{2}$ possibilities of getting negative integers and $\frac{n(n+1)}{2}$ possibilities of getting positive integers. That is, $e_f(0) = \frac{n(n-1)}{2}$ and $e_f(1) = \frac{n(n+1)}{2}$.

Therefore, $|e_f(0) - e_f(1)| = n \leq 1$. Similar proof holds if we consider any labeling.

Hence $K_{n,n}$ is not an integer cordial graph when n is odd.

Theorem: 2.10

The graph $K_{n,n} \setminus M$ is an integer cordial graph for every n, where M is a perfect matching.

Proof:

Consider the graph $K_{nn} \setminus M$ with vertex set V(G)={ X, Y} where $X = \{x_1, x_2, x_3, \dots, x_n\}$ and $Y = \{y_1, y_2, y_3, \dots, y_n\}$. Without loss of generality, let $M = \{x_1y_1, x_2y_2, x_3y_3, \dots, x_ny_n\}$. Let $G = K_{n,n} \setminus M$. Here p = 2n and q = n(n-1). We define $f: V \rightarrow \left[-\frac{p}{2} \dots \frac{p}{2}\right]^*$ as follows:

 $f(x_i) = -i; 1 \leq i \leq n$

$$f(y_i) = i; 1 \leq i \leq n$$

In particular, let us consider x_n and y_{n-1} . Then $f(x_n) = -n$ and $f(y_{n-1}) = n - 1$. Therefore, $f(x_n y_{n-1}) = -n + n - 1 = -1$, which is negative. Hence the edge $x_n y_{n-1}$ receives label 0.

Similarly, let us consider, the edges y_n and x_1 . Here $f(y_n) = n$ and $f(x_1) = -1$.

Then $f(y_n x_1) = n - 1$. When n > 1, the term will be positive. Hence we give the label 1.

Similarly, the other $\left(\frac{q}{2}-1\right)$ edges receives label 0 and $\operatorname{also}\left(\frac{q}{2}-1\right)$ edges receives label 1.

That is, $e_f(0) = e_f(1) = \frac{q}{2}$.

Hence $|e_f(0) - e_f(1)| = 0.$

Fig: 8. $K_{5,5} \setminus M$ is integer cordial

References

- [1] I.Cahit, Cordial graphs, A weaker version of graceful and harmonious graphs, ArsCombinatoria, 23,1987, pp 201-208.
- [2] I.Cahit, Recent results and Open Problems on Cordial graphs, contemporary methods in Graph Theory, R.Bodendrek.(Ed.) Wissenschaftsverlog, Mannheim,1990, pp. 209-230.
- [3] I. Cahit, H-Cordial Graphs, Bull.Inst.Combin.Appl; 18 (1996) 87-101.
- [4] G.M. Du. Cordiality of complete k- partite graphs and some special Graphs, NeimengguShida. XuebaoZiranKexueHauwen Ban 2 (1997) 9-12.
- [5] J.A.Gallian, A dynamic survey of graph labeling, Electron.J.Combin.5 (2000) 1-79.
- [6] Y.S. Ho, S.M. Lee, S.S. Shee, Cordial labeling of the Cartesian product and composition of graphs, Ars Combin.29 (1990) 169-180.
- [7] Y.S. Ho, S.M. Lee, S.S. Shee, Cordial labeling of unicyclic graphs and generalized Peterson graphs, Congr. Numer 68(1989) 109-122.
- [8] M.Hovey, A-Cordial Graphs, Discrete Math. 1991 (3), pp 183-194.
- [9] F.Harary, Graph Theory, Addison- Wesly, Reading Mass 1972.
- [10] W.W.Kirchherr, NEPS Operations on Cordial graphs, Discrete Math.115(1993) 201-209.
- [11] W.W.Kirchherr, On the cordiality of certain specific graphs, ArsCombin. 31 (1991) 127 138.
- [12] W.W.Kirchherr, Algebraic approaches to cordial labeling, Graph Theory, Combinatorics Algorithms and Applications, Y. Alavi, et. al (Eds.) SIAM, Philadelphia, PA, 1991, pp 294 299.

- [13] S.Kuo, G.J. Chang, Y.H.H. Kwong, Cordial labeling of mK_n Discrete math. 169 (1997) 1-3.
- [14] Y.H.Lee, H.M. Lee, G.J.Chang, Cordial labeling of graphs, Chinese J.Math20(1992) 263 273.
- [15] S.M.Lee, A.Liu, A construction of cordial graphs from smaller cordial graphs, ArsCombin. 32 (1991) 209-214.
- [16] E. Seah, On the construction of cordial graphs from smaller cordial graphs, ArsCombin. 31 (1991) 249 254.
- [17] S.C.Shee, The cordiality of the path union of n copies of a graph, Discrete Math., 151 (1996) 221-229.
- [18] S.C.Shee, Y.S.Ho, The Cardiality of the one-point union of n-copies of a graph, Discrete Math.117 (1993) 225-243.
- [19] M.Sundaram, R.Ponrajan, S.Somusundaram, Prime Cordial labelling of graphs, Journal of Indian Academy Of Mathematics, 27(2005) 373 – 393.
- [20] A.Unveren and I.Cahit, M-Cordial Graphs, Pre-print
- [21] S.K.Vaidya, N.A. Dani, K.K.Kanani, P.L.Vihol, Cordial and 3- Equitable labeling for some star related graphs, International Mathematical Forum, 4, 2009,no.31, 1543-1553.
- [22] R.Varatharajan, S.Navaneetha Krishnan, K.Nagarajan, Divisor cordial Graphs, International J. Math. Combin.Vol 4 (2011)15 – 25.
- [23] R.Yilmazand I.Cahit, "E-Cordial graphs", ArsCombin., Vol 46, pp.251 266, 1997.