Journal of Progressive Research in Mathematics
 www.scitecresearch.com/journals

Some results on integer cordial graph

T.Nicholas ${ }^{1}$ and P.Maya ${ }^{2}$
${ }^{1}$ Department of Mathematics
St. Jude's College Thoothoor - 629176
Kanyakumari, Tamil Nadu, India
${ }^{2}$ Department of Mathematics
Ponjesly College of Engineering
Nagercoil-629003, Tamil Nadu, India

Abstract

:

An integer cordial labeling of a graph $\mathrm{G}(\mathrm{V}, \mathrm{E})$ is an injective map f from V to $\left[-\frac{p}{2} . . \frac{p}{2}\right]^{*}$ or $\left[-\left\lfloor\frac{p}{2}\right\rfloor . .\left[\frac{p}{2}\right]\right]$ as p is even or odd, which induces an edge labeling $f^{*}: E \rightarrow\{0,1\}$ defined by $f^{*}(u v)=1$ if $f(u)+f(v) \geq 0$ and 0 otherwise such that the number of edges labeled with 1 and the number of edges labeled with 0 differ atmost by 1 . If a graph has integer cordial labeling, then it is called integer cordial graph. In this paper, we introduce the concept of integer cordial labeling and prove that some standard graphs are integer cordial.

Key Words: Cordial labeling; integer cordial labeling.
AMS Mathematical Subject Classification (2010): 05C78.

1. INTRODUCTION

By a graph we mean a finite undirected graph without loops and multiple edges. For terms not defined here we refer to Harary [9].

An integer cordial labeling of a graph $\mathrm{G}(\mathrm{V}, \mathrm{E})$ is an injective map f from V to $\left[-\frac{p}{2} . . \frac{p}{2}\right]^{*}$ or $\left[-\left\lfloor\frac{p}{2} \left\lvert\, . .\left\lfloor\left.\frac{p}{2} \right\rvert\,\right]\right.\right.\right.$ as p is even or odd, which induces an edge labeling $f^{*}: E \rightarrow\{0,1\}$ defined by $f^{*}(u v)=1$ if $f(u)+f(v) \geq 0$ and 0 otherwise such that the number of edges labeled with 1 and the number of edges labeled with 0 differ at most by 1 . If a graph has integer cordial labeling, then it is called integer cordial graph. The concept of cordial graph originated from I.Cahit [1,2] in 1987 as a weaker version of graceful and harmonious graphs and was based on $\{0,1\}$ binary labeling of vertices.

Let $\mathrm{f}: \mathrm{V} \rightarrow\{0,1\}$ be a mapping that induces an edge labeling $\bar{f}: \mathrm{E} \rightarrow\{0,1\}$ defined by $\overline{f(u v)}=$ $|f(u)-f(v)|$. Cahit called such a labeling cordial if the following condition is satisfied: $\left|v_{f}(0)-v_{f}(1)\right| \leq 1$ and $\left|e_{f}(0)-e_{f}(1)\right| \leq 1$, where $v_{f}(i)$ and $e_{f}(i), i=0,1$ are the number of vertices and edges of G respectively with label i (under f and \bar{f} respectively). A graph G is called cordial if it admits cordial labeling.

In [1], Cahit showed that (i) every tree is cordial (ii) K_{n} is cordial if and only if $\mathrm{n} \leq 3$ (iii) $K_{r, s}$ is cordial for all r and s (iv) the wheel W_{n} is cordial if and only if $\mathrm{n} \equiv 3(\bmod 4)(\mathrm{v}) C_{n}$ is cordial if and only if $\mathrm{n} \not \equiv 2(\bmod 4)$ (vi) an Eulerian graph is not cordial if its size is congruent to 2 modulo 4 .

Du [4] investigated cordial complete k-partite graphs. Kuo et al. [13] determined all m and n for which $m K_{n}$ is cordial. Lee et al. [14] exhibited some cordial graphs. Generalised Peterson graphs that are cordial are characterised in [7]. Hoet.al [6] investigated the construction of cordial graphs using Cartesian products and composition of graphs. Shee and Ho [7] determined the cordiality of $C_{m}^{(n)}$; the one-point union of n copies of C_{m}. Several constructions of cordial graphs were proposed in [10-12, 15-18]. Other results and open problems concerning cordial graph are seen in [2, 6]. Other types of cordial graphs were considered in [3, 4, 8, 20]. Vaidya et.al [21] have also discussed the cordiality of various graphs.

Definition 1.1[25]

Let f be a binary edge labeling of graph $\mathrm{G}=\{\mathrm{V}, \mathrm{E}\}$ and the induced vertex labeling is given by $f(v)=$ $\sum_{\forall u} f(u, v)(\bmod 2)$ where $\mathrm{v} \in \mathrm{V}$ and $\{\mathrm{u}, \mathrm{v}\} \in \mathrm{E}$. f is called an E-cordial labeling of G if $\left|e_{f}(0)-e_{f}(1)\right| \leq 1$ and $\left|v_{f}(0)-v_{f}(1)\right| \leq 1$, where $e_{f}(0)$ and $e_{f}(1)$ denote the number of edges, and $v_{f}(0)$ and $v_{f}(1)$ denote the number of vertices with $0^{\prime} s$ and $1^{\prime} s$ respectively. The graph G is called \boldsymbol{E}-cordial if it admits E-cordial labeling.

In 1997 Yilmaz and Cahit [25] have introduced E-cordial labeling as a weaker version of edge-graceful labeling. They proved that the trees with n vertices, K_{n}, C_{n} are E-cordial if and only if $\mathrm{n} \not \equiv 2(\bmod 4)$ while $K_{m, n}$ admits E-cordial labeling if and only if $m+n \not \equiv 2(\bmod 4)$.

Definition 1.2 [20]

A prime cordial labeling of a graph G with vertex set V is a bijection f from V to $\{1,2,3, \ldots,|\mathrm{~V}|\}$ where each edge $u v$ is assigned the label 1 if $\operatorname{gcd}(f(u), f(v))=1$ and 0 if $\operatorname{gcd}(f(u), f(v))>1$, such that the number of edges having label 0 and edges having label 1 differ by at most 1 .

Sundaram et.al. [19] introduced the notion of prime cordial labeling. They proved the following graphs are prime cordial: C_{n} if and only if $\mathrm{n} \geq 6 ; P_{n}$ if and only if $\mathrm{n} \neq 3$ or $5 ; K_{1, n}$ (n , odd); the graph obtained by subdividing each edge of $K_{1, n}$ if and only if $\mathrm{n} \geq 3$; bi-stars; dragons; crowns; triangular snakes if and only if the snake has at least three triangles; ladders. J. Babujee and L.Shobana [23] proved the existence of prime cordial labeling for sun graph, kite graph and coconut tree and Y-tree, $<K_{1, n}: 2>(\mathrm{n} \geq 1)$; Hoffman tree, and $K_{2} \theta C_{n}\left(C_{n}\right)$

In this paper we introduce the concept of integer cordial labeling and we prove that some standard graphs such as cycle C_{n}, Path P_{n}, Wheel graph $W_{n} ; \mathrm{n}>3$, Star graph $K_{1, n}$, Helm graph H_{n}, Closed helm graph $C H_{n}$ are integer cordial, K_{n} is not integer cordial and $K_{n, n}$ is integer cordial iff n is even. It is also proved that $K_{n n} \backslash M$ is integer cordial for any n where M is a perfect matching of $K_{n n}$.

Notation: 1.3

$[-x . . x]=\{t / t$ is an integer and $|t| \leq x\}$
(ii) $[-x . . x]^{*}=[-x . . x]-\{0\}$

Definition 1.4

Let $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ be a simple connected graph with p vertices. Let $f: V \rightarrow\left[-\frac{p}{2} . . \frac{p}{2}\right]^{*}$ or $\left[-\left\lfloor\frac{p}{2}\right\rfloor . .\left\lfloor\frac{p}{2}\right\rfloor\right]$ as p is even or odd be an injective map, which induces an edge labeling f^{*} such that $\mathrm{f}(\mathrm{uv})=1$, if $\mathrm{f}(\mathrm{u})+\mathrm{f}(\mathrm{v}) \geq 0$ and $\mathrm{f}(\mathrm{uv})=$ 0 otherwise. Let $e_{f}(i)=$ number of edges labeled with i , where $\mathrm{i}=0$ or $1 . f$ is said to be integer cordial if $\mid e_{f}(0)-$ $e_{f}(1) \mid \leq 1$.

A graph G is called integer cordial if it admits a integer cordial labeling.

Fig: 1 Integer Cordial Graph

2. Main Results

Theorem 2.1

The cycle C_{n} is integer cordial graph.

Proof:

Let $v_{1}, v_{2}, \ldots, v_{n}$ be the n vertices of the cycle C_{n}. Here $\mathrm{p}=\mathrm{n}$ and $\mathrm{q}=\mathrm{n}$.
Case (i) \mathbf{p} is even. Let $\mathrm{p}=2 \mathrm{n}$.
We define $f: V \rightarrow[-n \ldots n]^{*}$ as follows:

$$
\begin{array}{ll}
f\left(v_{i}\right)=-i ; & 1 \leq i \leq n \\
f\left(v_{n+i}\right)=i & ; 1 \leq i \leq n
\end{array}
$$

Then $f\left(v_{n}\right)=-n$ and $f\left(v_{n+1}\right)=1$, the edge $f\left(v_{n} v_{n+1}\right)=-n+1$
When $\mathrm{n} \geq 2, f\left(v_{n} v_{n+1}\right)$ will be negative. That is, $f\left(v_{n} v_{n+1}\right)=0$
Similarly, $f\left(v_{1}\right)=-1$ and $f\left(v_{2 n}\right)=n$ and the edge $f\left(v_{1} v_{2 n}\right)=n-1$
When $n \geq 2, f\left(v_{1} v_{n}\right)$ will be positive. That is, $f\left(v_{1} v_{n}\right)=1$
Obviously, the sum of consecutive negative integers is negative and sum of consecutive positive integers is positive. There is $\frac{q}{2}$ such negative integers and $\frac{q}{2}$ positive integers. Thus $e_{f}(0)=e_{f}(1)=\frac{q}{2}$.

Case (ii) \mathbf{p} is odd. Let $\mathrm{p}=2 \mathrm{n}+1$
We define $f: V \rightarrow[-n . . n]$ as follows:

$$
f\left(v_{i}\right)=-i ; \quad 1 \leq i \leq n
$$

$$
\begin{aligned}
& f\left(v_{n+i}\right)=i ; 1 \leq i \leq n \\
& f\left(v_{2 n+1}\right)=0
\end{aligned}
$$

Since $f\left(v_{n}\right)=-n$ and $f\left(v_{n+1}\right)=1$, we have $f\left(v_{n} v_{n+1}\right)<0$, which implies the edge $v_{n} v_{n+1}$ receives the label 0 .
Similarly, since $f\left(v_{1}\right)=-1$ and $f\left(v_{2 n+1}\right)=0$, we have $f\left(v_{1} v_{n}\right)=-1$, hence the edge $v_{1} v_{2 n+1}$ receives the label 0 .This implies that $\mathrm{n}+1$ edges receive label 0 and n edges receive label 1 .

Therefore, $e_{f}(0)=n+1$ and $e_{f}(1)=n$.
Thus $\left|e_{f}(0)-e_{f}(1)\right|=1$.

Case (iii)

As a special case, we consider a cycle when $n=3$
We define the labelling $\mathrm{f}: \mathrm{V} \rightarrow[-1,0,1]$ as follows:
Let $f\left(v_{1}\right)=-1 ; f\left(v_{2}\right)=1 ; f\left(v_{3}\right)=0$
Then $f\left(v_{1} v_{2}\right)$ receives label $1, f\left(v_{1} v_{3}\right)$ receives label 0 and $f\left(v_{2} v_{3}\right)$ receives label 0
Therefore $\left|e_{f}(0)-e_{f}(1)\right|=1$.
From all the cases $\left|e_{f}(0)-e_{f}(1)\right| \leq 1$.
Thus C_{n} is integer cordial graph.

Fig: 2. C_{12} and C_{11} are integer cordial graph
Note: 2.2 Similar argument proves that Path P_{n} is also an integer cordial graph.

Theorem 2.3

Complete graph K_{n}, where $\mathrm{n}>3$, is not integer cordial.

Proof:

Let $v_{1}, v_{2}, \ldots v_{n}$ be the n vertices of K_{n}. Here $p=n$ and $q=\frac{n(n-1)}{2}$. Since each vertex is adjacent to every vertex, $\frac{n(n-2)}{4}$ integers are negative and $\frac{n(n-2)}{4}+\frac{n}{2}$ integers will be positive. That is $\frac{n(n-2)}{4}$ edges receive label 0 and $\frac{n^{2}}{4}$ edges receive label 1.

Thus, $e_{f}(0)=\frac{n(n-2)}{4} ; e_{f}(1)=\frac{n^{2}}{4}$.
Therefore, $\left|e_{f}(0)-e_{f}(1)\right| \$ 1$. Hence, K_{n} is not an integer cordial.

Theorem 2.4

The Wheel graph $W_{n} ; \mathrm{n}>3$ is integer cordial.

Proof:

Let u be the apex vertex and $v_{1}, v_{2}, \ldots v_{n}$ be the rim vertices. Here $\mathrm{p}=\mathrm{n}+1$ and $\mathrm{q}=2 \mathrm{n}$.

Case (i) p is even

We define $f: V \rightarrow \mathrm{to}\left[-\frac{p}{2} . \therefore \frac{p}{2}\right]^{*}$ as follows:

$$
\begin{aligned}
& f(u)=1 \\
& f\left(v_{i}\right)=-i ; 1 \leq i \leq\left\lceil\frac{n}{2}\right\rceil \\
& f\left(v_{\left\lceil\frac{n}{2}\right\rceil+i}\right)=i+1 ; 1 \leq i \leq\left\lfloor\frac{n}{2}\right\rfloor
\end{aligned}
$$

It can be checked that $e_{f}(0)=e_{f}(1)=\frac{q}{2}$.
Therefore, $\left|e_{f}(0)-e_{f}(1)\right|=0$

Case (ii) p is odd

We define $f: V \rightarrow\left[-\left\lfloor\frac{p}{2}\right\rfloor . .\left\lfloor\frac{p}{2}\right\rfloor\right]$ as follows:

$$
\begin{aligned}
& f(u)=0 \\
& f\left(v_{i}\right)=-i ; 1 \leq i \leq \frac{n}{2} \\
& f\left(v_{\frac{n}{2}+i}\right)=i ; 1 \leq i \leq \frac{n}{2}
\end{aligned}
$$

We observe that $\left(\frac{2 n}{2}-1\right)+1$ edges receive label 0 .
That is, $e_{f}(0)=e_{f}(1)=\frac{q}{2}$.
Therefore, $\left|e_{f}(0)-e_{f}(1)\right|=0$.
Thus from both the cases $\left|e_{f}(0)-e_{f}(1)\right| \leq 1$.

Hence $W_{n} ; \mathrm{n}>3$ is integer cordial

Fig: $3 \mathrm{~W}_{12}$ is integer cordial

Note: $\mathbf{2 . 5}$

W_{3} is not integer cordial.
The result follows from Theorem 2.3.

Theorem 2.6

The Star graph $K_{1, n}$ is integer cordial.

Proof:

Let $\mathrm{G}=K_{1, n}$ be the star graph. Let u be the apex vertex and $\left\{v_{1}, v_{2}, \ldots v_{n}\right\}$ be the pendant vertices. Here $\mathrm{p}=\mathrm{n}$ +1 and $\mathrm{q}=\mathrm{n}$. We consider two cases:

Case (i) \mathbf{p} is odd.

We define $f: V \rightarrow\left[-\left\lfloor\frac{p}{2}\right\rfloor . .\left\lfloor\frac{p}{2}\right\rfloor\right]$ as follows:

$$
\begin{aligned}
& f(u)=0 \\
& f\left(v_{i}\right)=-i ; 1 \leq i \leq \frac{n}{2} \\
& f\left(v_{\frac{n}{2}+i}\right)=i ; 1 \leq i \leq \frac{n}{2}
\end{aligned}
$$

The apex vertex u is given label 0 , and edges incident to positive integers receive positive label and edges incident to negative integers receives negative label. There are $\frac{n}{2}$ such edges receiving positive labels and $\frac{n}{2}$ edges receiving negative labels.

That is, $e_{f}(0)=e_{f}(1)=\frac{q}{2}$.
Thus, $\left|e_{f}(0)-e_{f}(1)\right|=0$.

Case (ii) \mathbf{p} is even

We define $f: V \rightarrow$ to $\left[-\frac{p}{2} . \frac{p}{2}\right]^{*}$ as follows:

$$
\begin{aligned}
& f(u)=1 \\
& f\left(v_{i}\right)=-i ; 1 \leq i \leq\left\lceil\frac{n}{2}\right\rceil \\
& f\left(v_{\left\lceil\frac{n}{2}\right\rceil+i}\right)=i+1 ; 1 \leq i \leq\left\lfloor\frac{n}{2}\right\rfloor
\end{aligned}
$$

Since the apex vertex is labeled as 1 and $\left\lfloor\frac{q}{2}\right\lrcorner$ edges receive label 0 and $\left\lceil\frac{q}{2}\right\rceil$ edges receive label 1 .
That is, $e_{f}(0)=\left\lfloor\frac{q}{2}\right\rfloor$ and $e_{f}(1)=\left\lceil\frac{q}{2}\right\rceil$
Hence, $\left|e_{f}(0)-e_{f}(1)\right|=1$.
From both the cases $\left|e_{f}(0)-e_{f}(1)\right| \leq 1$
Thus, $K_{1, n}$ is integer cordial.

Fig: 4. $\mathrm{K}_{1,8}$ is integer cordial

Theorem 2.7

Helm graph H_{n} is integer cordial.

Proof:

Helm graph H_{n} is always of odd order. Let v be the apex vertex, $v_{1}, v_{2}, \ldots v_{n}$ be the vertices of inner cycle and $u_{1}, u_{2}, \ldots u_{n}$ be the pendant vertices. Let $H_{n}=G$, then $\mathrm{p}=2 \mathrm{n}+1$ and $\mathrm{q}=3 \mathrm{n}$.

Case (i).n is odd (\mathbf{p} is odd)

We define $f: V \rightarrow\left[-\left\lfloor\frac{p}{2}\right\rfloor . .\left\lfloor\frac{p}{2}\right\rfloor\right]$ as follows:

$$
\begin{aligned}
& f(v)=0 \\
& f\left(v_{i}\right)=-i ; \quad 1 \leq i \leq\left\lceil\frac{\mathrm{n}}{2}\right\rceil
\end{aligned}
$$

$$
\begin{aligned}
& f\left(v_{\left\lceil\frac{n}{2}\right]+i}\right)=i ; 1 \leq i \leq\left\lfloor\frac{n}{2}\right\lrcorner \\
& f\left(u_{i}\right)=-\left(\left\ulcorner\frac{\mathrm{n}}{2}\right\urcorner+i\right) ; 1 \leq i \leq\left\lfloor\frac{n}{2}\right\lrcorner \\
& f\left(u_{\left\lfloor\frac{n}{2}\right\lrcorner+i}\right)=\left(\left\lfloor\frac{n}{2}\right\lrcorner+i\right) ; 1 \leq i \leq\left\lfloor\frac{n}{2}\right\rfloor
\end{aligned}
$$

Since the apex vertex is given the label 0 , out of n edges incident to $v,\left\lceil\frac{n}{2}\right\rceil$ edges receive label 0 and $\left\lfloor\frac{n}{2}\right\rfloor$ edges receive label 1. Similarly, $\left\lceil\frac{n}{2}\right\rceil$ edges receive label 0 and $\left\lfloor\frac{n}{2}\right\rfloor$ edges receive 1 from the cycle. The pendant vertices have n edges. Out of n edges, $\left\lfloor\frac{n}{2}\right\lrcorner$ edges receive 0 and $\left\lceil\frac{\mathrm{n}}{2}\right\rceil$ edges receive 1 . That is, $e_{f}(0)=\frac{3 n+1}{2}=\left\lceil\frac{\mathrm{q}}{2}\right\rceil$ and $e_{f}(1)=\frac{3 n-1}{2}=\left\lfloor\frac{q}{2}\right\rfloor$.

Thus $\left|e_{f}(0)-e_{f}(1)\right|=1$.

Case (ii) \mathbf{n} is even (\mathbf{p} is odd)

$$
\begin{aligned}
& f(v)=0 \\
& f\left(v_{i}\right)=-i ; 1 \leq i \leq \frac{n}{2} \\
& f\left(v_{\frac{n}{2}+i}\right)=i ; 1 \leq i \leq \frac{n}{2} \\
& f\left(u_{i}\right)=-\left(\frac{n}{2}+i\right) ; 1 \leq i \leq \frac{n}{2} \\
& f\left(u_{\frac{n}{2}+i}\right)=\left(\frac{n}{2}+i\right) ; 1 \leq i \leq \frac{n}{2}
\end{aligned}
$$

The apex vertex is labeled 0 , so out of n edges incident to v , $\frac{n}{2}$ edges receive label 1 and $\frac{n}{2}$ edges receive label 0 . Similarly out of n edges in the cycle, $\frac{n}{2}$ edges receive label 1 and $\frac{n}{2}$ edges receive label 0 .

That is, $e_{f}(0)=e_{f}(1)=\frac{q}{2}$.
Thus $\left|e_{f}(0)-e_{f}(1)\right|=1$.
Hence, H_{n} is integer cordial.

Fig: 5. H_{6} is integer cordial

Theorem 2.8

The closed helm graph $C H_{n}$ is integer cordial.

Proof:

Let v be the apex vertex, $\left\{v_{1}, v_{2}, \ldots v_{n}\right\}$ be the vertices of inner cycle and $\left\{u_{1}, u_{2}, \ldots u_{n}\right\}$ be the rim vertices.
Let $C H_{n}=G$. Then $\mathrm{p}=2 \mathrm{n}+1$ andq $=4 \mathrm{n}$.We define $f: V \rightarrow\left[-\left\lfloor\frac{p}{2}\right\rfloor . .\left\lfloor\frac{p}{2}\right\rfloor\right]$ as follows:

$$
\begin{aligned}
& f(v)=0 \\
& f\left(v_{i}\right)=-i ; 1 \leq i \leq n \\
& f\left(u_{i}\right)=i ; 1 \leq i \leq n
\end{aligned}
$$

From the above labeling we observe that $\frac{q}{2}$ edges receive label 1 and $\frac{q}{2}$ edges receive label 0 .
That is, $e_{f}(0)=e_{f}(1)=\frac{q}{2}$.
Thus $\left|e_{f}(0)-e_{f}(1)\right|=0$.
Hence, $C H_{n}$ is integer cordial.

Fig: $6 \quad \mathrm{CH}_{8}$ is integer cordial

Theorem 2.9

The complete bipartite graph $K_{n, n}$ is integer cordial if and only if n is even.
Proof:
Let $G=K_{n, n}$ be a complete bipartite graph with the partitions $\{\mathrm{U}, \mathrm{V}\}$ where $U=\left\{u_{1}, u_{2}, \ldots, u_{n}\right\}$ and $V=$ $\left\{v_{1}, v_{2}, \ldots . v_{n}\right\}$. Then $p=2 n$ and $q=n^{2}$. We define $f: V \rightarrow\left[-\frac{p}{2} . . \frac{p}{2}\right]^{*}$ as follows:

$$
\begin{aligned}
& f\left(u_{i}\right)=\left\{\begin{array}{c}
-\left(\frac{i+1}{2}\right) \text { if } i \text { is odd } ; 1 \leq i \leq n \\
\frac{i}{2} \text { if } i \text { is even } ; 1 \leq i \leq n
\end{array}\right. \\
& f\left(v_{i}\right)=\left\{\begin{array}{c}
-\left(\frac{n+i+1}{2}\right) \text { if } i \text { is odd } ; 1 \leq i \leq n \\
\left(\frac{n+i}{2}\right) \text { if } i \text { is even } ; 1 \leq i \leq n
\end{array}\right.
\end{aligned}
$$

From the above labeling, we observe that there are $\frac{n^{2}}{2}$ edges receive label 0 and also $\frac{n^{2}}{2}$ edges receive label 1 .
That is, $e_{f}(0)=e_{f}(0)=\frac{n^{2}}{2}=\frac{q}{2}$.
Hence $\left|e_{f}(0)-e_{f}(0)\right|=0$.
Thus G is integer cordial when n is even.

Fig: 7. $K_{6,6}$ is integer cordial
Conversely, when n is odd
Suppose $\mathrm{K}_{\mathrm{n}, \mathrm{n}}$ is integer cordial graph let us consider the labeling
$f\left(u_{i}\right)=-i ; 1 \leq i \leq n$ and $f\left(v_{i}\right)=i ; 1 \leq i \leq n$. $\mathrm{K}_{\mathrm{n}, \mathrm{n}}$ being a complete bipartite graph there are $\frac{n(n-1)}{2}$ possibilities of getting negative integers and $\frac{n(n+1)}{2}$ possibilities of getting positive integers. That is, $e_{f}(0)=\frac{n(n-1)}{2}$ and $e_{f}(1)=$ $\frac{n(n+1)}{2}$.

Therefore, $\left|e_{f}(0)-e_{f}(1)\right|=n \nsubseteq 1$.Similar proof holds if we consider any labeling.
Hence $K_{n, n}$ is not an integer cordial graph when n is odd.

Theorem: 2.10

The graph $K_{n, n} \backslash M$ is an integer cordial graph for every n , where M is a perfect matching.

Proof:

Consider the graph $K_{n n} \backslash M$ with vertex set $\mathrm{V}(\mathrm{G})=\{\mathrm{X}, \mathrm{Y}\}$ where $X=\left\{x_{1}, x_{2}, x_{3}, \ldots x_{n}\right\}$ and $Y=$ $\left\{y_{1}, y_{2}, y_{3}, \ldots, y_{n}\right\}$. Without loss of generality, let $\mathrm{M}=\left\{x_{1} y_{1}, x_{2} y_{2}, x_{3} y_{3}, \ldots, x_{n} y_{n}\right\}$. Let $G=K_{n, n} \backslash M$. Here $\mathrm{p}=2 \mathrm{n}$ and $\mathrm{q}=\mathrm{n}(\mathrm{n}-1)$. We define $f: V \rightarrow\left[-\frac{p}{2} . \frac{p}{2}\right]^{*}$ as follows:

$$
f\left(x_{i}\right)=-i ; 1 \leq i \leq n
$$

$$
f\left(y_{i}\right)=i ; 1 \leq i \leq n
$$

In particular, let us consider x_{n} and y_{n-1}. Then $f\left(x_{n}\right)=-n$ and $f\left(y_{n-1}\right)=n-1$. Therefore, $f\left(x_{n} y_{n-1}\right)=-n+$ $n-1=-1$, which is negative. Hence the edge $x_{n} y_{n-1}$ receives label 0 .

Similarly, let us consider, the edges y_{n} and x_{1}. Here $f\left(y_{n}\right)=n$ and $f\left(x_{1}\right)=-1$.
Then $f\left(y_{n} x_{1}\right)=n-1$. When $n>1$, the term will be positive. Hence we give the label 1 .
Similarly, the other $\left(\frac{q}{2}-1\right)$ edges receives label 0 and also $\left(\frac{q}{2}-1\right)$ edges receives label 1.
That is, $e_{f}(0)=e_{f}(1)=\frac{q}{2}$.
Hence $\left|e_{f}(0)-e_{f}(1)\right|=0$.

Fig: 8. $K_{5,5} \backslash M$ is integer cordial

References

[1] I.Cahit, Cordial graphs, A weaker version of graceful and harmonious graphs, ArsCombinatoria, 23,1987, pp 201-208.
[2] I.Cahit, Recent results and Open Problems on Cordial graphs, contemporary methods in Graph Theory, R.Bodendrek.(Ed.) Wissenschaftsverlog, Mannheim,1990, pp. 209-230.
[3] I. Cahit, H-Cordial Graphs, Bull.Inst.Combin.Appl; 18 (1996) 87-101.
[4] G.M. Du. Cordiality of complete k- partite graphs and some special Graphs, NeimengguShida. XuebaoZiranKexueHauwen Ban 2 (1997) 9-12.
[5] J.A.Gallian, A dynamic survey of graph labeling, Electron.J.Combin. 5 (2000) 1-79.
[6] Y.S. Ho, S.M. Lee, S.S. Shee, Cordial labeling of the Cartesian product and composition of graphs, Ars Combin. 29 (1990) 169-180.
[7] Y.S. Ho, S.M. Lee, S.S. Shee, Cordial labeling of unicyclic graphs and generalized Peterson graphs, Congr. Numer 68(1989) 109-122.
[8] M.Hovey, A-Cordial Graphs, Discrete Math. 1991 (3), pp 183-194.
[9] F.Harary, Graph Theory, Addison- Wesly, Reading Mass 1972.
[10] W.W.Kirchherr, NEPS Operations on Cordial graphs, Discrete Math.115(1993) 201-209.
[11] W.W.Kirchherr, On the cordiality of certain specific graphs, ArsCombin. 31 (1991) 127 - 138.
[12] W.W.Kirchherr,Algebraic approaches to cordial labeling, Graph Theory, Combinatorics Algorithms and Applications, Y. Alavi,et.al(Eds.)SIAM, Philadelphia, PA, 1991, pp 294 - 299.
[13] S.Kuo, G.J. Chang, Y.H.H. Kwong, Cordial labeling of $m K_{n}$ Discrete math. 169 (1997) 1- 3.
[14] Y.H.Lee, H.M. Lee, G.J.Chang, Cordial labeling of graphs, Chinese J.Math20(1992) 263 - 273.
[15] S.M.Lee, A.Liu, A construction of cordial graphs from smaller cordial graphs, ArsCombin. 32 (1991) 209-214.
[16] E. Seah, On the construction of cordial graphs from smaller cordial graphs, ArsCombin. 31 (1991) 249 254.
[17] S.C.Shee,The cordiality of the path - union of n copies of a graph, Discrete Math., 151 (1996) 221-229.
[18] S.C.Shee, Y.S.Ho, The Cardiality of the one-point union of n-copies of a graph, Discrete Math. 117 (1993) 225-243.
[19] M.Sundaram, R.Ponrajan, S.Somusundaram, Prime Cordial labelling of graphs, Journal of Indian Academy Of Mathematics, 27(2005) 373-393.
[20] A.Unveren and I.Cahit, M-Cordial Graphs, Pre-print
[21] S.K.Vaidya, N.A. Dani, K.K.Kanani, P.L.Vihol, Cordial and 3- Equitable labeling for some star related graphs, International Mathematical Forum, 4, 2009,no.31, 1543-1553.
[22] R.Varatharajan, S.Navaneetha Krishnan, K.Nagarajan, Divisor cordial Graphs, International J. . Math. Combin. Vol 4 (2011)15-25.
[23] R.Yilmazand I.Cahit, "E-Cordial graphs", ArsCombin., Vol 46, pp. 251 - 266, 1997.

