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 Abstract. 

In this paper we find, the necessary conditions for optimality of a system governed by elliptic variational 

inequalities of infinite order with obstacle, where the cost function is quadratic associated with the state y 

(u). When there is no constraint on the control variable, we give the first order necessary conditions of the 

optimality systems. 
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Introduction 
I.M.Gali et al [8] presented a set of inequalities defining an optimal control of a system governed by self-

adjoint operators with an infinite number of variables. 

Subsequently, J.L.Lions suggested a problem related to an optimal control, but in different direction by 

considering the case of operators of Infinite order with finite dimension [10,11]. This problem which was 

solved by Gali , have  been published in [7] .Moreover, I.M. Gali et al [8,9] presented some control 

problems generating both elliptic and hyperbolic linear operator of infinite order with finite number of 

variables. 
In a previous paper El -zahaby [5,6 ] proved the existence of an optimal control of a system governed by 

variational inequalities with an infinite number of variables. 
First order necessary conditions of the optimality system have been obtained by using the theory of  

Barbu [1,2 ]. 

In the present paper we use  the conical derivative, using the theory of Mignot [12]and Mignot and Puel 

[13], to obtain the optimality conditions for a system governed by variational inequalities for infinite 

order of obstacle type 
Some function spaces 
The embedding problems for non-trivial sobolev spaces are investigated in [3,4] , and an embedding 

criterion was established in terms of the characteristic functions of these spaces 
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In this case 

   
n

2
W {a ,2} L R W a ,2 

 
                                                                 (1) 

Where 

    2n

2
0

W {a ,2} u x C R . a D u


  

 
 

     

are Sobolev spaces of infinite order of periodic function defined on all of
nR and W {a ,2}


  denotes 

their topological dual with respect of   
n

2
L R  

Analogous to the above chain we have 

                
n

0 2 0
W {a ,2} L R W {a ,2} 

 
   

Here, 
0

W {a ,2}


  is the set of all functions of  W {a ,2}


  which vanish on the boundary   of 

n

R  . 
We recall   that  1,..., ,n n N     ,  we use the notations: 

                       1 ... n     , and    
1

1 ... n

n

D
x x




 



 

 

further 0a    is a numerical sequence ,and  
2
 is the norm in  

n

2
L R (all functional are assumed 

to be real valued). 
Let us consider an elliptic operator of infinite order with finite dimension 

                                  2

0

1Bu a D u
 








                                                                                       (2) 

This operator has a self-adjoint closure. 

 

We introduce a continuous bilinear form on W {a ,2}


 

),().( vBuvu   

2 n ) n
2

2

L (R ) L (R )
1

(( 1) a D u(x),v(x)) (q(x)u(x),v(x))


 




                                        (3) 

 

Where q(x) is a real valued function from   
n

2
L R  such that: 
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 

01,)(  xq .Then 

n nR R
1

(u,v) a (D u)(x)(D v)(x)dx q(x)u(x)v(x)dx


 




      

Lemma 1: 

Consider the continuous bilinear
  
form on  

0
W 

{ }2,a , then: 

),( vu is coercive, that is 

                     
2

,u u u    u,  
0

W 
{ }2,a ,                                                                   (4) 

 

Proof: 

The ellipticity of B is sufficient for the coerciveness of (u,v)  on 

0
W 

{ }2,a , 

In fact, ),( uu = 

           
n nR R

1

a (D u)(x)(D u)(x)dx q(x)u(x)u(x)dx


 


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Then,    
0

2

w {a ,2}
(u,u) u 



  . 

which proves the coerciveness of the bilinear form. 

If (.,.) is the duality between W {a ,2}


 and  W a ,2


 we have 

         , ,a B     for all ,   W a ,2


            

where    ( ,2 , ,2 )B L W a W a 

   

Now we define: 

             K = {u, u W {a ,2}, u o in }


                                                                          (5) 
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The set K is closed, convex and nonempty in W {a ,2}



 

If  f L
2
 (R

n
),    y = y (f) is the solution of the variational  inequality 

            a (y , y)


   (f, y ) dx ,  K  , y K .                                                 (6) 

Under assumptions (4) and for all   ,2f W a
  the variational inequality (6) has a unique solution  

 y f W {a ,2}



 . 

Control problem: 

We are now able to define correctly the control problem: 

Let f be given in  W a ,2


, let  adU  be a closed convex subset of   

        U    
n

2
L R . 

For each v 
ad

U  we define y = y (v),  the state of the system, as the solution of the variational 

inequality 

                     a (y, φ-y) < f+v, φ-y > ,     φK,   yK                                                              (7)                    

Now, for 
2

d
z L ( )    and N > O, we define the cost function J by: 

         J (v) = 
2 2

d

1
y(v) z ) dx N/ 2 v dx

2  

                                                                            (8)                       

we look for u (optimal control) such that 

              u
ad

U  , J (u) = 
adv u

inf


 J(v)                                                                                         (9) 

Theorem 1. 

There exists an optimal control u
ad

U  (and, in general, there is no uniqueness) 

Proof: 

We know that J (v)   o ,
ad

v U  let J be the infimum value of J (v) for 
ad

v U  and let  n
v  

N be a minimizing sequence. We then have: 

           
adn v ux

limJ v j inf


   J(v) 

as N is strictly positive,  n n N
v


 is a bounded sequence in 

ad
U   L

2
( ) and we can extract a weakly 

convergent subsequence  
kn k N

v


 such that 

        
k

2

n
)(v u in L  Weakly, as k   

  



Journal of Progressive Research in Mathematics(JPRM)                                                                                             

                                                                  ISSN: 2395-0218   

 
Volume 6, Issue 4 available at www.scitecresearch.com/journals/index.php/jprm                                                            846| 

 

then 
ad

u U because 
ad

U  is a closed and convex as  is bounded, the injection from 

2
L ( ) W {a ,2}


  is compact and so 

kn
v u in W {a ,2}


 strongly, as k  using 

the lower semicontinuity for the weak topology of 
2 2L ( )of v v dx,


    we get 

                j = 
K
lim


 inf J  
kn

v    J (u)   and   J (u) = min J (v). 

In order to get optimality conditions of first order, we shall assume that 
ad

U   L
2
( ) 

 If y is a solution of ( 6 ) we can define: 

             Zy = {x , x   , y (x) = o }                                                                                                 (10)      

 defined up to a set of zero capacity. 

S
y
 = { / W

{
,

a 2


},   o on Zy   , a(y, ) =  f  dx}                                                  (11) 

By Mignot ]12[ ,we know  that: 

 the mapping  y y v  possess at each point v a conical derivative  vDy w  

 such that ,for all  ,2w W a
 , we have :           v y v

Dy w S                             

           
        , , ,v v vy v

S a Dy w Dy w w Dy w                                                       12  

where  
 y v

S  is defined by (11). 

Therefore; the mapping   v J w  possesses at each v a conical derivative  Vw DJ w  defined by  

                  V d VDJ w y u z DJ w dx N v wdx
 

                                                             (13)                     

Lemma 2: 

If u is an optimal control, we have 

                        v w {a ,2}


  ,  DJu(W)   0                                                                            (14) 

Proof: 

It is evident that w
2L ( )  , DJu(w) 0 then it is easy to prove (10) , because 

2L ( ) is dense in 

the space w {a ,2}


 and because 

w D  JV (w) is continuous from W {a ,2}


into R 

Remark: 

The condition DJu(w)   0 means at the point u in each half direction w , the functional J(v) does not 

decrease  strictly, up to the first order. So it seems to be a 'good' optimality. 

Theorem 2. 

If u w {a ,2}


 , the optimality condition (10) holds at the point u if and only if there exists P such 

that 
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1 a 0

y(u ) d y(u )
P S , P A (y(u) z ) (S (u))

      

                 P (y) + Nu    0 

Where
0( )a

yS


  is a polar cone of Sy with respect to the adjoint form 

a
-*

 defined by: 

                
 

0( )a

y u
S



  = 
y(u )

{ / W {a ,2}, S ,a( , ) 0}


      , 

And p is the adjoint state. 

Under the given consideration and form theorem 2 and lemma 1, we may apply the result of Mignot  11  

we have the following immediately theorem: 

Theorem 3 

There exists a triple unique solution (u,y,p)  
n

2
(L R W {a ,2} W {a ,2}) 

 
    

Such that: 

                                   , , ,
nR

a y y f u y dx K                                                          (15) 

                                           , , , ,
n

d y y

R

a p y z dx S p S        

                                 , 0,
n

ad

R

p Nu v u dx v U                                                                 (16) 

 

u is the optimal control of (15) , and (16) is the optimality condition. 

Conclusion 

In this paper we use the conical derivative to find the optimality condition, now we try to study the 

optimal control problem governed by elliptic variational  inequalities for infinite order of obstacle type. 
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