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Abstract 

Let R be an associative ring with nonzero identity and let M  be a unitary left R −module.  In this paper, 

we introduce the concept of weakly primary submodules of M and give some basic properties of these 
classes of submodules.  Several results on weakly primary submodules over non-commutative rings are 

proved. We show that N is a weakly primary submodule of a left R −module M iff for every ideal P of 

R and for every submodule D of M with ,0 NPD  either ):( MNP  or ND  .  We also 

introduce the definitions of weakly primary compactly packed and maximal compactly packed modules. 

Then we study the relation between these modules and investigate the condition on a left R −module M
that makes the concepts of primary compactly packed modules and weakly primary compactly packed 
modules equivalent. We also introduce the concept of weakly primary radical submodules and show that 
every Bezout module that satisfies the ascending chain condition on weakly primary radical submodules 
is weakly primary compactly packed module. 
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1. Introduction 

Throughout this paper, all rings are assumed to be associative not necessarily commutative with non-zero 

identities, and all modules are unitary left modules. By "an ideal" we mean a 2-sided ideal. 

Recently, extensive researches have been done on prime and primary ideals and submodules.  The study 

of prime submodules is one interesting topic in module theory. In particular, a number of papers 

concerning prime submodules have been studied by various authors, see for example [9], [12], [15]. 

Weakly prime ideals in a commutative ring with nonzero identity have been introduced and studied by 

Anderson and Smith in [2]. They defined a weakly prime ideal P over a commutative ring R with 

identity as a proper ideal with the property that if whenever Rba , with ,0 Pab  then either Pa

or Pb .  The structure of weakly primary ideals in a commutative ring has been studied by Atani and 
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Farzalipour in [6]. They defined a weakly primary ideal P over a commutative ring R with identity as a 

proper ideal with the property that if ,0 Pab where Rba , , then Pa or 
nb P for some positive 

integer n .The structure of weakly prime ideals over non-commutative rings has been studied by Hirano, 

Poon, and Tsutsui in [10]. They defined a weakly prime ideal P over an associative ring R with identity 

as a proper ideal with the property that if PAB 0 implies either PA or PB  for any ideals 

BA, of R .  Recently, Ashour and Hamoda have been extended the concept of weakly primary ideals 

over a commutative ring to non-commutative rings in [5]. They defined a right weakly primary ideal P
over an associative ring R with identity as a proper ideal with the property that if whenever BA, are 

ideals of R such that PAB 0 , then PA  or Bn =  bn : b ∈ B ⊆ P for some n ∈ ℕ.  A proper 

ideal P of R is called left weakly primary if whenever A, B are ideals of R such that PAB 0 , then 

B ⊆P or An =  an : a ∈ A ⊆ P for some n ∈ ℕ. The ideal P is called weakly primary if it is both right 

and left weakly primary. 

The studying of prime submodules is extended in many ways, such as weakly prime submodules, primary 

submodules, graded prime submodules, and n−absorbing submodules, see [7], [8], [17], [18].The 

motivation of this paper is to continue the studying of the family of primary submodules, also to extend 

the results of Atani and Frazalipour [7] and Smith [18] to the weakly primary submodules over non-

commutative rings. In fact, a number of results concerning weakly primary submodules over non 

commutative rings are given. 

We begin by reviewing the relevant definitions that are used in the sequel of this paper in Section 2.In 

Section 3, we construct main results and theorems concerning weakly primary submodules over non-

commutative rings. We show that if N is a weakly primary submodule of a left R−module M with

0):( NMN , then N is a primary submodule of M, (see Theorem 3.1.). The first main result of this 

section is (Theorem3.3.). We show that N is a weakly primary submodule of M iff for every ideal Pof R 

and for every submodule D of M with ,0 NPD   either ):( MNP   or .ND  One important 

part of this section is the second main result(Theorem3.5.).We show that N is a weakly primary 

submodule of M if for m∈M –N, ).:0():():( RmMNRmN  Finally, in Section 4, we introduce 

the concepts of weakly primary compactly packed and maximal compactly packed modules and 

investigate the relation between these concepts. Thus we show (Theorem 4.3.) that if M is a left 

R−module with  0:)(  rRmMmMT for some  .00  Rr Then M is primary compactly 

packed module if and only if M is weakly primary compactly packed module. Also, we give the main 

result of this section (Theorem 4.7.). We show that if M is a Bezout module that satisfies the ascending 

chain condition on weakly primary radical submodules, then M is a weakly primary compactly packed 

module. 

2. Preliminaries 

We start by the following definition: 

Definition 2.1. [14] Let R be an associative ring with identity, M be a left R−module, and N be a 

submodule of M. The set (N : M) = {r ∈R : rM⊆N} is a left ideal of R called the left residual of N by M. 

In particular, if m ∈M, then  0:),0(  rmRrm  is called the left annihilator of m. 

Similarly the right analogous for right residual and right annihilator can be defined for right R−modules. 

Note that ),0( m need not be a two-sided ideal of R. However if ),0( m is a two-sided ideal of R, then

),0(),0( Rmm  . 

Definition 2.2. [11] Let R be an associative ring with identity, let M be a left R−module. 
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Then the set (0 : M) is a two sided ideal of R called the left annihilator of M. 

Similarly the right analogous for the right annihilator can be defined for right R−modules. 

In [9] Dauns defined the prime submodule over an associative ring with identity as follows: 

Definition 2.3. Let R be an associative ring with identity and M be a left R−module. A 

proper submodule N of M is called a prime submodule of M if rRm⊆N (r ∈R, m ∈M), implies that either 

m ∈N or r ∈(N : M). 

Definition 2.4. [16] An associative ring R with identity is called a semi commutative ring 

if ab = 0 implies aRb = 0 ∀a, b ∈R. 

Definition 2.5. [13] An associative ring R with identity is called a local ring if it has a unique maximal 

left (or right) ideal I of R denoted by (R,I). 

In a commutative case we have the following definition: 

Definition 2.6. [7] A proper submodule N of a module M over a commutative ring R is said to be weakly 

prime submodule if whenever ,0 Nrm for some r ∈R, m ∈M, then m ∈N or rM⊆N. 

3. Weakly primary submodules 

Our starting point is the following definitions: 

Definition 3.1. Let R be an associative ring with identity, M be a left R−module, and N be a submodule 

of M; then  NMRrMN r
n

 :):( for some positive integer n is called the radical of a 

submodule N over the ring R. 

Definition 3.2. Let M be a left R−module. A proper submodule N of M is called a primary submodule of 

M if whenever r ∈R and m ∈M with rRm⊆N, then either m ∈N or ).:( MNr  

Definition 3.3. Let M be a left R−module. A proper submodule N of M is called a weakly prime 

submodule of M if whenever r ∈R and m ∈M with ,0 NrRm then either m ∈N or r ∈(N : M). 

Definition 3.4. Let M be a left R−module. A proper submodule N of M is called a weakly primary 

submodule of M if whenever r ∈R and m ∈M with ,0 NrRm then either m ∈N or ).:( MNr  

Remarks 3.1. 

(i) It’s clear that every primary submodule of a left R−module is a weakly primary submodule. However, 

since 0 is always a weakly primary submodule (by definition), a weakly primary submodule does not 

need to be primary. 

(ii) We can prove directly from the definitions that every weakly prime submodule of a left R−module is 

a weakly primary. However the converse is not true in general, since for example ifR = Z, the set of 

integers, M = Z × Z and N = (4, 0)Z + (0, 1)Z, then N is a weakly primary submodule of M, however it is 

not weakly prime submodule of M since .)1,2(20 N But neither 2M ⊆N nor (2, 1) ∈N. 

(iii) If N is a weakly primary submodule of a left R−module M, then (N : M) is not in general a weakly 

primary ideal of R. For example, let M be the cyclic left Z−moduleZ/6Z. The zero module is a weakly 

primary submodule of M, but (0 : M) = 6Z is not a weakly primary ideal of Z. 
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(iv) If R is a commutative ring with identity. A proper submodule N is a weakly primary submodule of a 

left R−module M  iff whenever r ∈R and m ∈M with ,0 Nrm then m ∈N or ).:( MNr  This is 

clear by the equivalence rm ∈N iff Rrm ⊆N. 

As in the previous remark, we see that a weakly primary submodules need not be primary. 

The following theorem gives the condition that makes the weakly primary submodule primary. 

Theorem 3.1. Let N be a weakly primary submodule of a left R−module M. If ,0):( NMN then N is 

a primary submodule of M. 

Proof. Let r ∈R and m ∈M with rRm⊆N.  If ,0rRm  then N is weakly primary submodule gives m ∈N 

or ).:( MNr  So assume that rRm = 0.  If ,0 rN then ∃x ∈N such that .0rx Now 

,)(0 NxmrRrRx  so N is weakly primary submodule gives (m + x) ∈N or ).:( MNr  

Thus m ∈N or ).:( MNr Now we assume that rN = 0.  If ,0):( mMN  

then ):( MNk such that .0km  So .)(0 NRmkrkRm  So m ∈N or 

).:()( MNkr 
 
Since ),:( MNk  then we have m ∈N or ).:( MNr

 
So we can assume 

that .0):( mMN
 

Since ,0):( NMN ):( MNf   and d ∈N such that .0fd Then

,)()(0 NdmRfrfRd   so (m+ d) ∈N or ).:()( MNfr   Thus m ∈N or 

):()( MNfr  , so m ∈N or ).:( MNr  

Now, the following result follows immediately from Theorem 3.1. 

Corollary 3.2. Let N be a weakly primary submodule of a left R−module M.  If N is not primary 

submodule of M, then for any ideal P of R such that ):( MNP   we have PN = 0. In particular

.0):( NMN  

In a similar manner we can prove the following result: 

Remark 3.2. If N is a weakly prime submodule of a left R−module M that is not prime, then forany ideal 

P of R such that P ⊆(N : M), then PN = 0. In particular(N : M)N = 0. 

Theorem 3.3. Let N be a proper submodule of a left R−module M.  Then the following are equivalent: 

(i) N is a weakly primary submodule of M. 

(ii) For every ideal P of R and for every submodule D of M with ,0 NPD  either ):( MNP  or 

D ⊆N.  

Proof. (i)⇒(ii) Suppose that N is a weakly primary submodule of M. If N is primary, then the result is 

trivial. So assume that N is a weakly primary submodule of M that is not primary. Let NPD 0  with 

x ∈D−N.  We want to show that ).:( MNP  Let r ∈P.   If ,0 rRx since rRx⊆N and N is weakly 

primary, so ).:( MNr So assume that 0 = rRx.  Now assume that ,0rD  say 0rt for some t 

∈D. Now ,0 NrRt  then ).:( MNr If ,Nt then ).:( MNr If t ∈N, then 

,)(0 NxtrRrRt  so (t + x) ∈N or ).:( MNr  Since ,Nx  then ).:( MNr So we 
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can assume that rD = 0.Suppose that ,0Px  say 0ax  where a ∈P.  Now .0 NaRx  Then N is 

weakly primary submodule gives ).:( MNa As ,)(0 NRxaraRx  we get ).:( MNr
 

Therefore we can assume that Px = 0. Since PpPD  ,0 and Dt 
1

 such that .0
1
tp Now 

.0
1

NpRt 
 
As .0):( NMN  (by Corollary3.2.) and ,)(0

11
NxpRpR tt  we have two 

cases: 

Case(I). ):( MNp  and .)(
1

Nxt   

Since ,)()(0
11

NpRxRpr tt  we obtain ):()( MNpr  , so ).:( MNr  

Case (II). ):( MNp  and .)(
1

Nxt   

As .0
1

NpRt  We have ,
1

Nt   so x ∈N which is a contradiction. 

Therefore ).:( MNr   Thus ):( MNP  . 

(ii)⇒(i) Assume that NsRm0  where s ∈R and m ∈M.  Take P = Rs and D = Rm.

,0 NRsRmPD  so either ):( MNP   or D ⊆N.  Thus ):( MNs  or m ∈N. 

Theorem 3.4. Let N be a proper submodule of a left R−module M.  Then the following are equivalent: 

(i) For ideal P of R and submodule D of M with 0≠PD ⊆N, either P ⊆(N : M) or D ⊆N. 

(ii) N is a weakly prime submodule of M. 

(iii) For m∈M –N, (N : Rm) = (N : M)∪(0 : Rm). 

(iv) For m∈M –N, (N : Rm) = (N : M) or (N : Rm) = (0 : Rm). 

Proof. (i)⇒(ii) Suppose that NsRm0  where s ∈R and m ∈M. Take P = Rs and D = Rm. Then 

,0 NPD  so either P ⊆(N : M) or D ⊆N, hence either s ∈(N : M) or m ∈N.  Thus N is weakly prime 

submodule of M. 

(ii)⇒(i) Suppose that N is a weakly prime submodule of M.  If N is prime then the result is clear. So we 

can assume that N is a weakly prime submodule of M that is not prime. 

Let NPD 0  with x ∈D−N.  We need to show that ):( MNP  .  Let r ∈P.   If ,0 rRx since 

rRx⊆N and N is weakly prime, so r ∈(N : M). So assume that 0 = rRx.  Now assume that ,0rD  say 

0rt for some t ∈D.  Now .0 NrRt   If ,Nt  
then r ∈(N : M).  If t ∈N, then 

,)(0 NxtrRrRt  so (t + x) ∈N or r ∈(N : M).  Since ,Nx  then r ∈(N : M). So we can 

assume that rD = 0. Suppose that ,0Px  say 0ax  where a ∈P.  Now .0 NaRx  ThenN is 

weakly prime  submodule gives ).:( MNa As ,)(0 NRxaraRx  we get r ∈(N : M), so P 

⊆(N : M).  Therefore we can assume that Px = 0.Since PpPD  ,0 and Dt 
1

 such that .0
1
tp

As(N : M)N = 0 (by Remark 3.2.) and ,)(0
11

NxpRpR tt  we have two cases: 

Case(I). p ∈(N : M)  and .)(
1

Nxt   
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Since ,)()(0
11

NpRxRpr tt  we obtain (r + p) ∈(N : M),so r ∈(N : M). 

Case (II). ):( MNp  and .)(
1

Nxt   

As .0
1

NpRt  We have ,
1

Nt   so x ∈N which is a contradiction. 

Therefore r ∈(N : M).  Thus P ⊆(N : M). 

(ii)⇒(iii) If m ∈M –N,  then it is clear that K = (N : M)∪(0 : Rm) ⊆(N : Rm).  Let 

x ∈(N : Rm). Then xRm⊆N.  If ,0 xRm  then x ∈(N : M) since N is weakly prime submodule. If xRm 

= 0,  then x ∈(0 : Rm). 

(iii)⇒(iv) Let m ∈M−N, so that (N : Rm) = (N : M)∪(0 : Rm).Now (N : Rm),  (N :M) and  

(0 : Rm) are all ideals of R, that means (N : M)∪(0 : Rm) is an ideal of R and since the union of two 

ideals of a ring is an ideal iff one of them is contained in the other, so we have (N : M) ⊆ 

(0 : Rm) or (0 : Rm) ⊆(N : M), from which we get (N : Rm) = (N : M) or (N : Rm) = (0 : Rm). 

(iv)⇒(ii) Suppose that NrRm0  where r ∈R and m ∈M−N.  Then r ∈(N : Rm) and ).:0( Rmr  
It 

follows that r ∈(N : M). 

Theorem 3.5. Let N be a proper submodule of a left R−module M.  Then the following are equivalent: 

(i) N is a weakly primary submodule of M. 

(ii) For m∈M –N, ).:0():():( RmMNRmN   

Proof. (i)⇒(ii) Assume that N is a weakly primary submodule of M and let r ∈(N : Rm) 

where m ∈M –N.  Thus rRm⊆N. If ,0rRm then N is weakly primary submodule gives ),:( MNr  

and hence ).:0():( RmMNr    If rRm = 0,  then r ∈(0 : Rm) and hence 

).:0():( RmMNr   

(ii)⇒(i) Suppose that NrRm0  with r ∈R and m ∈M –N.  Then r ∈(N : Rm) and ).:0( Rmr   

Now ):0():():( RmMNRmN   implies ).:( MNr Thus, N is weakly primary. 

Proposition 3.6. Let N be a proper submodule of a left R−module M.  Then the following are equivalent: 

(i) For every ideal P of R and for every submodule D of M with PD ⊆N, either ):( MNP  or D ⊆N. 

(ii) N is a primary submodule of M. 

(iii) For every left (or right) ideal P of R and for every submodule D of M with PD ⊆N, either 

):( MNP  or D ⊆N. 

Proof. (i)⇒(ii) Let r ∈R and m ∈M such that rRm⊆N.  It follows, since N is a submodule, that 

(RrR)(Rm) ⊆N.  Now, by (i), we get ):( MNRrR   or  Rm⊆N.  If ):( MNRrR  , then 

):( MNr .  If Rm⊆N, then m ∈N.  Therefore N is primary. 
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(ii)⇒(iii) Assume that PD ⊆N, for left (or right) ideal P ⊆R and submodule D ⊆M.  If 𝐷 ⊈ 𝑁,then there 

exists x ∈D − N. For every t ∈P, we have (tR)x = t(Rx) ⊆PD ⊆N which gives, by(ii), ).:( MNt  

(iii)⇒(i) Obvious. 

Now we introduce the following definition: 

Definition 3.5. Let M be a left R−module, the subset T(M) of M is defined by 

T(M) = {m ∈M : rRm = 0 for some 0≠r ∈R} 

Note that if R is an integral domain, then it is easy to see that T(M) is a submodule of M. 

Theorem 3.7. Let M be a left R−module with T(M) = 0. Then every weakly primary submodule of M is 

primary. 

Proof. Let N be a weakly primary submodule of M.  Suppose that rRm⊆N where r∈R, m ∈M. If 

NrRm0 , then N is weakly primary submodule gives m ∈Nor ).:( MNr If rRm = 0,  then r = 

0 or m = 0 (since T(M) = 0). Thus N is primary. 

Proposition 3.8. Let M be a left module over a semi commutative local ring R with unique maximal left 

ideal P.  If PM = 0, then every proper submodule of M is weakly prime. 

Proof. Let N be a proper submodule of M and let NrRm0  where r ∈R andm ∈M.  Then 

Nrm0 (because R is semi commutative).If r is a unit, then m ∈N. If r is not a unit, then  

rm∈PM = 0, a contradiction. Hence N is weakly prime. 

Theorem 3.9. Let M1and M2 be left R−modules, M = M1⊕M2 be a direct sum ofM1 and M2and let N 

⊆M1⊕M2. Then the following are satisfied: 

(i) If N = Q⊕M2 is a weakly primary submodule of M for some submodule Q of M1, then Q is aweakly 

primary submodule of M1. 

(ii) If N = M1⊕Q is a weakly primary submodule of M for some submodule Q of M2,then Q is a weakly 

primary submodule of M2. 

Proof. (i) Let N = Q⊕M2 be a weakly primary submodule of M = M1⊕M2. Let 

QrRq 0 where r ∈R, q ∈M1 such that q ∉Q,  then (q, 0)∉ Q⊕M2. 

QqrR  )0,(0 ⊕M2. Since N = Q⊕M2 is a weakly primary submodule of M, ∃a positive integer n 

such that r
n
(M1⊕M2) ⊆Q⊕M2.Hence r

n
M1⊆Q for some positive integer n. So ).:(

1MQr

Therefore Q is weakly primary submodule of M1. 

(ii) Proceed similar as in (i). 

4. Weakly primary compactly packed modules 

Primary compactly packed and primary finitely compactly packed modules have been introduced and 

studied by Ashour in [3], [4]. In this section we study the concepts of weakly primary compactly packed 

and maximal compactly packed modules. 

Recall that a proper submodule N of a left R−module M is said to be maximal if there 
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is no submodule K of M such that𝑁 ⊈ 𝐾 ⊈ 𝑀. 

Definition 4.1. [3] Let M be a left R−module. A submodule N of M is called primary compactly packed 

submodule of M denoted by pcp−submodule of M if for each family{Pi : i ∈ I} of primary submodules of 

M with N ⊆∪ i∈ I Pi , N ⊆Pj for some j ∈ I. 

M is called primary compactly packed module denoted by pcp−module if every submodule of M is a 

pcp−submodule. 

Now, we give the following definitions: 

Definition 4.2. Let M be a left R−module.A submodule N of M is called weakly primary compactly 

packed submodule of M denoted by wpcp−submodule of M if for each family 

{Pi : i ∈ I} of weakly primary submodules of M with N ⊆∪ i∈ I Pi , N ⊆Pj for some j ∈ I. 

M is called weakly primary compactly packed module denoted by wpcp−module if every submodule of 

M is a wpcp−submodule. 

Definition 4.3. Let M be a left R−module. A submodule N of M is called maximal compactly packed 

submodule of M denoted by mcp−submodule of M if for each family{Pi : i ∈ I} of maximal submodules 

of M with N ⊆∪ i∈ I Pi , N ⊆Pj for some j ∈ I. 

M is called maximal compactly packed module denoted by mcp−module if every submodule of M is a 

mcp−submodule. 

Now, we need the following Lemma: 

Lemma 4.1. Every maximal submodule in a left R−module M is prime submodule. 

Proof. Let K be a maximal submodule of M.  Assume that r ∈ R and m ∈ M such that rRm⊆K. Suppose 

that Km .  Then m + K is a nonzero element in M/K, which means that M/K is cyclicgenerated by m + 

K. Hence for every x ∈ M, there exists t ∈ R such that x + K = t(m + K).  It follows that x − tm ∈ K and 

therefore 

rx− rtm∈ K.  However, by the assumption rtm∈ K and we conclude rx∈K and consequently r∈ (K : M). 

Remark 4.1. Clearly, every wpcp−module is pcp−module, and every pcp−module ismcp−module. 

Theorem 4.2. Let M be a finitely generated left R−module. Then M is a mcp−module if and only if every 

submodule N in M satisfies N + Pi≠M for some i ∈ I where N ⊆∪ i∈ I Pi , Pi′s are weakly primary 

submodules of M. 

Proof. Let M be a finitely generated left R−module, and suppose that N is a submodule of M such that N 

⊆∪ i∈ I Pi , Pi′s are weakly primary submodules of M.  Foreach Pi , there exists a maximal submodule Mi 

containing Pi .  Then N ⊆∪ i∈ IMi and so N ⊆Mi for some i ∈ I by hypothesis. Since Pi⊆Mi , we have N + 

Pi⊆Mi≠M. 

Conversely; let N be a submodule of M such that N ⊆∪ i∈ IMi where each Mi is a maximal submodule of 

M. Since every prime submodule is weakly prime submodule and every weakly prime submodule is 

weakly primary submodule, so every maximal submoduleis weakly primary (by Lemma 4.1.), then N 

+Mi≠M for some i ∈ I. Therefore, since Mi⊆N +Mi⊊  M, then N+Mi = Mi , so N ⊆Mi for some i ∈ I. 

The following theorem follows immediately from Theorem 3.7. and Remark 4.1. 

Theorem 4.3. Let M be a left R−module with T(M) = 0.  Then M is a pcp−module if and only if M is a 

wpcp−module. 
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Now, we give the following definition: 

Definition 4.4. Let N be a submodule of a left R−module M. The intersection of all weakly primary 

submodules containing N is called the weakly primary radical of N and is denoted by wprad(N). If there 

is no weakly primary submodule containing N, then wprad(N) = M. In particular wprad(M) = M. We say 

that a submodule N is a weakly primary radical submodule if wprad(N) = N. 

The following result can be easily proved: 

Proposition 4.4. Let N and L be submodules of a left R−module M. Then the following are hold: 

(i) N ⊆ wprad(N). 

(ii) wprad(wprad(N))= wprad(N),  that is the weakly primary radical of N is a weakly primary radical 

submodule. 

(iii) If N ⊆L, then wprad(N) ⊆wprad(L). 

(iv) wprad(N∩L) ⊆wprad(N)∩wprad(L). 

Theorem 4.5. Let M be a left R−module. The following statements are equivalent: 

(i) M is a wpcp−module. 

(ii) For each proper submodule N of M, there exists m ∈ N such that wprad(N) = wprad(Rm). 

(iii) For each proper submodule N of M, if {Ni : i ∈ I} is a family of submodules of Mand  

N ⊆∪ i∈ I Ni , then N ⊆wprad(Nj) for some j ∈ I. 

(iv) For each proper submodule N of M, if {Ni : i ∈ I} is a family of weakly primaryradical submodules of 

M and N ⊆∪ i∈ I Ni , then N ⊆Nj for some j ∈ I. 

Proof. (i)⇒(ii) Assume that M is a wpcp−module and let N be a proper submodule of M. It is clear that 

wprad(Rm) ⊆wprad(N) for each m ∈ N. For the other inclusion, suppose that wprad(N) ⊈wprad(Rm) for 

each m ∈ N.  Then for each m ∈ N, there exists a weakly primary submodule Pm for which Rm⊆Pm and N 

⊈ Pm .   ButN =∪m∈NRm⊆∪m∈ N Pm ,  that is M is nota wpcp−module, which is a contradiction. 

(ii)⇒(iii) Let N be a proper submodule of M, and let {Ni : i ∈ I} be a family of submodules of Msuch that 

N ⊆∪ i∈ I Ni .By (ii), there exists m ∈ N such that wprad(N) = wprad(Rm).  

Then m ∈∪ i∈ I Ni and hence m ∈ Nj for some j ∈ I. Hence N ⊆wprad(N) = wprad(Rm) ⊆wprad(Nj) for 

some j ∈ I. 

(iii)⇒(iv) Let N be a proper submodule of M, and let {Ni : i ∈ I} be a family of weakly primary radical 

submodules of M such that N ⊆∪ i∈ I Ni .  By (iii), there exists j ∈ I such that N ⊆wprad(Nj).  Since Nj is 

weakly primary radical submodule of M, thenN ⊆Nj . 

(iv)⇒(i) Let N be a proper submodule of M, and suppose that {Ni : i ∈ I} is a family of weakly primary 

submodules of M such that N ⊆∪ i∈ I Ni .Since Ni is weakly primary submodule of M for each i ∈ I, Ni = 

wprad(Ni) for each i ∈ I. Thus N ⊆∪ i∈ I Ni =∪ i∈ Iwprad(Ni).  By (iv), there exists j ∈ I such that N 

⊆wprad(Nj) = Nj . Thus M is a wpcp−module. 

Now we give the definition of the Bezout module over non commutative ring which is a generalization of 

the definition of the Bezout module over commutative ring in [1]. 

Definition 4.5. A left R−module M is said to be a Bezout module, if every finitely generated submodule 

of M is cyclic. 
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Consider the following Lemma: 

Lemma 4.6. Let M be a left R−module. If M satisfies the ascending chain condition on weakly primary 

radical submodules, then any weakly primary radical submodule is the weakly primary radical of a 

finitely generated submodule. 

Proof. Assume that there exists a weakly primary radical submodule N which is not weakly primary 

radical of a finitely generated submodules. Let m1∈ N and N1 = wprad(m1R).Then N1⊆N.  So there exists 

m2∈ N−N1 .Let N2 = wprad(m1R+m2R).  Then N1⊆N2⊆N.  So that there exists m3∈ N − N2 .  Continuing 

in this process, we will have an ascending chain of weakly primary radical submodules N1⊆N2⊆N3⊆ · · 

·which is a contradiction. 

Now, we are ready to prove the main result of this section. 

Theorem 4.7. Let M be a Bezout module. If M satisfies the ascending chain condition on weakly primary 

radical submodules, then M is wpcp−module. 

Proof. Let N be a proper submodule of M.  By Lemma 4.6., there exists a finitely generated submodule K 

of M such that wprad(N) = wprad(K) and hence K is cyclic submoduleof M, because M is Bezout. It 

follows by Theorem 4.5. that M is a wpcp−module. 
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