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Abstract: Let R be a commutative ring with identity, an R- module M is called G*⊕Z* 

supplemented modules, if every sub module containing Z*(M) has generalized* 
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every Co-finite sub module of M has G*S that is direct summand of M. 
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 In this paper we will prove some properties of these types of  modules.      
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  §1 Introduction 

       Let R be an associative ring with identity and let M be a unital left R-module  a 

submodule N of an R-module M is called small in denoted by  N ≪ M, if whenever N + L = 

M for some submodule L of M, then L = M .equivalently for any proper submodule L of M, 

N + L ≠ M[1], let N and L be a submodule of M .N is called supplement of L in M if M = N 

+ L and N is minimal with respect to this property equivalently, M = N + L and N ∩ L ≪ N  

[1].M is called supplemented, if every submodule of M has a supplemented in M [2] 

      For any R-module M, Z*(M) = {m ∊ M, Rm ≪ E (M)} where E(M) is the injective  hull 

of  M . equivalently  Z*(M) = M ∩ Rad (E(M)) = M ∩ Rad(E1) for any injective E1 ≥ M , 

where Rad(E(M)) and Rad(E1)  denoted  the Jacobson  radical of E(M).E1 respectively 

.Z*(M) is called the co-singular submodule of M see[3 ], Notice that Rad (M) ≤ Z*(M).But 

the converse does not hold in general for example Z as Z-module, Z*(Z) = Z ≠ Rad (Z).    

         Let M be module , if N ,L ≤ M , and M = N + L , then L is called generalized 

supplement of N in case N ∩ L ≤ Rad(L), M is called generalized supplemented or (briefly 

GS)in case each submodule N has generalized supplement in M[4].  A module M is called 

generalized ⊕ supplemented, if every submodule has a generalized supplement that is a 

direct summand of M [5] As a generalization of ⊕ supplemented modules .In [6] anther were 

notation introduced called generalized⊕ radical supplemented module .A module M is called 

generalized ⊕ radical supplemented, if every submodule containing radical has a generalized 

supplement that is a direct summand of M.   

      The concept generalized* supplement modules were introduced in [7] .Let M be a 

module, if N, L ≤ M and M = N + L then L is called a generalized* supplement of L in case N 

∩ L ≤ Z*(L) .A submodule K of M is called co- finite if M / K is finitely generated. In [8] M 

is called ⊕ co-finitely supplemented (briefly) ⊕ cof- supplemented, if every co-finitely 

submodule of M has a supplement that is a direct summand of M. 

         In this paper we define generalized*⊕ Z* supplemented as a generalization of ⊕ 

supplemented module .A module M is called G* ⊕ Z* supplemented if every submodule 

containing Z*(M) has generalized* supplement in M that is a direct summand of M (i.e. ⩝ N 

≤ M, Z*(M) ≤ N, N has generalized* supplement L in M and L is direct summand .Clearly 

every semi-simple module is a G*⊕ Z*S and every ⊕   

      As a generalization of ⊕ cof-supplemented we define ⊕ co-finitely generalized* 

supplement (briefly) ⊕cof-generalized* supplement, if every co-finitely submodule of M has 

generalized* supplement that is direct summand of M for short G*⊕CS. Clearly ⊕ 

supplement are G*⊕CS module and the converse is true if M is finitely generated.    
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§2 Generalized* ⊕ Z* supplemented  

         In this section we define G*⊕Z* supplemented module as a generalization of ⊕ 

supplemented in [6] and study some of properties of G*⊕Z*S supplemented module. Cleary 

every ⊕ supplemented module is a G*⊕Z*S module, but the converse does not hold in 

general, for example Z-module, Q is a G*⊕Z*S module which is not ⊕ supplemented 

module. 

Definition (2.1) :- A module M is called G*⊕ Z* supplemented  if every sub module 

containing Z*(M) has generalized* supplement in M that is a direct summand of M ( i.e. ⩝ N 

≤ M, Z*(M) ≤ N, N has generalized* supplement  L in M  and L is direct summand ( i.e. there 

exist L , K ≤ M such that M = L + N = L⊕ K and N ∩ L ≤ Z*(L).  

        Recall that a sub module N of M is called fully invariant if for every h ∈End (M), h (N) 

≤ N and M is called a duo module, if every sub module of M is fully invariant.[1]  

Lemma (2.2):-Let M be a duo module, if M= M1⊕M2 then N= (N∩M1) ⊕ (N∩M2) for N is 

submodule of M. 

Proof:- see[9]   

Lemma (2.3):- Let M be any R-module, and let N be a submodule of M, then Z*(N) = Z*(M) 

∩ N.       [ 10 ]    

Proposition (2.4):- Let M be a G*⊕Z*S module, if N is a fully invariant submodule of M, 

then N is a G*⊕Z*S module. 

Proof:- Let K ≤ N ≤ M with Z*(N) ≤ K, then Z*(M) ≤ K + Z(M) since M is a G*⊕Z*S 

module, then there exist L , L´ ≤ M such that M = ( K + Z*(M)) + L = L ⊕ L´ and ( K + 

Z*(M)) ∩ L ≤ Z*(L).Now N = ( K + Z*(M)) + L) ∩ N = K + (Z*(M) ∩ N ) + ( L ∩ N ), 

hence N = ( K + Z*(N)) + ( ( L ∩ N) = K + ( L ∩ N) since Z*(N) ≤ K and K ∩ ( L ∩ N ) = ( 

K ∩ L ) ∩ N ≤ (( K + Z*(M)) ∩ L) ∩ N ≤ Z*(L) ∩ N = ( Z*(M) ∩ ( L ∩ N )) = Z* ( L ∩ N ) 

since M = L ⊕ L´, hence N = ( L ∩ N ) ⊕ ( L´ ∩ N ) therefore N is a G*⊕Z*S submodule of 

M. 

Proposition (2.5):-If M is a G*⊕Z*S module, then M / N is a G*⊕Z*S for every fully 

invariant submodule of M. 

Proof:- Let N be a fully invariant submodule of M and let K / N ≤ M / N with Z*( M / N ) ≤ K 

/ N , since Z*(M) + K / N ≤ Z* (M / N )by [11],then Z*(M) ≤ K,  then by assumption there 

exist L ≤M such that M = L + K with L ∩ K ≤ Z*(L) and M = L ⊕ L´ for some L´ ≤ M ,thus 

M / N = K / N + (L + N ) / N and K / N ∩ ( L + N ) / N = ( K ∩ L )+ N / N ≤ Z*(L) + N / N ≤ 
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Z*(L + N )/ N. Since N is a fully invariant submodule of M then N = (N ∩ L) + (N ∩ L´) and 

(N + L) / N ∩ (N + L´) / N = 0 then M / N = N + L / N ⊕ N + L´ / , hence M / N is a 

G*⊕Z*S module. 

Corollary (2.6) :- The homomorphic image of a duo G*⊕Z*S is a G*⊕Z*S module 

Proof:-  Clear sine every homomorphic image is isomorphic to a quotient module.   

          The following theorem shows that when M is a duo module, the direct sum of 

G*⊕Z*S is again a G*⊕Z*S.  

Theorem (2.7):- If M = M1 ⊕M2, if M is a duo module and M1, M2 are G*⊕Z*S, then M is a 

G*⊕Z*S.  

Proof:- Let N ≤ M with Z*(M) ≤ N, then Z*(M1) ≤ N ∩ M1 ⩝ i= 1,2 hence there exist Vi , V´i  

of Mi     ( ⩝ i=1,2) such that Mi = ( N ∩ Mi ) + Vi , ( N ∩ Mi) ∩ Vi ≤ Z*( Vi)and Mi = Vi ⊕ 

V´i since N is fully invariant submodule of M hence N = N ∩ M1 ⊕ N ∩ M2, let V = V1 ⊕V2, 

V´= V´1 ⊕V´2, hence there exist V, V´ ≤ M such that M = M1⊕M2 = ( N ∩ M1) ⊕( N ∩ M2) 

+ ( V1 ⊕ V2)= N + V and N ∩ V = ( N ∩ M1) + ( N ∩ M2) ∩ ( V1 ⊕ V2) ≤ Z*( V1) ⊕ Z*(V2) 

= Z*(V)  by [11] and V ⊕V´ =( V1 ⊕ V2)⊕( V´1 ⊕ V´2) = M1⊕M2= M, hence M is 

G*⊕Z*S 

Corollary ( 2.8) :- Let { Mi}i= 1  be any infinite collection of  R-modules and M= ⊕i∊I  Mi is 

duo module,  then M is G*⊕Z*S if  Mi are G*⊕Z*S for each i∊I. 

 Lemma (2.9):- For any R-module M ≠ 0, Z*(M) = 0 if and only if Rad(E (M)) = 0. 

Proof:- see [ 11] 

Proposition (2.10) :-  Let M be a non –zero R-module with Rad( E( M)) = 0 then M is 

G*⊕Z*S if and only if M is semi- simple. 

Proof:- ⇒) Clear  since Rad (E(M)) = 0 then by Lemma ( 2.9)  Z*(M) = 0, hence       ⩝ 0 ≤ N 

≤ M, N has generalized* supplement in M  i.e. there exist K ≤ M such that M = N + K and N 

∩ K = Z*(K) = 0 ⇒ N is a direct summand of M   

  ⇐) Clearly since every semi-simple is a G*⊕Z*S.  

§3 ⊕Co-finitely generalized* supplemented modules 

          In this section we introduce a ⊕co-finitely generalized* supplemented module as a 

generalization ⊕ co-finitely generalized module.[8]   
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Definition (3.1):- An R-module M is called generalized*co-finitely supplemented if every co-

finite has submodule of M has a generalized* supplement in M for short we will refer to these 

module by G*CS. M is called ⊕ co- finitely generalized* supplemented or (briefly) ⊕-cof  

G*S, if every co- finite submodule of M has G*S that is direct summand of M for short 

(G*⊕CS)( i.e. ⩝ N ≤ M with M / N is finitely generated, there exist L  ≤ M such that L is a 

G*S of N in M ( M = N + L ), N ∩ L ≤ Z*(L) and there exist K ≤ M such that M = L ⊕ K. 

         It easy to see that ⊕ supplement modules are G*⊕CS module and the converse is true 

if M is finitely generated, Notice that hollow modules are G*⊕CS modules. 

     The following proposition shows that under certain condition the quotient of G*⊕CS is a 

G*⊕CS 

Proposition (3.2):- Assume that M is a G*⊕CS due module then M / N is a G*⊕CS 

module. 

Proof:- Let N ≤ K ≤ M with K / N a co- finite submodule of M / N, then M / K ≃ ( M / N ) / ( 

K / N ) is finitely generated since M is a G*⊕CS module, there exist a submodule L and L´ of 

M such that M = K + L = L ⊕ L´ and K ∩ L ≤ Z*(L). 

Notice that M / N = K/ N + ( L + N) / N by modularity K ∩ ( L + N ) = ( K ∩ L ) + N since K 

∩ L ≤ Z*(L), we have K / N∩ ( L + N) / N = [(K ∩ L) + N ] / N ≤ Z* ( L + N ) / N this 

implies that ( L + N ) / N is G*S of K / N in M / N .Now N = ( N ∩ L ) ⊕ ( N ∩ L´) by 

lemma(2.2)  implies that ( L + N ) ∩ ( L´ + N ) = N + ( L + N + L +N ∩ L´) ∩ L´ it following 

that ( L + N )∩ ( L´ + N ) ≤ N and  M / N = ( L + N ) / N ⊕ ( L´ +N ) / N then ( L + N ) / N is 

direct summand of M / N. Consequently M / N is a G*⊕CS module. 

Proposition (3.3):- ):- For any ring R, if M = M1⊕M2 with M1 and M2 are G*⊕CS module 

if M is a duo module, then M is a G*⊕CS. 

Proof: - Let L be a co-finite submodule of M i.e. M / L is finitely generated. Now    M = M1 + 

M2 + L then M1 + M2 + L has a G*S 0 in M i.e. M = M1 + M2 + L + 0 and M1 + M2 + L ∩ {0} 

≤ Z*(0) = 0 and so M / L + M1 is finitely generated. Notice that M / L + M1 = ( M2+ (M1 + L ) 

/ M1 + L ≃ M2 / M2 ∩ (M1+ L) hence M2 / M2 ∩ ( M1+ L ) is finitely generated , but M2 is a 

G*⊕ CS module, then there exist H ≤ M2 such that M2 = M2 ∩ ( L + M1) + H and M2 = H ⊕ 

H´ for some H´ ≤ M2 also M = M1 + M2 = M1 + M2 ∩ ( L + M1) + H ,hence M = ( M1+ L ) + 

H and (M1 + L ) ∩ H ≤ Z*(H) , thus H is a G*S of M1 + L in M .Note that M / L + H = M1 + ( 

L + H ) / ( L + H ) ≃ M1 / M1 ∩ ( L + H ), then M1 ∩ ( L + H ) is co-finite submodule of M, 

since M1 is a G*⊕CS module then there exist K ≤ M1 such that M1 = M1 ∩ ( L + H ) + K 

with M1 ∩ ( L + H ) ∩ K = ( L + H ) ∩ K ≤ Z*(K) and there exist K ´ ≤ M1 such that M1= K 

⊕ K´, hence L is a G*S of H + K in M i.e. M = M1 + M2 = ( L + H + K ) +( M2 ∩ ( L + M1 ) 
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+ H = L + H + K and L ∩ ( H + K ) ≤ Z*( K ) ≤ Z* ( K + H ) and H + K= H ⊕ K since H is a 

direct summand of M1,hence H ⊕ K is a direct summand of M.    

Corollary (3.4):- Any finite direct sum of G*⊕CS module is a G*⊕CS module. 

Proof:- follows from proposition ( 3.3) 

 Before we give next result we need the following definitions:- 

 Definition (3.5): A module M is said to be have the summand intersection property (SIP) if 

the intersection of any pair of direct summands of M is a direct summand of M ( i.e. if N and 

K are direct summand of M  then N ∩ K is also a direct summand of M).  

        A module M is said to have the summand sum property (SSP) if the sum of any pair of 

direct summand of M is a summand of M( i.e. if N and K are direct summand of M then N + 

K is also a direct summand of M.          

Recall that a module M distributive if for submodule K, L , N of M N+(K ∩ L) = ( N + K )   

∩ ( N + L ) or N ∩ ( K + L ) = ( N ∩ K ) + ( N ∩ L ). 

 Hence we have the following:- 

Theorem (3.6):- 1- Let M be a G*⊕CS-module and N a submodule of M, if for every direct 

summand K of M, (N+K)/ N is direct summand of N / M then M / N is a G*⊕CS module. 

  2- Let M be a G*⊕CS-distributive module then M / N is a G*⊕CS module for every 

submodule N of M. 

3- Let M be a G*⊕CS module with SSP then every direct summand of M is a G*⊕CS 

module. 

Proof: 1- Any co -finite submodule of M / N has the form L / N where L there exist a direct 

summand K of M such that M = L + K = K ⊕ K´ and L ∩ K ≤ Z*(K) for some submodule K´ 

≤ M .Now M / N = L / N + (K + N) / N, by hypothesis (K + N) / N is direct summand of M / 

N, Note that (L / N) ∩ (K + N) / N = [(L ∩ (K + N)] / N= [N + (K ∩ L)]/ N since L ∩ K ≤ 

Z*(K).we have [(K ∩ L + N ] / N ≤ Z*(K + N ) / N).This implies that (K+N)/ N is G*S 

submodule of L / N in M / N .hence M / N is a G*⊕CS module. 

Proof: 2- Since M is a G*⊕CS then any co-finite submodule of M has a G*S that is a direct 

summand of M. Let L be a direct summand of M i.e. M = L ⊕ L´ for some submodule L´ of 

M .Now M/ N =  [(L + N ) / N ] + [(L´ + N ) / N] and N = N+ ( L ∩ L´) = ( N + L ) ∩ ( N + 
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L´) since M is distributive , thus  M / N [ ( L + N ) / N ] ⊕ [ ( L´ + N ) / N ] by(1) hence M / 

N is G*⊕CS module.      

 Proof:3- Let N be  a direct summand of M i.e. M = N ⊕N´ for some N´ ≤  M, to prove that 

M / N´ is a G*⊕CS module .Let L be a direct summand of M, since M has the SSP , then L + 

N´ is a direct summand of M. i.e. M = ( L + N´ ) ⊕ K for some K≤M, then M / N´ = L + N´ / 

N´ ⊕ K + N´ / N´, hence by (1) M / N´ is a G*⊕CS module. 

         Weimin Xue in [12] introduce the notation of generalized projective covers to 

characterize semi perfect modules and rings. 

       An epimorphism f: P⟶ M is called a generalized cover in case kerf ≤ Rad (P), when P 

is a projective module then f is called a generalized projective cover. 

        As a generalization of this concept we introduce the following definition: 

Definition (3.7):- If P and M are modules, we call an epimorphism f: P⟶ M a 

(generalized*) cover in case (kerf ≤ Z*(P)), If P is a projective module, then f is called 

(generalized*) projective cover .Clearly every projective cover is generalized* projective 

cover. 

        We have the following basis properties of generalized* cover. 

Lemma (3.8):1- If f: P⟶ M and g: M⟶ N are generalized* cover for M and N, with 

f(Z*(P))=Z*(M) ,then g○f: P ⟶ N is a generalized*cover for N. 

Proof: - If both f and g are covers, then g○f is cover by [2], Now let both f and g be 

generalized* cover .It is enough to prove that ker ( g○f) ≤ Z*(P). Let x є ker (g○f), then 

g○f(x) = 0, hence f(x) ∊ kerg ≤ Z*(M) , since kerf ≤ Z*(P) ,then there exist x´ ∊ Z*(P) such 

that f(x) = f( x´), for some x´ є Z*(P), hence x-x´ ∊ kerf ≤ Z*(P),therefore x є Z*(P). 

2- If each fi : Pi ⟶ Mi, i = 1,…,n, is a generalized* cover, then ⊕i=1fi: ⊕i=1Pi⟶ ⊕i=1 Mi is a 

generalized* cover. 

Proof:- Since kerfi ≤ Z*(Pi), ∀ i= 1,2,…n we have ker(⊕i=1fi) = ⊕i=1 ker fi, thus ker (⊕i=1 fi 

) ≤ ⊕i= 1 Z*(Pi), i.e.⊕i=1 fi is a generalized* cover.   

Lemma (3.9):- Let N be a submodule of the module M and   f: M⟶ M / N be canonical 

epimorphism also, let P any module, g: P⟶ M /N and h: P ⟶ M with h(Z*(P)) = Z*(M)  

such that g is h composed with f .Then the map g is a generalized* cover epimorphism if and 

only if Im (h) is a generalized*supplemented of N and kerh ≤ Z*(P). 
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Proof:- ⇒) Let x ∊ N ∩ Imh, then x ∊ N = kerf and x∊ Imh i.e. there exist y ∊ P such that x = 

h(y).Now g(y)= f( h(y)) = f (x) = 0(since x∊ kerf = N), thus y ∊ kerg and h(y) ∊ h(kerg).Now let 

x ∊ h(kerg), then x= h(y), y ∊ kerg(i.e. g(y) = 0, hence fh(y) = g(y) = 0, f(x)= g (y)= 0,thus N ∩ 

Imh =h ( kerg) ≤ Z* ( Imh) = Z*(h(P)) then Imh = h (P) is a generalized* supplement of N, 

since g is an epimorphism then kerh ≤ kerg thus kerh ≤ Z*(P).  

   ⇐) the converse is clearly by lemma (3.8 (1)) 

        Recall that an R-module M is called semi perfect module if every factor module has a 

projective cover. As a generalization of semi perfect modules, we will introduce the following 

[1]. 

         An R-module M is called a generalized* co-finitely semi perfect, if every finitely generated 

factor has a generalized* projective cover. Clearly every semi perfect module is a generalized* 

co-finitely semi perfect.   

Theorem (3.10):- Let M be a module in which every generalized* projective cover f satisfies f 

(Z*(P)) = Z*(M), the following are equivalent: 

1. M is a generalized* co-finitely semi perfect module. 

2. M is a generalized* co-finitely module by supplements which have generalized* projective 

cover.  

Proof:-  1 ⇒ 2) Let M = N + L with M / N is finitely generated  projective cover for M / N, P is 

a projective R-module .Now M / N = N + L / N ≃ L / L + N since P is projective ,then the map f 

lefts g : P ⟶ L, and since f is a generalized* cover ,then by Lemma(3.9),we get Img is a 

generalized* cover of (L ∩ N) i.e. Img + (L ∩ N) = L and Img ∩ (L ∩ N) ≤ Z* (Img), kerg ≤ 

ker (π○i○g) = kerf ≤ Z*(P).  

2⇒1) Let N be a co-finite submodule of M, then M / N is finitely generated by (2) there exist 

L ≤ M such that M = L + N and L ∩ N ≤ Z*(L). Let f: P ⟶ L be a generalized* projective 

cover of L the natural epimorphism g:  L⟶ L / L ∩ N ≃ N + K / N = M / N is a generalized* 

cover (for kerg = L ∩ N ≤ Z* (L)), hence h= g○f: P ⟶ M / N is generalized* projective cover 

for M / N by Lemma (3.8). 

 

Corollary (3.11):-Let M be a projective G*⊕CS module, then M is a generalized* co-finitely 

semi perfect module. 

Proof:- Let N be a co-finite submodule of M, i.e. M / N is finitely generated since M is a 

G*⊕CS module, then there exist K , K´  ≤ M such that M = N + K = K ⊕ K´ and N ∩ K ≤ Z* 

(K), K is projective, let i: K ⟶M be the inclusion homomorphism and let π :M ⟶ M / N be 

the natural epimorphism ,hence π○i:K ⟶ M / N is an epimorphism, ker(π○i) = N ∩ K ≤ 

Z*(K) thus M is a generalized* co-finitely semi perfect module.  
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