

Volume 6, Issue 2

Published online: January 25, 2016

Journal of Progressive Research in Mathematics www.scitecresearch.com/journals

Generalized* Z* Supplemented Modules and Generalized* Co- finitely Supplemented Modules

Wasan Kh.Alobaidy¹, Aseel A. Alatuany²

SCITECH

¹Departement of Mathematics, College of Science, Baghdad University, Baghdad, Iraq, ²Departement of Mathematics, College of Science, Baghdad University, Baghdad , Iraq.

RESEARCH ORGANISATION

Abstract: Let R be a commutative ring with identity, an R- module M is called $G^* \oplus Z^*$ supplemented modules, if every sub module containing $Z^*(M)$ has generalized* supplemented in M that is a direct summand of M. and an R-module M is called generalized* Co-finitely supplemented, if every Co-finitely has sub module of M has a generalized* supplemented in M and M is called \oplus Co-finitely generalized* supplemented, if every Co-finitely generalized* supplemented for the field of M has G*S that is direct summand of M.

Keywords: Generalized* \oplus Z* supplemented; \oplus Co-finitely generalized* supplemented modules; Generalized*Co-finitely supplemented modules.

In this paper we will prove some properties of these types of modules.

§1 Introduction

Let R be an associative ring with identity and let M be a unital left R-module a submodule N of an R-module M is called small in denoted by $N \ll M$, if whenever N + L = M for some submodule L of M, then L = M equivalently for any proper submodule L of M, $N + L \neq M[1]$, let N and L be a submodule of M. N is called supplement of L in M if M = N + L and N is minimal with respect to this property equivalently, M = N + L and $N \cap L \ll N$ [1].M is called supplemented, if every submodule of M has a supplemented in M [2]

For any R-module M, $Z^*(M) = \{m \in M, Rm \ll E(M)\}$ where E(M) is the injective hull of M . equivalently $Z^*(M) = M \cap Rad(E(M)) = M \cap Rad(E1)$ for any injective $E1 \ge M$, where Rad(E(M)) and Rad(E1) denoted the Jacobson radical of E(M).E1 respectively .Z*(M) is called the co-singular submodule of M see[3], Notice that Rad (M) $\le Z^*(M).But$ the converse does not hold in general for example Z as Z-module, $Z^*(Z) = Z \neq Rad(Z)$.

Let M be module , if N ,L \leq M , and M = N + L , then L is called generalized supplement of N in case N \cap L \leq Rad(L), M is called generalized supplemented or (briefly GS)in case each submodule N has generalized supplement in M[4]. A module M is called generalized \oplus supplemented, if every submodule has a generalized supplement that is a direct summand of M [5] As a generalized \oplus radical supplemented modules .In [6] anther were notation introduced called generalized \oplus radical supplemented module .A module M is called generalized \oplus radical supplemented, if every submodule containing radical has a generalized supplement that is a direct summand of M.

The concept generalized* supplement modules were introduced in [7] .Let M be a module, if N, $L \le M$ and M = N + L then L is called a generalized* supplement of L in case N $\cap L \le Z^*(L)$. A submodule K of M is called co- finite if M / K is finitely generated. In [8] M is called \bigoplus co-finitely supplemented (briefly) \bigoplus cof- supplemented, if every co-finitely submodule of M has a supplement that is a direct summand of M.

In this paper we define generalized* $\bigoplus Z^*$ supplemented as a generalization of \bigoplus supplemented module .A module M is called $G^* \bigoplus Z^*$ supplemented if every submodule containing $Z^*(M)$ has generalized* supplement in M that is a direct summand of M (i.e. $\forall N \le M, Z^*(M) \le N, N$ has generalized* supplement L in M and L is direct summand .Clearly every semi-simple module is a $G^* \bigoplus Z^*S$ and every \bigoplus

As a generalization of \bigoplus cof-supplemented we define \bigoplus co-finitely generalized* supplement (briefly) \bigoplus cof-generalized* supplement, if every co-finitely submodule of M has generalized* supplement that is direct summand of M for short G* \bigoplus CS. Clearly \bigoplus supplement are G* \bigoplus CS module and the converse is true if M is finitely generated.

§2 Generalized[∗] ⊕ Z[∗] supplemented

In this section we define $G^* \oplus Z^*$ supplemented module as a generalization of \oplus supplemented in [6] and study some of properties of $G^* \oplus Z^*S$ supplemented module. Cleary every \oplus supplemented module is a $G^* \oplus Z^*S$ module, but the converse does not hold in general, for example Z-module, Q is a $G^* \oplus Z^*S$ module which is not \oplus supplemented module.

Definition (2.1) :- A module M is called $G^* \bigoplus Z^*$ supplemented if every sub module containing $Z^*(M)$ has generalized* supplement in M that is a direct summand of M (i.e. $\forall N \le M$, $Z^*(M) \le N$, N has generalized* supplement L in M and L is direct summand (i.e. there exist L, $K \le M$ such that $M = L + N = L \bigoplus K$ and $N \cap L \le Z^*(L)$.

Recall that a sub module N of M is called fully invariant if for every $h \in End(M)$, $h(N) \le N$ and M is called a duo module, if every sub module of M is fully invariant.[1]

Lemma (2.2):-Let M be a duo module, if $M = M_1 \bigoplus M_2$ then $N = (N \cap M_1) \bigoplus (N \cap M_2)$ for N is submodule of M.

Proof:- see[9]

Lemma (2.3):- Let M be any R-module, and let N be a submodule of M, then $Z^*(N) = Z^*(M) \cap N$. [10]

Proposition (2.4):- Let M be a $G^* \oplus Z^*S$ module, if N is a fully invariant submodule of M, then N is a $G^* \oplus Z^*S$ module.

Proof:- Let $K \le N \le M$ with $Z^*(N) \le K$, then $Z^*(M) \le K + Z(M)$ since M is a $G^* \bigoplus Z^*S$ module, then there exist L , L' $\le M$ such that $M = (K + Z^*(M)) + L = L \bigoplus L'$ and $(K + Z^*(M)) \cap L \le Z^*(L)$.Now $N = (K + Z^*(M)) + L) \cap N = K + (Z^*(M) \cap N) + (L \cap N)$, hence $N = (K + Z^*(N)) + ((L \cap N) = K + (L \cap N)$ since $Z^*(N) \le K$ and $K \cap (L \cap N) = (K \cap L) \cap N \le ((K + Z^*(M)) \cap L) \cap N \le Z^*(L) \cap N = (Z^*(M) \cap (L \cap N)) = Z^*(L \cap N)$ since $M = L \bigoplus L'$, hence $N = (L \cap N) \bigoplus (L' \cap N)$ therefore N is a $G^* \bigoplus Z^*S$ submodule of M.

Proposition (2.5):-If M is a $G^* \oplus Z^*S$ module, then M / N is a $G^* \oplus Z^*S$ for every fully invariant submodule of M.

Proof:- Let N be a fully invariant submodule of M and let $K / N \le M / N$ with $Z^*(M / N) \le K / N$, since $Z^*(M) + K / N \le Z^*(M / N)$ by [11],then $Z^*(M) \le K$, then by assumption there exist $L \le M$ such that M = L + K with $L \cap K \le Z^*(L)$ and $M = L \bigoplus L'$ for some $L' \le M$, thus M / N = K / N + (L + N) / N and $K / N \cap (L + N) / N = (K \cap L) + N / N \le Z^*(L) + Z^$

 $Z^*(L + N) / N$. Since N is a fully invariant submodule of M then $N = (N \cap L) + (N \cap L')$ and $(N + L) / N \cap (N + L') / N = 0$ then $M / N = N + L / N \bigoplus N + L' /$, hence M / N is a $G^* \bigoplus Z^*S$ module.

Corollary (2.6) :- The homomorphic image of a duo $G^* \oplus Z^*S$ is a $G^* \oplus Z^*S$ module

Proof:- Clear sine every homomorphic image is isomorphic to a quotient module.

The following theorem shows that when M is a duo module, the direct sum of $G^* \oplus Z^*S$ is again a $G^* \oplus Z^*S$.

Theorem (2.7):- If $M = M_1 \bigoplus M_2$, if M is a duo module and M_1 , M_2 are $G^* \bigoplus Z^*S$, then M is a $G^* \bigoplus Z^*S$.

Proof:- Let $N \le M$ with $Z^*(M) \le N$, then $Z^*(M_1) \le N \cap M_1 \forall i = 1,2$ hence there exist V_i , V'_i of M_i ($\forall i=1,2$) such that $M_i = (N \cap M_i) + V_i$, $(N \cap M_i) \cap V_i \le Z^*(V_i)$ and $M_i = V_i \bigoplus V'_i$ since N is fully invariant submodule of M hence $N = N \cap M_1 \bigoplus N \cap M_2$, let $V = V_1 \bigoplus V_2$, $V' = V'_1 \bigoplus V'_2$, hence there exist V, $V' \le M$ such that $M = M_1 \bigoplus M_2 = (N \cap M_1) \bigoplus (N \cap M_2) + (V_1 \bigoplus V_2) = N + V$ and $N \cap V = (N \cap M_1) + (N \cap M_2) \cap (V_1 \bigoplus V_2) \le Z^*(V_1) \bigoplus Z^*(V_2) = Z^*(V)$ by [11] and $V \bigoplus V' = (V_1 \bigoplus V_2) \bigoplus (V'_1 \bigoplus V'_2) = M_1 \bigoplus M_2 = M$, hence M is $G^* \bigoplus Z^*S$

Corollary (2.8) :- Let $\{M_i\}_{i=1}$ be any infinite collection of R-modules and $M = \bigoplus_{i \in I} M_i$ is duo module, then M is $G^* \bigoplus Z^*S$ if M_i are $G^* \bigoplus Z^*S$ for each $i \in I$.

Lemma (2.9):- For any R-module $M \neq 0$, $Z^*(M) = 0$ if and only if Rad(E(M)) = 0.

Proof:- see [11]

Proposition (2.10) :- Let M be a non –zero R-module with Rad(E(M)) = 0 then M is $G^* \oplus Z^*S$ if and only if M is semi-simple.

Proof:-⇒) Clear since Rad (E(M)) = 0 then by Lemma (2.9) $Z^*(M) = 0$, hence $\forall 0 \le N$ ≤ M, N has generalized* supplement in M i.e. there exist K ≤ M such that M = N + K and N ∩ K = Z^*(K) = 0 ⇒ N is a direct summand of M

⇐) Clearly since every semi-simple is a $G^* \oplus Z^*S$.

§3 ⊕Co-finitely generalized* supplemented modules

In this section we introduce a \bigoplus co-finitely generalized* supplemented module as a generalization \bigoplus co-finitely generalized module.[8]

Definition (3.1):- An R-module M is called generalized*co-finitely supplemented if every cofinite has submodule of M has a generalized* supplement in M for short we will refer to these module by G*CS. M is called \bigoplus co- finitely generalized* supplemented or (briefly) \bigoplus -cof G*S, if every co- finite submodule of M has G*S that is direct summand of M for short (G* \bigoplus CS)(i.e. \forall N \leq M with M / N is finitely generated, there exist L \leq M such that L is a G*S of N in M (M = N + L), N \cap L \leq Z*(L) and there exist K \leq M such that M = L \bigoplus K.

It easy to see that \oplus supplement modules are $G^* \oplus CS$ module and the converse is true if M is finitely generated, Notice that hollow modules are $G^* \oplus CS$ modules.

The following proposition shows that under certain condition the quotient of $G^* \oplus CS$ is a $G^* \oplus CS$

Proposition (3.2):- Assume that M is a $G^* \oplus CS$ due module then M / N is a $G^* \oplus CS$ module.

Proof:- Let $N \le K \le M$ with K / N a co- finite submodule of M / N, then M / K \simeq (M / N) / (K / N) is finitely generated since M is a G* \oplus CS module, there exist a submodule L and L' of M such that M = K + L = L \oplus L' and K \cap L \le Z*(L).

Notice that M / N = K / N + (L + N) / N by modularity $K \cap (L + N) = (K \cap L) + N$ since $K \cap L \le Z^*(L)$, we have $K / N \cap (L + N) / N = [(K \cap L) + N] / N \le Z^* (L + N) / N$ this implies that (L + N) / N is G*S of K / N in M / N. Now $N = (N \cap L) \oplus (N \cap L')$ by lemma(2.2) implies that $(L + N) \cap (L' + N) = N + (L + N + L + N \cap L') \cap L'$ it following that $(L + N) \cap (L' + N) \le N$ and $M / N = (L + N) / N \oplus (L' + N) / N$ then (L + N) / N is direct summand of M / N. Consequently M / N is a G* \oplus CS module.

Proposition (3.3):-):- For any ring R, if $M = M_1 \bigoplus M_2$ with M_1 and M_2 are $G^* \bigoplus CS$ module if M is a duo module, then M is a $G^* \bigoplus CS$.

Proof: - Let L be a co-finite submodule of M i.e. M / L is finitely generated. Now $M = M_1 + M_2 + L$ then $M_1 + M_2 + L$ has a G*S 0 in M i.e. $M = M_1 + M_2 + L + 0$ and $M_1 + M_2 + L \cap \{0\} \le Z^*(0) = 0$ and so M / L + M_1 is finitely generated. Notice that M / L + $M_1 = (M_2 + (M_1 + L) / M_1 + L \approx M_2 / M_2 \cap (M_1 + L)$ hence $M_2 / M_2 \cap (M_1 + L)$ is finitely generated , but M_2 is a G*⊕ CS module, then there exist $H \le M_2$ such that $M_2 = M_2 \cap (L + M_1) + H$ and $M_2 = H \oplus H'$ for some $H' \le M_2$ also $M = M_1 + M_2 = M_1 + M_2 \cap (L + M_1) + H$, hence $M = (M_1 + L) + H$ and $(M_1 + L) \cap H \le Z^*(H)$, thus H is a G*S of $M_1 + L$ in M.Note that $M / L + H = M_1 + (L + H) / (L + H) \approx M_1 / M_1 \cap (L + H)$, then $M_1 \cap (L + H)$ is co-finite submodule of M, since M_1 is a G*⊕CS module then there exist $K \le M_1$ such that $M_1 = M_1 \cap (L + H) + K$ with $M_1 \cap (L + H) \cap K = (L + H) \cap K \le Z^*(K)$ and there exist $K ' \le M_1$ such that $M_1 = K \oplus K'$, hence L is a G*S of H + K in M i.e. $M = M_1 + M_2 = (L + H + K) + (M_2 \cap (L + M_1))$

+ H = L + H + K and L ∩ (H + K) ≤ Z*(K) ≤ Z* (K + H) and H + K= H \bigoplus K since H is a direct summand of M₁,hence H \bigoplus K is a direct summand of M.

Corollary (3.4):- Any finite direct sum of $G^* \oplus CS$ module is a $G^* \oplus CS$ module.

Proof:- follows from proposition (3.3)

Before we give next result we need the following definitions:-

Definition (3.5): A module M is said to be have the summand intersection property (SIP) if the intersection of any pair of direct summands of M is a direct summand of M (i.e. if N and K are direct summand of M then $N \cap K$ is also a direct summand of M).

A module M is said to have the summand sum property (SSP) if the sum of any pair of direct summand of M is a summand of M(i.e. if N and K are direct summand of M then N + K is also a direct summand of M.

Recall that a module M distributive if for submodule K, L, N of M N+(K \cap L) = (N + K) \cap (N + L) or N \cap (K + L) = (N \cap K) + (N \cap L).

Hence we have the following:-

Theorem (3.6):- 1- Let M be a $G^* \oplus CS$ -module and N a submodule of M, if for every direct summand K of M, (N+K)/N is direct summand of N / M then M / N is a $G^* \oplus CS$ module.

2- Let M be a $G^* \oplus CS$ -distributive module then M / N is a $G^* \oplus CS$ module for every submodule N of M.

3- Let M be a $G^* \oplus CS$ module with SSP then every direct summand of M is a $G^* \oplus CS$ module.

Proof: 1- Any co-finite submodule of M / N has the form L / N where L there exist a direct summand K of M such that $M = L + K = K \bigoplus K'$ and $L \cap K \le Z^*(K)$ for some submodule K' $\le M$.Now M / N = L / N + (K + N) / N, by hypothesis (K + N) / N is direct summand of M / N, Note that $(L / N) \cap (K + N) / N = [(L \cap (K + N)] / N = [N + (K \cap L)] / N$ since $L \cap K \le Z^*(K)$.we have $[(K \cap L + N] / N \le Z^*(K + N) / N)$.This implies that (K+N) / N is G*S submodule of L / N in M / N .hence M / N is a G* \oplus CS module.

Proof: 2- Since M is a $G^* \oplus CS$ then any co-finite submodule of M has a G^*S that is a direct summand of M. Let L be a direct summand of M i.e. $M = L \oplus L'$ for some submodule L' of M. Now M/ N = [(L + N) / N] + [(L' + N) / N] and $N = N+(L \cap L') = (N + L) \cap (N + L)$

L') since M is distributive , thus $M / N [(L + N) / N] \bigoplus [(L' + N) / N] by(1)$ hence M / N is $G^* \bigoplus CS$ module.

Proof:3- Let N be a direct summand of M i.e. $M = N \bigoplus N'$ for some $N' \le M$, to prove that M / N' is a G* \bigoplus CS module .Let L be a direct summand of M, since M has the SSP, then L + N' is a direct summand of M. i.e. $M = (L + N') \bigoplus K$ for some K \le M, then M / N' = L + N' / N' $\bigoplus K + N' / N'$, hence by (1) M / N' is a G* \bigoplus CS module.

Weimin Xue in **[12]** introduce the notation of generalized projective covers to characterize semi perfect modules and rings.

An epimorphism f: $P \rightarrow M$ is called a generalized cover in case kerf \leq Rad (P), when P is a projective module then f is called a generalized projective cover.

As a generalization of this concept we introduce the following definition:

Definition (3.7):- If P and M are modules, we call an epimorphism f: $P \rightarrow M$ a (generalized*) cover in case (kerf $\leq Z^*(P)$), If P is a projective module, then f is called (generalized*) projective cover .Clearly every projective cover is generalized* projective cover.

We have the following basis properties of generalized* cover.

Lemma (3.8):1- If f: $P \rightarrow M$ and g: $M \rightarrow N$ are generalized* cover for M and N, with $f(Z^*(P))=Z^*(M)$, then $g \circ f: P \rightarrow N$ is a generalized*cover for N.

Proof: - If both f and g are covers, then $g \circ f$ is cover by [2], Now let both f and g be generalized* cover .It is enough to prove that ker ($g \circ f$) $\leq Z^*(P)$. Let x \in ker ($g \circ f$), then $g \circ f(x) = 0$, hence $f(x) \in \text{kerg} \leq Z^*(M)$, since kerf $\leq Z^*(P)$, then there exist $x' \in Z^*(P)$ such that f(x) = f(x'), for some $x' \in Z^*(P)$, hence x-x' $\in \text{kerf} \leq Z^*(P)$, therefore x $\in Z^*(P)$.

2- If each $f_i : P_i \to M_i$, i = 1, ..., n, is a generalized* cover, then $\bigoplus_{i=1} f_i : \bigoplus_{i=1} P_i \to \bigoplus_{i=1} M_i$ is a generalized* cover.

Proof:- Since kerf_i $\leq Z^*(P_i)$, $\forall i = 1, 2, ..., n$ we have ker $(\bigoplus_{i=1} f_i) = \bigoplus_{i=1} ker f_i$, thus ker $(\bigoplus_{i=1} f_i) \geq \bigoplus_{i=1} Z^*(P_i)$, i.e. $\bigoplus_{i=1} f_i$ is a generalized* cover.

Lemma (3.9):- Let N be a submodule of the module M and f: $M \rightarrow M / N$ be canonical epimorphism also, let P any module, g: $P \rightarrow M / N$ and h: $P \rightarrow M$ with $h(Z^*(P)) = Z^*(M)$ such that g is h composed with f. Then the map g is a generalized* cover epimorphism if and only if Im (h) is a generalized*supplemented of N and kerh $\leq Z^*(P)$.

Proof:- \Rightarrow) Let $x \in N \cap$ Imh, then $x \in N =$ kerf and $x \in$ Imh i.e. there exist $y \in P$ such that x = h(y).Now g(y)=f(h(y)) = f(x) = 0(since $x \in \ker f = N$), thus $y \in \ker g$ and $h(y) \in h(\ker g)$.Now let $x \in h(\ker g)$, then x = h(y), $y \in \ker g(i.e. g(y) = 0$, hence fh(y) = g(y) = 0, f(x) = g(y) = 0, thus $N \cap$ Imh =h (kerg) $\leq Z^*$ (Imh) = $Z^*(h(P))$ then Imh = h (P) is a generalized* supplement of N, since g is an epimorphism then kerh $\leq \ker g$ thus kerh $\leq Z^*(P)$.

 \Leftarrow) the converse is clearly by lemma (3.8 (1))

Recall that an R-module M is called semi perfect module if every factor module has a projective cover. As a generalization of semi perfect modules, we will introduce the following [1].

An R-module M is called a generalized* co-finitely semi perfect, if every finitely generated factor has a generalized* projective cover. Clearly every semi perfect module is a generalized* co-finitely semi perfect.

Theorem (3.10):- Let M be a module in which every generalized* projective cover f satisfies f $(Z^*(P)) = Z^*(M)$, the following are equivalent:

1. M is a generalized* co-finitely semi perfect module.

2. M is a generalized* co-finitely module by supplements which have generalized* projective cover.

Proof:- $1 \Rightarrow 2$) Let M = N + L with M / N is finitely generated projective cover for M / N, P is a projective R-module .Now $M / N = N + L / N \simeq L / L + N$ since P is projective ,then the map f lefts $g : P \rightarrow L$, and since f is a generalized* cover ,then by Lemma(3.9),we get Img is a generalized* cover of $(L \cap N)$ i.e. Img + $(L \cap N) = L$ and Img $\cap (L \cap N) \leq Z^*$ (Img), kerg $\leq ker (\pi \circ i \circ g) = kerf \leq Z^*(P)$.

 $2\Rightarrow1$) Let N be a co-finite submodule of M, then M / N is finitely generated by (2) there exist $L \leq M$ such that M = L + N and $L \cap N \leq Z^*(L)$. Let f: P $\rightarrow L$ be a generalized* projective cover of L the natural epimorphism g: $L\rightarrow L/L \cap N \simeq N + K/N = M/N$ is a generalized* cover (for kerg = $L \cap N \leq Z^*(L)$), hence h= gof: P $\rightarrow M/N$ is generalized* projective cover for M / N by Lemma (3.8).

Corollary (3.11):-Let M be a projective $G^* \oplus CS$ module, then M is a generalized* co-finitely semi perfect module.

Proof:- Let N be a co-finite submodule of M, i.e. M / N is finitely generated since M is a $G^* \oplus CS$ module, then there exist K, $K' \leq M$ such that $M = N + K = K \oplus K'$ and $N \cap K \leq Z^*$ (K), K is projective, let i: $K \longrightarrow M$ be the inclusion homomorphism and let $\pi : M \longrightarrow M / N$ be the natural epimorphism ,hence $\pi \circ i: K \longrightarrow M / N$ is an epimorphism, $ker(\pi \circ i) = N \cap K \leq Z^*(K)$ thus M is a generalized* co-finitely semi perfect module.

References

[1] Wisbauer, R, (1991)Foundations of modules and Ring theory, Gordon and Breach, Reading,

- [2] Mohamed S.H and Muller, B.J, (1990), Continuous and discrete modules, *London Math.Sco.LNS.147, Cambridge University Press, Now York Sydny*,
- [3] Harade, M.,(1978), Non-small modules and non-cosmall modules, In Ring Theory Proceedings Antwerp Conference, F.Van Oystaeyened .*New York: Marcel Dekker*.
- [4] Wan,Y, and Ding N,(2006)"Generalized supplemented Modules"Taiwanese Journal of Math.vol.10.no.6, pp.1589-1601.
- [5] Calisici,Hand Turkmen E,(2010),"Generalized ⊕ supplemented modules" Algebra and discrete Mathematics" V01.10, no.2, pp.10-18,
- [6] Turkmen, B, N,and A.pancar,(2014) "Generalized ⊕-Radical supplemented modules" Volume, *Article ID 603851,4 pages.*
- [7] Khalid,W, and Amer,A,(2014),Generalized* supplemented modules, Vol.55,No.4A,(1614-1617), science College the university of Baghdad.
- [8] Tamer kosan M, (2009), Generlized semiperfact Modules Vol.5, 58-69.
- [9] Leghwel A,, Kosan T, N. and Harmanc, A, (2006) Duo modules and duo ring, *Far East J.Math.*, 341-346.
- [10] Ozcan, A,C,(2002),Modules with small cyclic submodules in their injective hulls,*Comm.Alg*, 30(4),1575-1589.
- [11] Ozcan ,A,C, (1998), some characterizations of V-modules and rings, Vietnam J.Math., 26(3), 253-258.
- [12] Xue,W,(1996) Characterizations of Semiperfact and Perfact rings, *Publications Matematiques*, 40, 115-125.
- [13] Anderson, F, W, and Fuller, K, R, (1992), Rings and Categories of modules, *Graduate Texts Mathematics*, vol. 13, 2nd edition, Springer- Verlag, New York.