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 Abstract. 

The main aim of the present paper is to introduce a new class of multivalent analytic functions by 
using the familiar concept’s of convolution structure. The results investigated in the present paper include 
the characterization properties for this class of analytic functions. Some new and interesting consequences 
of our results are also pointed out. 
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1  Introduction 

 Let pA  denote the class of functions that are analytic in the unit disk 1}|<|,:{= zCzzU   and 

consisting of the functions f  of the form  
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 (1.1) 

 where f  is analytic and p-valent in U . If pAf   is given by (1.1) and pAg  is given by  
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 (1.2) 

 then the Hadamard product (or convolution) gf *  of f  and g , defined by  
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  (1.3) 

 In this article we study the class );(  gS p
 introduced in the following:  
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Definition 1.1 For a given function pAzg )(  defined by (1.2), where 0nb , 1)(  pn , 1,2,...=p . 

We say that pAzf )(  is in ),;(  gS p
 provided that 0,))(*( zgf  and  
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 are respectively, the familiar classes of 

starlike and convex functions of order   in U  (see for example,  [16]). 
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For 1=p , the classes 
**1 =  SS  and  KK =1

, where the classes 
*
S  and K  stand essentially 

for the classes of starlike and convex functions of complex order, which were considered earlier by Nasr 

and Aouf  [11] and Wiatrowski  [17], respectively (see also  [9] and  [10]).  

Remark: When  
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where )1,...,=(),1,...,=( siCqiC ii    and the coefficients )1,...,=( qiRAi   and 

)1,...,=( siRBi   being so chosen that the coefficients nb  in (1.2) satisfying the following condition:  
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 (1.5) 

 then the class );(  gS p
 is transformed into a (presumably) new class ),,(  sqS p

 defined by  
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 {0}; CUz    and {0}).=,(0,1 01=1=
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The operator  

 )1,...,=(),(),...,;,...,;,...,(=)()( 111,, qizfBBLzfL ssq
p

sqi
p

sq   

 involved in (1.6) is defined by the Chaurasia and Parihar (see for details  [3]). 

Special cases of the operator )()(, zfL i
p

sq   includes Dziok-Srivastava linear operator (cf.  [4, 5, 

15]), Hohlov linear operator  [15], the Carlson-Shaffer linear operator  [2], the Ruscheweyh derivative 

operator  [14], the Barnardi-Libra -Livingston linear integral operator (cf.  [8, 7, 1]), and the Srivastava - 

Owa fractional derivative operators(cf.  [12, 13]) 

2  Characterization Properties 

In this section, we establish two results, Theorem  2.1 and Theorem 2.3, which gives the sufficient 
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conditions for a function )(zf  defined by (1.1) and belongs to the class );()(  gSzf p . 

Theorem 2.1  Let pAzf )(  such that  
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 then );()(  gSzf p  provided that  
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Proof: In view of (2.1), we write  
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|| . This completes the proof.  

If we set ),<0{0};(||)(= pCpp    in Theorem  2.1, we obtain 

Corollary 2.2  If pAzf )(  such that  
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then );()(  gSzf p .  

Theorem 2.3. Let pAzf )(  satisfying the following inequality  
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then );()(  gSzf p .  
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Proof: Suppose the inequality (2.4) holds true. Then in view of Corollary  2.2, we have  
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This completes the proof.  

Corollary 2.4  If pAzf )(  satisfying the following inequality  
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then );()(  gSzf p .  

Corollary 2.5  If pAzf )(  satisfying the following inequality  
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Then pKzf )( .  

Corollary 2.6  If pAzf )(  satisfying the following inequality  
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