Local Property of a Factored Fourier Series using Absolute Norlund Indexed Summability

S. Sarangi ${ }^{1}$, S.K. Paikray ${ }^{2 *}$, M. Misra ${ }^{3}$, M. Dash, ${ }^{4}$ U. K. Misra ${ }^{5}$
${ }^{1}$ Department of Mathematics, Ravenshaw University, Cuttack, Odisha, India
${ }^{2}$ Department of Mathematics, VSSUT, Burla, Odisha, India
${ }^{3}$ Department of Mathematics, B.A. College, Berhampur, Odisha, India
${ }^{4}$ Department of Mathematics, Ravenshaw University, Cuttack, Odisha, India
${ }^{5}$ Department of Mathematics, NIST, Berhampur, Odisha, India

Abstract

In this paper we have established a theorem on the local property of absolute Norlund indexedsummability of Factored Fourier series.

Keywords: $\left|N, p_{n}\right|_{k}$-summability; $\left|N, p_{n}, \alpha_{n}\right|_{k}$-summability; $\left|\bar{N}, p_{n} ; \alpha_{n}, \delta\right|_{k}$ - summability and Fourier series.

1. Introduction

Let $\sum a_{n}$ be a given infinite series with sequence of partial sums $\left\{s_{n}\right\}$. Let $\left\{p_{n}\right\}$ be a sequence of positive real constants such that

$$
\begin{equation*}
P_{n}=\sum_{v=0}^{n} p_{v} \rightarrow \infty \text { as } n \rightarrow \infty\left(P_{-i}=p_{-i}=0, i \geq 1\right) \tag{1.1}
\end{equation*}
$$

The sequence-to-sequence transformation

$$
\begin{equation*}
t_{n}=\frac{1}{P_{n}} \sum_{v=0}^{n} p_{n-v} s_{v} \tag{1.2}
\end{equation*}
$$

defines $\left(N, p_{n}\right)$-mean of the sequence $\left\{s_{n}\right\}$ generated by the sequence of coefficients $\left\{p_{n}\right\}$. The series $\sum a_{n}$ is said to be summable $\left|N, p_{n}\right|_{k}, k \geq 1$, if

$$
\begin{equation*}
\sum_{n=1}^{\infty}\left(\frac{P_{n}}{p_{n}}\right)^{k-1}\left|t_{n}-t_{n-1}\right|^{k}<\infty . \tag{1.3}
\end{equation*}
$$

For $\mathrm{k}=1,\left|N, p_{n}\right|_{k}$ - summability is same as $\left|N, p_{n}\right|$ - summability.

When $p_{n}=1$, for all n and $k=1,\left|N, p_{n}\right|_{k}$ - summability is same as $|\mathrm{C}, 1|$ summability.
Let $\left\{\alpha_{n}\right\}$ be any sequence of positive numbers. The series $\sum a_{n}$ is said to be summable $\left|N, p_{n}, \alpha_{n}\right|_{k}, k \geq 1$, if

$$
\begin{equation*}
\sum_{n=1}^{\infty} \alpha_{n}^{k-1}\left|t_{n}-t_{n-1}\right|^{k}<\infty \tag{1.4}
\end{equation*}
$$

Where $\left\{t_{n}\right\}$ is as defined in (5.1.2).The series $\sum a_{n}$ is said to be summable $\left|N, p_{n}, \alpha_{n} ; \delta\right|_{k}, k \geq 1, \delta \geq 0$, if

$$
\begin{equation*}
\sum_{n=1}^{\infty} \alpha_{n}^{\delta k+k-1}\left|t_{n}-t_{n-1}\right|^{k}<\infty \tag{1.5}
\end{equation*}
$$

For $\delta=0$, the summability method $\left|N, p_{n}, \alpha_{n} ; \delta\right|_{k}, k \geq 1, \delta \geq 0$, reduces to the summabilty method $\left|N, p_{n}, \alpha_{n}\right|_{k}, k \geq 1$.

For any real number γ, the series $\sum a_{n}$ is said to be summable by the summabilty $\operatorname{method}\left|N, p_{n}, \alpha_{n} ; \delta, \gamma\right|_{k}, k \geq 1, \delta \geq 0$, if

$$
\begin{equation*}
\sum_{n=1}^{\infty} \alpha_{n}^{\gamma(\delta k+k-1)}\left|t_{n}-t_{n-1}\right|^{k}<\infty \tag{1.6}
\end{equation*}
$$

For $\gamma=1$, the summability method $\left|N, p_{n}, \alpha_{n} ; \delta, \gamma\right|_{k}, k \geq 1, \delta \geq 0$, any real γ, reduces to the $\operatorname{method}\left|N, p_{n}, \alpha_{n} ; \delta\right|_{k}, k \geq 1, \delta \geq 0$.

A sequence $\left\{\lambda_{n}\right\}$ is said to be convex if $\Delta^{2} \lambda_{n} \geq 0$ for every positive integer n .
Let $f(t)$ be a periodic function with period 2π and integrable in the sense of Lebesgue over $(-\pi, \pi)$. Without loss of generality we may assume that the constant term in the Fourier series of $f(t)$ is zero, so that

$$
\begin{equation*}
f(t) \sim \sum_{n=1}^{\infty}\left(a_{n} \cos n t+b_{n} \sin n t\right)=\sum_{n=1}^{\infty} A_{n}(t) \tag{1.7}
\end{equation*}
$$

It is well known that the convergence of Fourier series at $\mathrm{t}=\mathrm{x}$ is a local property of $f(t)$ (i.e., it depends only on the behavior of $f(t)$ in an arbitrarily small neighborhood of x) and hence the summability of the Fourier series at $\mathrm{t}=\mathrm{x}$ by any regular linear method is also a local property of $f(t)$.

2. Known theorems

Dealing with the $\left|\bar{N}, p_{n}\right|_{k}$ - summability of an infinite series Bor [1] proved the following theorem:

Theorem-2.1

Let $k \geq 1$ and let the sequences $\left\{p_{n}\right\}$ and $\left\{\lambda_{n}\right\}$ be such that

$$
\begin{equation*}
\Delta X_{n}=O\left(\frac{1}{n}\right) \tag{2.1.1}
\end{equation*}
$$

$$
\begin{equation*}
\sum_{n=1}^{\infty} X_{n}^{k-1} \frac{\left|\lambda_{n}\right|^{k}+\left|\lambda_{n+1}\right|^{k}}{n}<\infty, \tag{2.1.2}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{n=1}^{\infty}\left(X_{n}^{k}+1\right)\left|\Delta \lambda_{n}\right|<\infty, \tag{2.1.3}
\end{equation*}
$$

where $X_{n}=\frac{P_{n}}{n p_{n}}$. Then the summability $\left|\bar{N}, p_{n}\right|_{k}$ of the factored Fourier series $\sum_{n=1}^{\infty} A_{n}(t) \lambda_{n} X_{n}$ at a point can be ensured by the local property.

Subsequently, Misra et. al. [2] proved the following theorem on the local property of $\left|N, p_{n}, \alpha_{n}\right|_{k}$ summability of factored Fourier series:

Theorem-2.2

Let $k \geq 1$. Suppose $\left\{\lambda_{n}\right\}$ be a convex sequence such that $\sum n^{-1} \lambda_{n}$ is convergent and $\left\{p_{n}\right\}$ be a sequence such that

$$
\begin{gather*}
\Delta X_{n}=O\left(\frac{1}{n}\right) \tag{2.2.1}\\
\frac{P_{n-r-1}}{P_{n}}=O\left(\frac{p_{n-r-1}}{P_{n-1}} \frac{P_{r}}{p_{r}}\right), \tag{2.2.2}\\
\sum_{n=r+1}^{m+1}\left(\alpha_{n}\right)^{k-1} \frac{p_{n-r}}{P_{n}}=O\left(\frac{p_{r}}{P_{r}}\right), \tag{2.2.3}\\
\sum_{n=1}^{\infty} X_{n}^{k-1} \frac{\left|\lambda_{n}\right|^{k}}{n}<\infty \tag{2.2.4}
\end{gather*}
$$

and

$$
\begin{equation*}
\sum_{n=1}^{\infty} X_{n}^{k-1} \frac{\left|\Delta \lambda_{n}\right|^{k}}{n}<\infty, \tag{2.2.5}
\end{equation*}
$$

Where $X_{n}=\frac{P_{n}}{n p_{n}}$. Then the summability $\left|N, p_{n}, \alpha_{n}\right|_{k}, k \geq 1$ of the factored Fourier series $\sum_{n=1}^{\infty} A_{n}(t) \lambda_{n} X_{n}$ at a point can be ensured by the local property, where $\left\{\alpha_{n}\right\}$ is a sequence of positive numbers.

Rrecently, Paikray et al. [3] proved the following theorem on the local property of $\left|N, p_{n}, \alpha_{n}, \delta\right|_{k}$ summability of factored Fourier series:

Theorem-2.3

Let $k \geq 1$. Suppose $\left\{\lambda_{n}\right\}$ be a convex sequence such that $\sum n^{-1} \lambda_{n}$ is convergent and $\left\{p_{n}\right\}$ be a sequence such that

$$
\begin{align*}
& \Delta X_{n}=O\left(\frac{1}{n}\right) \tag{2.3.1}\\
& \frac{P_{n-r-1}}{P_{n}}=O\left(\frac{p_{n-r-1}}{P_{n-1}} \frac{P_{r}}{p_{r}}\right) \tag{2.3.2}\\
& \sum_{n=r+1}^{m+1}\left(\alpha_{n}\right)^{\delta k+k-1} \frac{p_{n-r}}{P_{n}}=O\left(\frac{p_{r}}{P_{r}}\right) \tag{2.3.3}\\
& \sum_{n=1}^{\infty} X_{n}^{k-1} \frac{\left|\lambda_{n}\right|^{k}}{n}<\infty \tag{2.3.4}
\end{align*}
$$

and

$$
\begin{equation*}
\sum_{n=1}^{\infty} X_{n}^{k-1} \frac{\left|\Delta \lambda_{n}\right|^{k}}{n}<\infty \tag{2.3.5}
\end{equation*}
$$

where $X_{n}=\frac{P_{n}}{n p_{n}}$. Then the summability $\left|N, p_{n}, \alpha_{n}, \delta\right|_{k}, k \geq 1$ of the factored Fourier series $\sum_{n=1}^{\infty} A_{n}(t) \lambda_{n} X_{n}$ at a point can be ensured by the local property, where $\left\{\alpha_{n}\right\}$ is a sequence of positive numbers.

In the present paper we have established the following theorem on $\left|N, p_{n}, \alpha_{n}, \delta, \gamma\right|_{k}$ - summabilty of a factored Fourier series through its local property.

3. Main theorem

Let $k \geq 1$. Suppose $\left\{\lambda_{n}\right\}$ be a convex sequence such that $\sum n^{-1} \lambda_{n}$ is convergent and $\left\{p_{n}\right\}$ be a sequence such that

$$
\begin{align*}
& \Delta X_{n}=O\left(\frac{1}{n}\right), \tag{3.1}\\
& \frac{P_{n-r-1}}{P_{n}}=O\left(\frac{p_{n-r-1}}{P_{n-1}} \frac{P_{r}}{p_{r}}\right) \tag{3.2}\\
& \sum_{n=r+1}^{m+1}\left(\alpha_{n}\right)^{\gamma(\theta k+k-1)} \frac{p_{n-r}}{P_{n}}=O\left(\frac{p_{r}}{P_{r}}\right) \tag{3.3}\\
& \quad \sum_{n=1}^{\infty} X_{n}^{k-1} \frac{\left|\lambda_{n}\right|^{k}}{n}<\infty, \tag{3.4}
\end{align*}
$$

and

$$
\begin{equation*}
\sum_{n=1}^{\infty} X_{n}^{k-1} \frac{\left|\Delta \lambda_{n}\right|^{k}}{n}<\infty \tag{3.5}
\end{equation*}
$$

where $\quad X_{n}=\frac{P_{n}}{n p_{n}}$.Then the summability $\left|N, p_{n}, \alpha_{n}, \delta, \gamma\right|_{k}, k \geq 1$ of the factored Fourier series $\sum_{n=1}^{\infty} A_{n}(t) \lambda_{n} X_{n}$ at a point can be ensured by the local property, where $\left\{\alpha_{n}\right\}$ is a sequence of positive numbers.

4. Required lemma

In order to prove the above theorem we require the following lemma:

Lemma

Let $k \geq 1$ and suppose $\left\{\lambda_{n}\right\}$ be a convex sequence such that $\sum n^{-1} \lambda_{n}$ is convergent and $\left\{p_{n}\right\}$ be a sequence such that the conditions (3.1)-(3.5) are satisfied. If $\left\{s_{n}\right\}$ is bounded, then for the sequence of positive numbers $\left\{\alpha_{n}\right\}$ the series $\sum_{n=1}^{\infty} a_{n} \lambda_{n} X_{n}$ is summable $\left|N, p_{n}, \alpha_{n}, \delta\right|_{k}^{\gamma}, k \geq 1, \delta \geq 0$.

Proof of the lemma

Let $\left\{T_{n}\right\}$ denote the $\left(N, p_{n}\right)$ - mean of the series $\sum_{n=1}^{\infty} a_{n} \lambda_{n} X_{n}$. Then by definition we have

$$
\begin{gathered}
T_{n}=\frac{1}{P_{n}} \sum_{v=0}^{n} p_{n-v} \sum_{r=0}^{v} a_{r} \lambda_{r} X_{r} \\
=\frac{1}{P_{n}} \sum_{r=0}^{n} a_{r} \lambda_{r} X_{r} \sum_{v=r}^{n} p_{n-v} \\
=\frac{1}{P_{n}} \sum_{r=0}^{n} a_{r} P_{n-r} \lambda_{r} X_{r}
\end{gathered}
$$

Hence

$$
\begin{aligned}
& T_{n}-T_{n-1}= \frac{1}{P_{n}} \sum_{r=1}^{n} P_{n-r} a_{r} \lambda_{r} X_{r}-\frac{1}{P_{n-1}} \sum_{r=1}^{n-1} P_{n-r-1} a_{r} \lambda_{r} X_{r} \\
&= \sum_{r=1}^{n}\left(\frac{P_{n-r}}{P_{n}}-\frac{P_{n-r-1}}{P_{n-1}}\right) a_{r} \lambda_{r} X_{r} \\
&= \frac{1}{P_{n} P_{n-1}} \sum_{r=1}^{n}\left(P_{n-r} P_{n-1}-P_{n-r-1} P_{n}\right) a_{r} \lambda_{r} X_{r} \\
&= \frac{1}{P_{n} P_{n-1}}\left[\sum_{r=1}^{n-1} \Delta\left\{\left(P_{n-r} P_{n-1}-P_{n-r-1} P_{n}\right) \lambda_{r} X_{r}\right\}\right] \sum_{v=1}^{r} a_{v} \\
&=\frac{1}{P_{n} P_{n-1}}\left[\sum_{r=1}^{n-1}\left(p_{n-r} P_{n-1}-p_{n-r-1} P_{n}\right) \lambda_{r} X_{r} s_{r}\right. \\
& \quad+\sum_{r=1}^{n-1}\left(P_{n-r-1} P_{n-1}-P_{n-r-2} P_{n}\right) \Delta \lambda_{r} X_{r} s_{r} \\
&\left.\quad+\sum_{r=1}^{n-1}\left(P_{n-r-1} P_{n-1}-P_{n-r-2} P_{n}\right) \lambda_{r+1} \Delta X_{r} s_{r}\right]
\end{aligned}
$$

(by Abel's transformation)

$$
=T_{n, 1}+T_{n, 2}+T_{n, 3}+T_{n, 4}+T_{n, 5}+T_{n, 6},
$$

In order to complete the proof of the theorem by using Minokowski's inequality, it is sufficient to show that

$$
\sum_{n=1}^{\infty} \alpha_{n}^{\gamma(\delta k+k-1)}\left|T_{n, i}\right|^{k}<\infty \quad \text { for } i=1,2,3,4,5,6
$$

Now, we have

$$
\begin{aligned}
\sum_{n=2}^{m+1} \alpha_{n}^{\gamma(\delta k+k-1)}\left|T_{n, 1}\right|^{k} & =\sum_{n=2}^{m+1} \alpha_{n}^{\gamma(\delta k+k-1)}\left|\frac{1}{P_{n} P_{n-1}} \sum_{r=1}^{n-1} p_{n-r} P_{n-1} \lambda_{r} X_{r} s_{r}\right|^{k} \\
& \leq \sum_{n=2}^{m+1} \alpha_{n}^{\gamma(\delta k+k-1)} \frac{1}{P_{n}}\left(\sum_{r=1}^{n-1} p_{n-r}\left|\lambda_{r}\right|^{k}\left|s_{r}\right|^{k} X_{r}^{k}\right)\left(\frac{1}{P_{n}} \sum_{r=1}^{n-1} p_{n-r}\right)^{k-1} \\
= & O(1) \sum_{r=1}^{m}\left|\lambda_{r}\right|^{k} X_{r}^{k} \sum_{n=r+1}^{m+1} \alpha_{n}^{\gamma(\delta k+k-1)}\left(\frac{p_{n-r}}{P_{n}}\right) \\
= & O(1) \sum_{r=1}^{m}\left|\lambda_{r}\right|^{k} X_{r}^{k} \frac{p_{r}}{P_{r}}, \text { by (3.3) } \\
& =O(1) \sum_{r=1}^{m}\left|\lambda_{r}\right|^{k} X_{r}^{k-1} \frac{p_{r}}{P_{r}} \frac{P_{r}}{r p_{r}}, \text { as } X_{n}=\frac{P_{n}}{n p_{n}} \\
& =O(1) \sum_{r=1}^{m} X_{r}^{k-1} \frac{\left|\lambda_{r}\right|^{k}}{r} \\
= & O(1) \text { as } m \rightarrow \infty, \text { by (5.3.4). }
\end{aligned}
$$

Next, $\quad \sum_{n=2}^{m+1} \alpha_{n}^{\gamma(\delta k+k-1)}\left|T_{n, 2}\right|^{k}=\sum_{n=2}^{m+1} \alpha_{n}^{\gamma(\delta k+k-1)}\left|\frac{1}{P_{n} P_{n-1}} \sum_{r=1}^{n-1} p_{n-r-1} P_{n} \lambda_{r} X_{r} s_{r}\right|^{k}$

$$
\begin{aligned}
& \leq \sum_{n=2}^{m+1} \alpha_{n}^{\gamma(\delta k+k-1)} \frac{1}{P_{n-1}}\left(\sum_{r=1}^{n-1} p_{n-r-1}\left|\lambda_{r}\right|^{k}\left|s_{r}\right|^{k} X_{r}^{k}\right)\left(\frac{1}{P_{n-1}} \sum_{r=1}^{n-1} p_{n-r-1}\right)^{k-1} \\
& =O(1) \sum_{r=1}^{m}\left|\lambda_{r}\right|^{k} X_{r}^{k} \sum_{n=r+1}^{m+1} \alpha_{n}^{\gamma(\delta k+k-1)}\left(\frac{p_{n-r-1}}{P_{n-1}}\right) \\
& \quad=O(1) \sum_{r=1}^{m}\left|\lambda_{r}\right|^{k} X_{r}^{k} \frac{p_{r}}{P_{r}}, \text { by }(5.3 .3) \\
& \quad=O(1) \sum_{r=1}^{m}\left|\lambda_{r}\right|^{k} X_{r}^{k-1} \frac{p_{r}}{P_{r}} \frac{P_{r}}{r p_{r}}, \text { as } X_{n}=\frac{P_{n}}{n p_{n}}
\end{aligned}
$$

$$
\begin{aligned}
&= O(1) \sum_{r=1}^{m} X_{r}^{k-1} \frac{\left|\lambda_{r}\right|^{k}}{r} \\
&=O(1) \text { as } m \rightarrow \infty, \text { by (3.4). }
\end{aligned}
$$

Further,

$$
\begin{aligned}
\sum_{n=2}^{m+1} \alpha_{n}^{\gamma(\delta k+k-1)}\left|T_{n, 3}\right|^{k} & =\sum_{n=2}^{m+1} \alpha_{n}^{\gamma(\delta k+k-1)}\left|\frac{1}{P_{n} P_{n-1}} \sum_{r=1}^{n-1} P_{n-r-1} P_{n-1} \Delta \lambda_{r} X_{r} s_{r}\right|^{k} \\
& \leq \sum_{n=2}^{m+1} \alpha_{n}^{\gamma(\delta k+k-1)} \frac{1}{P_{n}}\left(\sum_{r=1}^{n-1} P_{n-r-1}\left|\Delta \lambda_{r}\right|^{k}\left|s_{r}\right|^{k} X_{r}^{k}\right)\left(\frac{1}{P_{n}} \sum_{r=1}^{n-1} P_{n-r-1}\left|\Delta \lambda_{r}\right|\right)^{k-1} \\
& =O(1) \sum_{r=1}^{m}\left|\Delta \lambda_{r}\right|^{k} X_{r}^{k} \sum_{n=r+1}^{m+1} \alpha_{n}^{\gamma(\delta k+k-1)}\left(\frac{P_{n-r-1}}{P_{n}}\right) \\
& =O(1) \sum_{r=1}^{m}\left|\Delta \lambda_{r}\right|^{k} X_{r}^{k} \frac{p_{r}}{P_{r}}, \text { by (3.3) } \\
& =O(1) \sum_{r=1}^{m}\left|\Delta \lambda_{r}\right|^{k} X_{r}^{k-1} \frac{p_{r}}{P_{r}} \frac{P_{r}}{r p_{r}}, \text { as } X_{n}=\frac{P_{n}}{n p_{n}} \\
= & O(1) \sum_{r=r-1}^{m} X_{r}^{k-1} \frac{\left.\left|\Delta \lambda_{r}\right| \leq \sum_{r=1}^{n-1}\left|\Delta \lambda_{r}\right|=O(1)\right)}{r} \\
= & O(1) \text { as } m \rightarrow \infty, \text { by (3.5). }
\end{aligned}
$$

Now,

$$
\begin{aligned}
\sum_{n=2}^{m+1} \alpha_{n}^{\gamma(\delta k+k-1)}\left|T_{n, 4}\right|^{k} & =\sum_{n=2}^{m+1} \alpha_{n}^{\gamma(\delta k+k-1)}\left|\frac{1}{P_{n} P_{n-1}} \sum_{r=1}^{n-1} P_{n-r-2} P_{n} \Delta \lambda_{r} X_{r} s_{r}\right|^{k} \\
& \leq \sum_{n=2}^{m+1} \alpha_{n}^{\gamma(\delta k+k-1)} \frac{1}{P_{n-1}}\left(\sum_{r=1}^{n-1} P_{n-r-2}\left|\Delta \lambda_{r}\right|^{k}\left|s_{r}\right|^{k} X_{r}^{k}\right)\left(\frac{1}{P_{n-1}} \sum_{r=1}^{n-1} P_{n-r-2}\left|\Delta \lambda_{r}\right|\right)^{k-1} \\
& =O(1) \sum_{r=1}^{m}\left|\Delta \lambda_{r}\right|^{k} X_{r}^{k} \sum_{n=r+1}^{m+1} \alpha_{n}^{\gamma(\delta k+k-1)}\left(\frac{P_{n-r-2}}{P_{n-1}}\right)(\text { as above }) \\
& =O(1) \sum_{r=1}^{m}\left|\Delta \lambda_{r}\right|^{k} X_{r}^{k} \frac{p_{r}}{P_{r}}, \text { by (5.3.3) }
\end{aligned}
$$

$$
\begin{aligned}
& =O(1) \sum_{r=1}^{m}\left|\Delta \lambda_{r}\right|^{k} X_{r}^{k-1} \frac{p_{r}}{P_{r}} \frac{P_{r}}{r p_{r}}, \text { as } X_{n}=\frac{P_{n}}{n p_{n}} \\
& =O(1) \sum_{r=1}^{m} X_{r}^{k-1} \frac{\left|\Delta \lambda_{r}\right|^{k}}{r} \\
& =O(1) \text { as } m \rightarrow \infty, \text { by (3.5). }
\end{aligned}
$$

Again

$$
\begin{aligned}
\sum_{n=2}^{m+1} \alpha_{n}^{\gamma(\delta k+k-1)}\left|T_{n, 5}\right|^{k} & =\sum_{n=2}^{m+1} \alpha_{n}^{\gamma(\delta k+k-1)}\left|\frac{1}{P_{n} P_{n-1}} \sum_{r=1}^{n-1} P_{n-r-1} P_{n-1} \lambda_{r+1} \Delta X_{r} s_{r}\right|^{k} \\
= & \sum_{n=2}^{m+1} \alpha_{n}^{\gamma(\delta k+k-1)}\left|\sum_{r=1}^{n-1} \frac{P_{n-r-1}}{P_{n}} \lambda_{r+1} \Delta X_{r} s_{r}\right|^{k} \\
= & \sum_{n=2}^{m+1} \alpha_{n}^{\gamma \gamma(\delta k+k-1)}\left|\sum_{r=1}^{n-1} \frac{p_{n-r-1}}{P_{n-1}} \frac{P_{r}}{p_{r}} \lambda_{r+1} \Delta X_{r} s_{r}\right|^{k} \text { by (.3.2) } \\
= & \sum_{n=2}^{m+1} \alpha_{n}^{\gamma(\delta k+k-1)}\left|\sum_{r=1}^{n-1} \frac{p_{n-r-1}}{P_{n-1}} \frac{P_{r}}{p_{r}} \lambda_{r+1} s_{r} \frac{1}{r}\right|^{k} \text { by (3.1) } \\
= & \sum_{n=2}^{m+1} \alpha_{n}^{\gamma(\delta k+k-1)}\left|\sum_{r=1}^{n-1} \frac{p_{n-r-1}}{P_{n-1}} \frac{P_{r}}{p_{r}} \lambda_{r+1} s_{r} X_{r} \frac{p_{r}}{P_{r}}\right|^{k}, \text { as } X_{n}=\frac{P_{n}}{n p_{n}} \\
= & \sum_{n=2}^{m+1} \alpha_{n}^{\gamma(\delta k+k-1)}\left\{\sum_{r=1}^{n-1} \frac{p_{n-r-1}}{P_{n-1}}\left|\lambda_{r+1}\right|^{k}\left|s_{r}\right|^{k} X_{r}^{k}\right\}\left\{\sum_{r=1}^{n-1} \frac{p_{n-r-1}}{P_{n-1}}\right\}^{k-1} \\
= & O(1) \sum_{r=1}^{m}\left|\lambda_{r+1}\right|^{k} X_{r}^{k} \sum_{n=r+1}^{m+1} \alpha_{n}^{\gamma(\delta k+k-1)}\left(\frac{p_{n-r-1}}{P_{n-1}}\right\} \\
= & O(1) \sum_{r=1}^{m}\left|\lambda_{r+1}\right|^{k} X_{r}^{k-1} \frac{p_{r}}{P_{r}} \frac{P_{r}}{r p_{r}}, \text { as } X_{n}=\frac{P_{n}}{n p_{n}} \text { and by (3.3) } \\
& =O(1) \sum_{r=1}^{m} \frac{\left|\lambda_{r+1}\right|^{k}}{r} X_{r}^{k-1}, \\
= & O(1) a s m \rightarrow \infty, \text { by } a s) .
\end{aligned}
$$

Finally,

$$
\sum_{n=2}^{m+1} \alpha_{n}^{\gamma(\delta k+k-1)}\left|T_{n, 6}\right|^{k}=\sum_{n=2}^{m+1} \alpha_{n}^{\gamma(\delta k+k-1)}\left|\frac{1}{P_{n} P_{n-1}} \sum_{r=1}^{n-1} P_{n-r-2} P_{n} \lambda_{r+1} \Delta X_{r} s_{r}\right|^{k}
$$

$$
\begin{aligned}
& =\sum_{n=2}^{m+1} \alpha_{n}^{\gamma(\delta k+k-1)}\left|\sum_{r=1}^{n-1} \frac{P_{n-r-2}}{P_{n-1}} \lambda_{r+1} \Delta X_{r} s_{r}\right|^{k} \\
& =\sum_{n=2}^{m+1} \alpha_{n}^{\gamma(\delta k+k-1)}\left|\sum_{r=1}^{n-1} \frac{p_{n-r-2}}{P_{n-2}} \frac{P_{r}}{p_{r}} \lambda_{r+1} \Delta X_{r} s_{r}\right|^{k}, \text { by (3.2) } \\
& =\left.\left.\sum_{n=2}^{m+1} \alpha_{n}^{\gamma(\delta k+k-1)}\right|_{r=1} ^{n-1} \frac{p_{n-r-2}}{P_{n-2}} \frac{P_{r}}{p_{r}} \lambda_{r+1} s_{r} \frac{1}{r}\right|^{k}, \text { by (3.1) } \\
& =\sum_{n=2}^{m+1} \alpha_{n}^{\gamma(\delta k+k-1)}\left|\sum_{r=1}^{n-1} \frac{p_{n-r-2}}{P_{n-2}} \frac{P_{r}}{p_{r}} \lambda_{r+1} s_{r} X_{r} \frac{p_{r}}{P_{r}}\right|^{k}, \text { as } X_{n}=\frac{P_{n}}{n p_{n}} \\
& =\sum_{n=2}^{m+1} \alpha_{n}^{\gamma(\delta k+k-1)}\left\{\sum_{r=1}^{n-1} \frac{p_{n-r-2}}{P_{n-2}}\left|\lambda_{r+1}\right|^{k}\left|s_{r}\right|^{k} X_{r}^{k}\right\}\left\{\sum_{r=1}^{n-1} \frac{p_{n-r-2}}{P_{n-2}}\right\}^{k-1} \\
& =O(1) \sum_{r=1}^{m}\left|\lambda_{r+1}\right|^{k} X_{r}^{k} \sum_{n=r+1}^{m+1} \alpha_{n}^{\gamma \gamma(\delta k+k-1)}\left(\frac{p_{n-r-2}}{P_{n-2}}\right)^{2} \\
& =O(1) \sum_{r=1}^{m}\left|\lambda_{r+1}\right|^{k} X_{r}^{k-1} \frac{p_{r}}{P_{r}} \frac{P_{r}}{r p_{r}}, \text { as } X_{n}=\frac{P_{n}}{n p_{n}} \text { and by(3.3) } \\
& =O(1) \sum_{r=1}^{m} \frac{\left|\lambda_{r+1}\right|^{k}}{r} X_{r}^{k-1}, \\
& =O(1) \text { as m } m \infty, \text { by (3.4). }
\end{aligned}
$$

This completes the proof of the Lemma.

5. Proof of the theorem

Since the behavior of the Fourier series, as far as convergence is concerned, for a particular value of x depends on the behavior of the function in the immediate neighborhood of this point only, the truth of the theorem is necessarily the consequence of the Lemma.

6. Conclusion

Putting $\delta=0$ and $\alpha=\frac{P_{n}}{p_{n}}$ with $\delta=0$, the result of Misra et al. [2] and the result of H.Bor [1] can be achieved respectively from the result established in the present chapter under a few varying condition. Further there is a reach scope to work in this area for different indexed summability methods with additional parameter.

Acknowledgements

The authors would like to express their heartfelt thanks to the editors and anonymous referees for their most valuable comments and constructive suggestions which leads to the significant improvement of the earlier version of the manuscript.

References

[1] Bor, H (2001). On the Local Property of $\left|\bar{N}, p_{n}\right|_{k}$ Summability of factored Fourier series, journal of Mathematical analysis and applications- 163(220-226).
[2] Misra, UK, Misra, M, Padhy, BP and Buxi, SK (2010). On the Local Property of $\left|\bar{N}, p_{n}, \alpha_{n}\right|_{k}$ Summability of factored Fourier series, International Journal of Research and Reviews in applied Sciences, Vol.5, No. 2, pp 162-167.
[3] Misra, UK, Paikray, SK and Jati, RK (2015). On indexed Summability of factored Fourier series through Local Property, International Journal of Research in Science and technology, Vol.2, No. 2, pp $34-39$.

