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Abstract  

In this paper we have established a theorem on the local property of absolute Norlund indexed-

summability of  Factored Fourier series.    
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1. Introduction 

Let  na be a given infinite series with sequence of partial sums ns . Let np be a sequence of positive 

real constants such that 
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The sequence-to-sequence transformation  
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defines  , nN p -mean of the sequence ns generated by the sequence of coefficients np . The series 

 na is said to be summable 
knpN , , ,1k if  
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For k = 1, 
knpN , - summability is same as npN , -  summability. 
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When 1, for all and 1np n k  , 
knpN , - summability is same as |C, 1|  summability. 

Let  n  be any sequence of positive numbers. The series  na  is said to be summable 

1,,, kpN
knn  , if 

                  (1.4)                                
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Where  nt is as defined in (5.1.2).The series  na is said to be summable , , ; , 1, 0n n k
N p k    , if      

(1.5)        
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For 0  , the summability method , , ;n n k
N p   , 1, 0k   ,  reduces  to  the summabilty  method 

, ,n n k
N p   , 1.k 

 

For any real number  , the series  na is said to be summable by the summabilty 

method , , ; , , 1, 0n n k
N p k     ,  if      

(1.6)   
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For 1  , the summability method , , ; , , 1, 0, any real n n k
N p k       , reduces to the 

method , , ; , 1, 0n n k
N p k    . 

A sequence  n is said to be convex if 02  n for every positive integer n. 

  Let  tf  be a periodic function with period 2 and integrable in the sense of Lebesgue 

over ),(  . Without loss of generality we may assume that the constant term in the Fourier series of  tf  

is zero, so that 

  (1.7)     
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 It is well known that the convergence of Fourier series at t = x is a local property of  f t  (i.e., it depends 

only on the behavior of  f t  in an arbitrarily small neighborhood of x) and hence the summability of the 

Fourier series at t = x by any regular linear method is also a local property of  f t . 

2. Known theorems 

Dealing with the 
k

npN , - summability of an infinite series Bor [1] proved the following theorem: 

Theorem-2.1  

  Let 1k and let the sequences    andn np  be such that  

 (2.1.1)     
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 (2.1.2)     
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 (2.1.3)     
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X  Then the summability  

k
npN , of the factored Fourier series 
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nnn XtA   at a point can 

be ensured by the local property. 

  

Subsequently, Misra et. al. [2] proved the following theorem on the local property of 
knnpN ,, summability of 

factored Fourier series: 

Theorem-2.2  

                    Let 1k . Suppose  n  be a convex sequence such that  

nn 1 is convergent and  np be a 

sequence such that 

 (2.2.1)   









n
OX n

1
,  

(2.2.2)               















r

r

n

rn

n

rn

p

P

P

p
O

P

P

1

11
,  

 (2.2.3)       














r

r

n

rn

km

rn

n
P

p
O

P

p
11

1

 , 

 (2.2.4)                                






1

1

n

k

nk

n
n

X


, 

 and 

 (2.2.5)       
1

1

,

k

nk

n

n

X
n







   

Where .
n

n

n
np

P
X  Then the summability 1,,, kpN

knn  of the factored Fourier series 


1

)(
n

nnn XtA   at 

a point can be ensured by the local property, where n  is a sequence of positive numbers. 

             

      Rrecently, Paikray et al. [3] proved the following theorem on the local property of , , ,n n k
N p   summability 

of factored Fourier series: 
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Theorem-2.3 

  Let 1k . Suppose  n  be a convex sequence such that  

nn 1 is convergent and  np be a 

sequence such that 

 (2.3.1)  
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P
X  Then the summability , , , , 1n n k

N p k   of the factored Fourier series 
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)(
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at a point can be ensured by the local property, where n  is a sequence of positive numbers. 

 In the present paper we have established the following theorem on , , , ,n n k
N p    - summabilty of a 

factored Fourier series through its local property. 

3. Main theorem 

Let 1k . Suppose  n  be a convex sequence such that  

nn 1 is convergent and  np be a sequence such 

that 
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where .
n

n

n
np

P
X  Then the summability , , , , , 1n n k

N p k    of the factored Fourier series 




1

)(
n

nnn XtA   at a point can be ensured by the local property, where n  is a sequence of positive numbers. 

4. Required lemma 

In order to prove the above theorem we require the following lemma: 

 Lemma 

 Let 1k and suppose  n  be a convex sequence such that  

nn 1 is convergent and  np be a 

sequence such that the conditions (3.1)-(3.5) are satisfied. If  ns  is bounded, then for the sequence of positive 

numbers n  the series 
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Proof of the lemma 

 Let  nT denote the  , nN p - mean of the series
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                                                                         (by Abel’s transformation) 

                     
,1 ,2 ,3 ,4 ,5 ,6 , (say).n n n n n nT T T T T T       

In order to complete the proof of the theorem by using Minokowski’s inequality, it is sufficient to show that 
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                        This completes the proof of the Lemma. 

5. Proof of the theorem 

  Since the behavior of the Fourier series, as far as convergence is concerned, for a particular value of x  

depends on the behavior of the function in the immediate neighborhood of this point only, the truth of the theorem 

is necessarily the consequence of the Lemma. 

6. Conclusion 

Putting  = 0 and n

n

P

p
   with =0, the result of Misra et al. [2] and the result of H.Bor [1] can be achieved 

respectively from the result established in the present chapter under a few varying condition. Further there is a reach 

scope to work in this area for different indexed summability methods with additional parameter. 
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