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Abstract

In this paper we have established a theorem on the local property of absolute Norlund indexed-

summability of Factored Fourier series.
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1. Introduction

Let Z a, be a given infinite series with sequence of partial sums {Sn } Let {pn }be a sequence of positive
real constants such that

n
(L.1) P,=>p, D>xasn—ow (P, =p,=0,ix1)
v=0
The sequence-to-sequence transformation
1 n
(1.2) th=""2 PusS,
Pn v=0

defines ( N, p, ) -mean of the sequence {Sn }generated by the sequence of coefficients {pn } The series

Zan is said to be summable |N, pn|k , k>1,if

k-1
(1.3) 2(5] t, —t,.| <.

n=1 pn

Fork=1, |N, pn|k - summability is same as |N, pn| - summability.
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When p, =1, foralln and k =1,

N, pn‘k - summability is same as |C, 1| summability.

Let {an} be any sequence of positive numbers. The series Zan is said to be summable

IN, p.a,| . k=1, if
(1.4) ia:_l It, —t, .| < oo,
n=1

Where {tn}is as defined in (5.1.2).The series Zan is said to be summable |N, pn,()tn;5|k k>16>0,if

(1.5) iaf"*"ﬂtn —t,,| <.

n=1

For6 =0, the summability method|N, pn,acn;5|k ,k=1,6=0, reduces to the summabilty method
|N, pn,04n|k Jk>1.

For any real number y, the series Zan is said to be summable by the summabilty

method [N, p,,,;8,7] . k21,620, if

(1.6) iany(5k+k_l) |tn _tn,1|k <.

n=1

For y =1, the summability method |N, P, a0, 7/|k ,k>1,6>0, any real » , reduces to the
method|N, pn,ozn;é‘|k k>1,62>0.

A sequence {in }is said to be convex if Azﬂ,n > 0 for every positive integer n.

Let f(t) be a periodic function with period 277 and integrable in the sense of Lebesgue

over (—7, ) . Without loss of generality we may assume that the constant term in the Fourier series of f (t)
is zero, so that

(L.7) f(t)~ i(an cosnt +b, sinnt) = i A, (t)
n=1 n=1

It is well known that the convergence of Fourier series at t = x is a local property of f (t) (i.e., it depends
only on the behavior of f (t) in an arbitrarily small neighborhood of x) and hence the summability of the
Fourier series at t = x by any regular linear method is also a local property of f (t) .

2. Known theorems

Dealing with the ‘N, P,

- summability of an infinite series Bor [1] proved the following theorem:
k

Theorem-2.1

Let K > 1and let the sequences { P, }and {4, } be such that

(2.1.1) AX, = O(%)
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k k
- Al +|A
(212) $ e ol el
n=1 n
and
(2.13) XS+ DAL <,
n=1
where X, = —"—.Then the summability ‘N P, ) of the factored Fourier series ZAn(t)/ian at a point can

npn n=1
be ensured by the local property.

Subsequently, Misra et. al. [2] proved the following theorem on the local property of |N, pn,an|ksummability of
factored Fourier series:
Theorem-2.2

Letk >1. Suppose {/1”} be a convex sequence such that Zn_lﬂn is convergent and {pn} be a
sequence such that

(2.2.1) AX, = O(E],
n
(2.2.2) h = O(Mij,
Pn Pn—l pl’
m+1 k-1 p p
2. T =-Q] |,
(22.3) n:er+l(<%n) 3 (PJ
© /1 k
(2.2.4) DXt % <o,
and
VA
2. XK <o,
(2.2.5) HZ:: . . <

P 0
Where X = —"-.Then the summability [N, p,, an|k, k >1of the factored Fourier series Z A, ()4, X, at
npn n=1

a point can be ensured by the local property, where {an } is a sequence of positive numbers.

Rrecently, Paikray et al. [3] proved the following theorem on the local property of |N, P, an,5|k summability
of factored Fourier series:
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Theorem-2.3

Letk >1. Suppose {/1,]} be a convex sequence such that anlﬂn is convergent and {pn} be a
sequence such that

(2.3.1) AX n = O(lj ,
n

23.2) Pira _ O( Pnora ij

I:)n Pn—l pr

m+l Sk+k-1 D D

2.3.3 a T =0 =L |,
( ) n;l( n) I:)n [ Pr j

o) /1 |k
234 Xk L <o,
(2.3.4) le v
and

= Xk—l |Aﬂ’n|k <0

(2.3.5) >,

n
=1 n

P 0
where X =—"-.Then the summability [N, p,,, 5|k , K =1 of the factored Fourier series Z A, (DA, X,
npn n=1

at a point can be ensured by the local property, where {an } is a sequence of positive numbers.

In the present paper we have established the following theorem on |N, P, &, 0, }/|k - summabilty of a
factored Fourier series through its local property.
3. Main theorem

Letk >1. Suppose {/’tn} be a convex sequence such that Zn_lﬂn is convergent and {pn} be a sequence such

that
(3.1) AX, = O(l]
I:)n—r—l _ pn r-1 i
@ BaoqBaf)
mal ak+k 1 p
. =0 :
(33) anil(an) P [P J
© l |k
: xHL ,
(3.4) Zl <
and
(3.5) ix“ —|M’“|k <o
. 2 n o ,
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where X =

. the summability |N,pn,an,5,7/|k,k21of the factored Fourier series
np,

Z A, (t)ﬂ,n X, atapoint can be ensured by the local property, where {an } is a sequence of positive numbers.
n=1

4. Required lemma

In order to prove the above theorem we require the following lemma:

Lemma

Let kK >1and suppose {Zn} be a convex sequence such that anlﬂn is convergent and {pn} be a

sequence such that the conditions (3.1)-(3.5) are satisfied. If {Sn} is bounded, then for the sequence of positive

numbers{an} the series Zan,znxn is summable|N, pn,an,5|i k>1,6>0.

n=1

Proof of the lemma

Let {T, }denote the (N, p, ) - mean of the series Z a, A, X, . Then by definition we have
n=1

=—pr2a

n v=0
1< n
a2 arﬂrxr; b
- _Zar P AX,
n r=0
Hence
1
T = an aiX -——SP a
(X= n-1 r=l
- (h—h},/hxr
r=1 Pn Pnfl
1 n
= P
PnPHI;(nrnl ”fl n)a
1 n-1
Pn Pn—l |:r—1 {( n-rfna — Foora n :|Z
1 n-1
B P)AX
PnPn_l|:rl(pn r'n- pn—rfl n) v rsr
n-1
+ (Pn—r—an—l - Pﬂ—r—Z Pn )A/lr err
r=1

r+1

n-1
+3 (P 4P =P 5P A AXS}
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(by Abel’s transformation)
=T AT+ T+ T +T s +T 5, (say).
In order to complete the proof of the theorem by using Minokowski’s inequality, it is sufficient to show that

o0
7(Sk+k-1)
2 e

n=1

<oo fori=12,3,4,5,6.

n i

Now, we have

%any(ékw—l) T, ko _ mzﬂany(fmk gy 1 Z P AXsS,
n=2 ’ n=2 Pn Pn_1 r=1

<mz+la }’(5k+k—1)i nz_l |/1 |k|S |k ¥ K Z 1
- n Pn — pn—r T r r pn r

n=2 n r=1

n=r+1 n

-0 el x; § | B

—om>|4[ X" % by (3.3)
r=1

r

m P P
—omY xS o =t
3
m y) |k
=0 XX L
(); S
=0() as m— oo, by (5.3.4).
& 7(Sk+k-1) k - 7(6k+k-1) 1 < ‘
Next, Y a, T, =>4, T Z P, PAXs
n=2 n=2 n'na r=l
< y(okek-n) 1 S Kok ok -
S DS | Py
=2 n,l r=1 n-1 r=1

~0w3 il x: $ [pp_j

=r+l

—omY 4| X % by(5.33)
r=1

r

n P P
=01 lrkxf‘lﬁ r , Xn: n
()rZ:1:| | P rp, ® np,
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k
=0 X @
r=1

=0() as m— oo, by (3.4).

Further,
k
U (Sk+k-1) k & 7(Sk+k-1) 1 &
> a, T. =D 55 ZPn,anlMx s,
n=2 n=2 n'n- r=l

mz H(ork) i(” S p A, Is, | ka (inflp A4 |Jkl
P n-r-1 r r r P n-r-1 r

n=2 n \.r=1

_0(1)2|Aﬂ’| X Z 7(Sk+k-1) [%j

n=r+1 n

[s.nce LS anl<Sas= oa)j
r=1

n r=1

- O(1)i|Mr|k X K % by (3.3)
r=1

r

m P
oY |ar [ x P T o x
R e g,

i A"
r=1

=0() as m-—>oo,by(3.5).

Now,
U Sk+k-1 k & (6k+k-1) 1 & ‘
oA =) ZPn P ALX:s,
n=2 Y n=2 I:)n I:)n -1 r=l

n=2 r=1

k-1
S aw]

nlf—l

mz 7(5k+k-1) [nz r2|Aﬁ,r|k|Sr|k ij[
nl

_O(l)Z|A/I | Xk Z 7(Gkek1) [Pp—j (as above)
n-1

n=r+1

—omY|A4[ X! % by (533)
r=1

r
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" P
oY |ar, [ x P T o x =
M2 A% P, rp, np,

k
=0 X a4
r=1

=0() as m-— oo, by (3.5).

Again
m+1 m+1 1 n— k
zan7(5k+k—l) Tn'5 — Zan bk+k 1 an ) lP A,r+1AX S
n=2 n=2 n n -1 r=1
n-1 p k
_ 7(5k+k-1) z n—r—1 ) 1Ax S
& n - Pn T+ ror
k
= A(Skrky) Z Pory B LA AX S| by (32)
n=2 =1 —1 r
m-+1 n-1 p P 1 k
— Zan7(5k+k—1) Z n-r-1 _r Zr+ls by (31)
n=2 r=1 I:)n—l pr
m+1 Skakd n-1 p P p
=D PN Tl T g s X T as X,
n=2 =1 Pnfl pr Pr npn
m+1 n-1 p v ‘ n-1 p k-1
g o {z—;,” ol {35
n=2 r=1 Tha r=l "n-
—O(l)Zlﬂml Xt 3 a0 [—p,:”,”j
n=r+1 ]
x k k-1 pr Pr Pn
=0 ) |44 X7 ——,a X, =—— and by (3.3
()Zl] r+l| r Pr p, np. Yy (3.3)
k
m A
:og@ﬂxf‘l,
= T
=0(1) as m-— o, by(3.4).
Finally,

m+ m+1 n-1
y(Sk+k-1) ko _ y(Sk+k-1) 1
=) q P ,PA. AX S,
2:2: ; n P P z n— r+1

n'n-1r=l
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k

f (Sk+k-1) E P
y{OK+K— n-r-2
=) AX S
& n < P, (g rer
m+1 Skakd n-1 p P k
=Y CHNN T2 T g AX s, | by (32)
n=2 r=1 n-2 r
m-+1 Skokd n-1 p P 1 k
= Zany( +k-1) ZL*Z_lelSr = by (3.1)
n=2 r=1 F%_Q r r
D (skeken) [SS P P p k
=Y g S P2 Tt p s X H as X, =0
n=2 =1 Pn—2 r Pr np,
m+1 ok n-1 p ‘ ‘ n-1 p k-1
— an}’(5 +k-1) z n-r-2 |ﬂ’r+1| |Sr| X:( z n-r—2
n=2 r=1 F%_z r=1 F%_z

il m+1
=0 el XF X @,/ (%J
= n-2

n=r+1

n

C a4 b P P
=OMY A, [ XK EL T as X =—" and by(3.3)
Q | P, rp, np,

k
~ow3: Pl i,
=1

=0() as m— o, by (3.4).
This completes the proof of the Lemma.

5. Proof of the theorem

Since the behavior of the Fourier series, as far as convergence is concerned, for a particular value of X
depends on the behavior of the function in the immediate neighborhood of this point only, the truth of the theorem
is necessarily the consequence of the Lemma.

6. Conclusion

P

Putting § = 0 and o =—" with 8=0, the result of Misra et al. [2] and the result of H.Bor [1] can be achieved
Pn

respectively from the result established in the present chapter under a few varying condition. Further there is a reach

scope to work in this area for different indexed summability methods with additional parameter.
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