Journal of Progressive Research in Mathematics
 www.scitecresearch.com/journals

Pointwise Weighted Approximation of Functions with Endpoint Singularities by Combinations of Bernstein Operators

WEN-MING LU ${ }^{1}$, JIN-PING JIA ${ }^{2}$

${ }^{1}$ School of Science, Hangzhou Dianzi Unviersity, Hangzhou, People's Republic of China
${ }^{2}$ School of Mathematics and Statistics, Tianshui Normal University, People's Republic of China

Abstract

We give direct and inverse theorems for the weighted approximation of functions with endpoint singularities by combinations of Bernstein operators.

1991 Mathematics Subject Classification: Primary 41A10, Secondary 41A17.
Keywords and phrases: Combinations of Bernstein polynomials; Functions with endpoint singularities; Direct and inverse results.

Introduction

The set of all continuous functions, defined on the interval I, is denoted by $C(I)$. For any $f \in C([0,1])$, the corresponding Bernstein operators are defined as follows:

$$
B_{n}(f, x):=\sum_{k=0}^{n} f\left(\frac{k}{n}\right) p_{n, k}(x),
$$

Where

$$
p_{n, k}(x):=\binom{n}{k} x^{k}(1-x)^{n-k}, k=0,1,2, \ldots, n, x \in[0,1] .
$$

Approximation properties of Bernstein operators have been studied very well (see [2], [3], [5]-[8], [12][14], for example). In order to approximate the functions with singularities, Della Vecchia et al. [3] and Yu-Zhao [12] introduced some kinds of modified Bernstein operators. Throughout the paper, C denotes a positive constant independent of n and x, which may be different in different cases.
Let

$$
w(x)=x^{\alpha}(1-x)^{\beta}, \alpha, \beta \geqslant 0, \alpha+\beta>0,0 \leqslant x \leqslant 1 .
$$

and

$$
C_{w}:=\left\{f \in C((0,1)): \lim _{x \longrightarrow 1}(w f)(x)=\lim _{x \rightarrow 0}(w f)(x)=0\right\} .
$$

The norm in C_{w} is defined by $\|w f\|_{C_{w}}:=\|w f\|=\sup _{0 \leqslant x \leqslant 1}|(w f)(x)|$. Define

$$
W_{w, \lambda}^{r}:=\left\{f \in C_{w}: f^{(r-1)} \in A . C \cdot((0,1)),\left\|w \varphi^{r \lambda} f^{(r)}\right\|<\infty\right\}
$$

For $f \in C_{w}$, define the weighted modulus of smoothness by
$\omega_{\varphi^{\lambda}}^{r}(f, t)_{w}:=\sup _{0<h \leqslant t}\left\{\left\|w \Delta_{h \varphi^{\lambda}}^{r} f\right\|_{\left[16 h^{2}, 1-16 h^{2}\right]}+\left\|w \vec{\triangle}_{h}^{r} f\right\|_{\left[0,16 h^{2}\right]}+\left\|w \overleftarrow{\triangle}_{h}^{r} f\right\|_{\left[1-16 h^{2}, 1\right]}\right\}$,
where

$$
\begin{array}{r}
\Delta_{h \varphi}^{r} f(x)=\sum_{k=0}^{r}(-1)^{k}\binom{r}{k} f\left(x+\left(\frac{r}{2}-k\right) h \varphi(x)\right), \\
\vec{\Delta}_{h}^{r} f(x)=\sum_{k=0}^{r}(-1)^{k}\binom{r}{k} f(x+(r-k) h) \\
\overleftarrow{\Delta}_{h}^{r} f(x)=\sum_{k=0}^{r}(-1)^{k}\binom{r}{k} f(x-k h)
\end{array}
$$

and $\varphi(x)=\sqrt{x(1-x)}$. Della Vecchia et al. firstly introduced $B_{n}^{*}(f, x)$ and $\bar{B}_{n}(f, x)$ in [3], where the properties of $B_{n}^{*}(f, x)$ and $\bar{B}_{n}(f, x)$ are studied. Among others, they prove that

$$
\begin{array}{r}
\left\|w\left(f-B_{n}^{*}(f)\right)\right\| \leqslant C \omega_{\varphi}^{2}\left(f, n^{-1 / 2}\right), f \in C_{w}, \\
\left\|\bar{w}\left(f-\bar{B}_{n}(f)\right)\right\| \leqslant \frac{C}{n^{3 / 2}} \sum_{k=1}^{[\sqrt{n}]} k^{2} \omega_{\varphi}^{2}\left(f, \frac{1}{k}\right)_{w}^{*}, f \in C_{\varpi},
\end{array}
$$

where $w(x)=x^{\alpha}(1-x)^{\beta}, \alpha, \beta \geqslant 0, \alpha+\beta>0,0 \leqslant x \leqslant 1$. In [11], for any $\alpha, \beta>0, n \geqslant 2 r+\alpha+\beta$, there hold

$$
\begin{array}{r}
\left\|w B_{n, r}^{*}(f)\right\| \leqslant C\|w f\|, f \in C_{w}, \\
\left\|w\left(B_{n, r}^{*}(f)-f\right)\right\| \leqslant\left\{\begin{array}{l}
\frac{C}{n^{r}}\left(\|w f\|+\left\|w \varphi^{2 r} f^{(2 r)}\right\|\right), f \in W_{w}^{2 r} \\
C\left(\omega_{\varphi}^{2 r}\left(f, n^{-1 / 2}\right)_{w}+n^{-r}\|w f\|\right), f \in C_{w} .
\end{array}\right. \\
\left\|w \varphi^{2 r} B_{n, r}^{*(2 r)}(f)\right\| \leqslant\left\{\begin{array}{l}
C n^{r}\|w f\|, f \in C_{w}, \\
C\left(\|w f\|+\left\|w \varphi^{2 r} f^{(2 r)}\right\|\right), f \in W_{w}^{2 r} .
\end{array}\right.
\end{array}
$$

and for $0<\gamma<2 r$,

$$
\left\|w\left(B_{n, r}^{*}(f)-f\right)\right\|=O\left(n^{-\gamma / 2}\right) \Longleftrightarrow \omega_{\varphi}^{2 r}(f, t)_{w}=O\left(t^{r}\right)
$$

Ditzian and Totik [5] extended this method of combinations and defined the following combinations of Bernstein operators:

$$
B_{n, r}(f, x):=\sum_{i=0}^{r-1} C_{i}(n) B_{n_{i}}(f, x)
$$

with the conditions
(a) $n=n_{0}<n_{1}<\cdots<n_{r-1} \leqslant C n$,
(b) $\sum_{i=0}^{r-1}\left|C_{i}(n)\right| \leqslant C$,
(c) $\sum_{i=0}^{r-1} C_{i}(n)=1$,
(d) $\sum_{i=0}^{r-1} C_{i}(n) n_{i}^{-k}=0$, for $k=1, \ldots, r-1$.

2. The main results

Now, we can define our new combinations of Bernstein operators as follows:

$$
\begin{equation*}
B_{n, r}^{*}(f, x):=B_{n, r}\left(F_{n}, x\right)=\sum_{i=0}^{r-1} C_{i}(n) B_{n_{i}}\left(F_{n}, x\right), \tag{2.1}
\end{equation*}
$$

where $C_{i}(n)$ satisfy the conditions (a)-(d). For the details, it can be referred to [11]. Our main results are the following:

Theorem 2.1. If $\alpha, \beta>0$, for any $f \in C_{w}$, we have

$$
\begin{equation*}
\left\|w B_{n, r-1}^{*(r)}(f)\right\| \leqslant C n^{r}\|w f\| . \tag{2.2}
\end{equation*}
$$

Theorem 2.2. For any $\alpha, \beta>0,0 \leqslant \lambda \leqslant 1$, we have
$\left|w(x) \varphi^{r \lambda}(x) B_{n, r-1}^{*(r)}(f, x)\right| \leqslant\left\{\begin{array}{l}C n^{r / 2}\left\{\max \left\{n^{r(1-\lambda) / 2}, \varphi^{r(\lambda-1)}(x)\right\}\right\}\|w f\|, f \in C_{w}, \\ C\left\|w \varphi^{r \lambda} f^{(r)}\right\|, f \in W_{w, \lambda}^{r}\end{array}\right.$
Theorem 2.3. For $f \in C_{w}, \alpha, \beta>0, \alpha_{0} \in(0,2), 0 \leqslant \lambda \leqslant 1$, we have

$$
\begin{equation*}
w(x)\left|f(x)-B_{n, r-1}^{*}(f, x)\right|=O\left(\left(n^{-\frac{1}{2}} \varphi^{-\lambda}(x) \delta_{n}(x)\right)^{\alpha_{0}}\right) \Longleftrightarrow \omega_{\varphi^{\lambda}}^{r}(f, t)_{w}=O\left(t^{\alpha_{0}}\right) \tag{2.4}
\end{equation*}
$$

3. Lemmas

Lemma 3.1. ([13]) For any non-negative real u and v, we have

$$
\begin{equation*}
\sum_{k=1}^{n-1}\left(\frac{k}{n}\right)^{-u}\left(1-\frac{k}{n}\right)^{-v} p_{n, k}(x) \leqslant C x^{-u}(1-x)^{-v} \tag{3.1}
\end{equation*}
$$

Lemma 3.2. ([3]) If $\gamma \in R$, then

$$
\begin{equation*}
\sum_{k=0}^{n}|k-n x|^{\gamma} p_{n, k}(x) \leqslant C n^{\frac{\gamma}{2}} \varphi^{\gamma}(x) . \tag{3.2}
\end{equation*}
$$

Lemma 3.3. For any $f \in W_{w, \lambda}^{r}, 0 \leqslant \lambda \leqslant 1$ and $\alpha, \beta>0$, we have

$$
\begin{equation*}
\left\|w \varphi^{r \lambda} F_{n}^{(r)}\right\| \leqslant C\left\|w \varphi^{r \lambda} f^{(r)}\right\| . \tag{3.3}
\end{equation*}
$$

Proof. By symmetry, we only prove the above result when $x \in(0,1 / 2]$, the others can be done similarly. Obviously, when $x \in(0,1 / n$], by [5], we have

$$
\begin{aligned}
& \left|L_{r}^{(r)}(f, x)\right| \leqslant C\left|\vec{\Delta}_{\frac{1}{r}}^{r} f(0)\right| \leqslant C n^{-\frac{r}{2}+1} \int_{0}^{\frac{r}{n}} u^{\frac{r}{2}}\left|f^{(r)}(u)\right| d u \\
& \leqslant C n^{-\frac{r}{2}+1}\left\|w \varphi^{r \lambda} f^{(r)}\right\| \int_{0}^{\frac{r}{n}} u^{\frac{r}{2}} w^{-1}(u) \varphi^{-r \lambda}(u) d u
\end{aligned}
$$

So

$$
\left|w(x) \varphi^{r \lambda}(x) F_{n}^{(r)}(x)\right| \leqslant C\left\|w \varphi^{r \lambda} f^{(r)}\right\| .
$$

If $x \in\left[\frac{1}{n}, \frac{2}{n}\right]$, we have

$$
\begin{aligned}
\left|w(x) \varphi^{r \lambda}(x) F_{n}^{(r)}(x)\right| \leqslant\left|w(x) \varphi^{r \lambda}(x) f^{(r)}(x)\right|+\mid w(x) \varphi^{r \lambda}(x)(f(x)- & \left.F_{n}(x)\right)^{(r)} \mid \\
& :=I_{1}+I_{2} .
\end{aligned}
$$

For I_{2}, we have

$$
\begin{array}{r}
f(x)-F_{n}(x)=(\psi(n x-1)+1)\left(f(x)-L_{r}(f, x)\right) . \\
w(x) \varphi^{r \lambda}(x)\left|\left(f(x)-F_{n}(x)\right)^{(r)}\right|=w(x) \varphi^{r \lambda}(x) \sum_{i=0}^{r} n^{i}\left|\left(f(x)-L_{r}(f, x)\right)^{(r-i)}\right| .
\end{array}
$$

By [5], then

$$
\left|\left(f(x)-L_{r}(f, x)\right)^{(r-i)}\right|_{\left[\frac{1}{n}, \frac{2}{n}\right]} \leqslant C\left(n^{r-i}\left\|f-L_{r}\right\|_{\left[\frac{1}{n}, \frac{2}{n}\right]}+n^{-i}\left\|f^{(r)}\right\|_{\left[\frac{1}{n}, \frac{2}{n}\right]}\right), 0<j<r .
$$

Now, we estimate

$$
\begin{equation*}
I:=w(x) \varphi^{r \lambda}(x)\left|f(x)-L_{r}(x)\right| . \tag{3.4}
\end{equation*}
$$

By Taylor expansion, we have

$$
\begin{equation*}
f\left(\frac{i}{n}\right)=\sum_{u=0}^{r-1} \frac{\left(\frac{i}{n}-x\right)^{u}}{u!} f^{(u)}(x)+\frac{1}{(r-1)!} \int_{x}^{\frac{i}{n}}\left(\frac{i}{n}-s\right)^{r-1} f^{(r)}(s) d s \tag{3.5}
\end{equation*}
$$

It follows from (3.5) and the identities

$$
\sum_{i=1}^{r}\left(\frac{i}{n}\right)^{v} l_{i}(x)=C x^{v}, v=0,1, \cdots, r .
$$

We have

$$
\begin{aligned}
L_{r}(f, x)=\sum_{i=1}^{r} \sum_{u=0}^{r-1} \frac{\left(\frac{i}{n}-x\right)^{u}}{u!} f^{(u)}(x) l_{i}(x) & +\frac{1}{(r-1)!} \sum_{i=1}^{r} l_{i}(x) \int_{x}^{\frac{i}{n}}\left(\frac{i}{n}-s\right)^{r-1} f^{(r)}(s) d s \\
=f(x) & +\sum_{u=1}^{r-1} f^{(u)}(x)\left(\sum_{v=0}^{u} C_{u}^{v}(-x)^{u-v} \sum_{i=1}^{r}\left(\frac{i}{n}\right)^{v} l_{i}(x)\right) \\
& +\frac{1}{(r-1)!} \sum_{i=1}^{r} l_{i}(x) \int_{x}^{\frac{i}{n}}\left(\frac{i}{n}-s\right)^{r-1} f^{(r)}(s) d s
\end{aligned}
$$

which implies that
$w(x) \varphi^{r \lambda}(x)\left|f(x)-L_{r}(f, x)\right|=\frac{1}{r!} w(x) \varphi^{r \lambda}(x) \sum_{i=1}^{r} l_{i}(x) \int_{x}^{\frac{i}{n}}\left(\frac{i}{n}-s\right)^{r-1} f^{(r)}(s) d s$,
since $\left|l_{i}(x)\right| \leqslant C$ for $x \in\left[0, \frac{2}{n}\right], i=1,2, \cdots, r$.

It follows from $\frac{\left|\frac{i}{n}-s\right|^{r-1}}{w(s)} \leqslant \frac{\left|\frac{i}{n}-x\right|^{r-1}}{w(x)}$, s between $\frac{i}{n}$ and x, then

$$
\begin{array}{r}
w(x) \varphi^{r \lambda}(x)\left|f(x)-L_{r}(f, x)\right| \leqslant C w(x) \varphi^{r \lambda}(x) \sum_{i=1}^{r} \int_{x}^{\frac{i}{n}}\left(\frac{i}{n}-s\right)^{r-1}\left|f^{(r)}(s)\right| d s \\
\leqslant C \varphi^{r \lambda}(x)\left\|w \varphi^{r \lambda} f^{(r)}\right\| \sum_{i=1}^{r} \int_{x}^{\frac{i}{n}}\left(\frac{i}{n}-s\right)^{r-1} \varphi^{-r \lambda}(s) d s \\
\leqslant \frac{C}{n^{r}}\left\|w \varphi^{r \lambda} f^{(r)}\right\| .
\end{array}
$$

Thus

$$
I \leqslant C\left\|w \varphi^{r \lambda} f^{(r)}\right\|
$$

So, we get

$$
I_{2} \leqslant C\left\|w \varphi^{r \lambda} f^{(r)}\right\|
$$

Above all, we have

$$
\left|w(x) \varphi^{r \lambda}(x) F_{n}^{(r)}(x)\right| \leqslant C\left\|w \varphi^{r \lambda} f^{(r)}\right\| .
$$

Lemma 3.4. If $f \in W_{w, \lambda}^{r}, 0 \leqslant \lambda \leqslant 1$ and $\alpha, \beta>0$, then

$$
\begin{align*}
&\left|w(x)\left(f(x)-L_{r}(f, x)\right)\right|_{\left[0, \frac{2}{n}\right]} \leqslant C\left(\frac{\delta_{n}(x)}{\sqrt{n} \varphi^{\lambda}(x)}\right)^{r}\left\|w \varphi^{r \lambda} f^{(r)}\right\| . \tag{3.6}\\
&\left|w(x)\left(f(x)-R_{r}(f, x)\right)\right|_{\left[1-\frac{2}{n}, 1\right]} \leqslant C\left(\frac{\delta_{n}(x)}{\sqrt{n} \varphi^{\lambda}(x)}\right)^{r}\left\|w \varphi^{r \lambda} f^{(r)}\right\| . \tag{3.7}
\end{align*}
$$

Proof. By Taylor expansion, we have

$$
\begin{equation*}
f\left(\frac{i}{n}\right)=\sum_{u=0}^{r-1} \frac{\left(\frac{i}{n}-x\right)^{u}}{u!} f^{(u)}(x)+\frac{1}{r!} \int_{x}^{\frac{i}{n}}\left(\frac{i}{n}-s\right)^{r-1} f^{(r)}(s) d s \tag{3.8}
\end{equation*}
$$

It follows from (3.8) and the identities

$$
\sum_{i=1}^{r-1}\left(\frac{i}{n}\right)^{v} l_{i}(x)=C x^{v}, v=0,1, \ldots, r
$$

We have

$$
\begin{aligned}
L_{r}(f, x)=\sum_{i=1}^{r} \sum_{u=0}^{r-1} \frac{\left(\frac{i}{n}-x\right)^{u}}{u!} f^{(u)}(x) l_{i}(x) & +\frac{1}{(r-1)!} \sum_{i=1}^{r} l_{i}(x) \int_{x}^{\frac{i}{n}}\left(\frac{i}{n}-s\right)^{r-1} f^{(r)}(s) d s \\
=f(x) & +\sum_{u=1}^{r-1} f^{(u)}(x)\left(\sum_{v=0}^{u} C_{u}^{v}(-x)^{u-v} \sum_{i=1}^{r}\left(\frac{i}{n}\right)^{v} l_{i}(x)\right) \\
& +\frac{1}{(r-1)!} \sum_{i=1}^{r} l_{i}(x) \int_{x}^{\frac{i}{n}}\left(\frac{i}{n}-s\right)^{r-1} f^{(r)}(s) d s
\end{aligned}
$$

which implies that

$$
w(x)\left|f(x)-L_{r}(f, x)\right|=\frac{1}{(r-1)!} w(x) \sum_{i=1}^{r} l_{i}(x) \int_{x}^{\frac{i}{n}}\left(\frac{i}{n}-s\right)^{r-1} f^{(r)}(s) d s,
$$

since $\left|l_{i}(x)\right| \leqslant C$ for $x \in\left[0, \frac{2}{n}\right], i=1,2, \cdots, r$.
It follows from $\frac{\left|\frac{i}{n}-s\right|^{r-1}}{w(s)} \leqslant \frac{\left|\frac{i}{n}-x\right|^{r-1}}{w(x)}$, s between $\frac{i}{n}$ and x, then

$$
\begin{array}{r}
w(x)\left|f(x)-L_{r}(f, x)\right| \leqslant C w(x) \sum_{i=1}^{r} \int_{x}^{\frac{i}{n}}\left(\frac{i}{n}-s\right)^{r-1}\left|f^{(r)}(s)\right| d s \\
\leqslant C \frac{\varphi^{r}(x)}{\varphi^{r \lambda}(x)}\left\|w \varphi^{r \lambda} f^{(r)}\right\| \sum_{i=1}^{r} \int_{x}^{\frac{i}{n}}\left(\frac{i}{n}-s\right)^{r-1} \varphi^{-r}(s) d s \\
\leqslant C \frac{\delta_{n}^{r}(x)}{\varphi^{r \lambda}(x)}\left\|w \varphi^{r \lambda} f^{(r)}\right\| \sum_{i=1}^{r} \int_{x}^{\frac{i}{n}}\left(\frac{i}{n}-s\right)^{r-1} \varphi^{-r}(s) d s \\
\leqslant C\left(\frac{\delta_{n}(x)}{\sqrt{n} \varphi^{\lambda}(x)}\right)^{r}\left\|w \varphi^{r \lambda} f^{(r)}\right\| .
\end{array}
$$

The proof of (3.7) can be done similarly.

Lemma 3.5. ([11]) For every $\alpha, \beta>0$, we have

$$
\begin{equation*}
\left\|w B_{n, r-1}^{*}(f)\right\| \leqslant C\|w f\| . \tag{3.9}
\end{equation*}
$$

Lemma 3.6. ([15]) If $\varphi(x)=\sqrt{x(1-x)}, 0 \leqslant \lambda \leqslant 1,0 \leqslant \beta \leqslant 1$, then

$$
\begin{equation*}
\int_{-\frac{h \varphi^{\lambda}(x)}{2}}^{\frac{h \varphi^{\lambda}(x)}{2}} \cdots \int_{-\frac{h \varphi^{\lambda}(x)}{2}}^{\frac{h \varphi^{\lambda}(x)}{2}} \varphi^{-r \beta}\left(x+\sum_{k=1}^{r} u_{k}\right) d u_{1} \cdots d u_{r} \leqslant C h^{r} \varphi^{r(\lambda-\beta)}(x) . \tag{3.10}
\end{equation*}
$$

4. Proof of Theorems

4.1. Proof of Theorem 2.1. By symmetry, in what follows we will always assume that $x \in\left(0, \frac{1}{2}\right]$. It is sufficient to prove the validity for $B_{n, r-1}\left(F_{n}, x\right)$
instead of $B_{n, r-1}^{*}(f, x)$. When $x \in\left(0, \frac{1}{n}\right)$, we have

$$
\begin{array}{r}
\left|w(x) B_{n, r-1}^{*(r)}(f, x)\right| \leqslant w(x) \sum_{i=0}^{r-2} \frac{n_{i}!}{\left(n_{i}-r\right)!} \sum_{k=0}^{n_{i}-r}\left|\vec{\Delta}_{\frac{1}{n_{i}}}^{r} F_{n}\left(\frac{k}{n_{i}}\right)\right| p_{n_{i}-r, k}(x) \\
\leqslant C w(x) \sum_{i=0}^{r-2} n_{i}^{r} \sum_{k=0}^{n_{i}-r}\left|\vec{\Delta}_{\frac{1}{n_{i}}}^{r} F_{n}\left(\frac{k}{n_{i}}\right)\right| p_{n_{i}-r, k}(x) \\
\leqslant C w(x) \sum_{i=0}^{r-2} n_{i}^{r} \sum_{k=0}^{n_{i}-r} \sum_{j=0}^{r} C_{r}^{j}\left|F_{n}\left(\frac{k+r-j}{n_{i}}\right)\right| p_{n_{i}-r, k}(x) \\
\leqslant C w(x) \sum_{i=0}^{r-2} n_{i}^{r} \sum_{j=0}^{r} C_{r}^{j}\left|F_{n}\left(\frac{r-j}{n_{i}}\right)\right| p_{n_{i}-r, 0}(x) \\
+C w(x) \sum_{i=0}^{r-2} n_{i}^{r} \sum_{j=0}^{r} C_{r}^{j}\left|F_{n}\left(\frac{n_{i}-j}{n_{i}}\right)\right| p_{n_{i}-r, n_{i}-r}(x) \\
+C w(x) \sum_{i=0}^{r-2} n_{i}^{r} \sum_{k=1}^{n_{i}-r-1} \sum_{j=0}^{r} C_{r}^{j}\left|F_{n}\left(\frac{k+r-j}{n_{i}}\right)\right| p_{n_{i}-r, k}(x) \\
:=H_{1}+H_{2}+H_{3} .
\end{array}
$$

We have

$$
\begin{array}{r}
H_{1} \leqslant C w(x)\|w f\| \sum_{i=0}^{r-2} n_{i}^{r} w^{-1}\left(\frac{1}{n_{i}}\right) p_{n_{i}-r, 0}(x) \\
\leqslant C\|w f\| \sum_{i=0}^{r-2} n_{i}^{r}\left(n_{i} x\right)^{\alpha}(1-x)^{n_{i}-r} \\
\leqslant C n^{r}\|w f\| .
\end{array}
$$

When $1 \leqslant k \leqslant n_{i}-r-1$, we have $1 \leqslant k+2 r-j \leqslant n_{i}-1$, and thus

$$
\frac{w\left(\frac{k}{n_{i}-r}\right)}{w\left(\frac{k+r-j}{n_{i}}\right)}=\left(\frac{n_{i}}{n_{i}-r}\right)^{\alpha+\beta}\left(\frac{k}{k+r-j}\right)^{\alpha}\left(\frac{n_{i}-r-k}{n_{i}-r-k+j}\right)^{\beta} \leqslant C .
$$

Thereof, by (3.1), we have

$$
\begin{array}{r}
H_{3} \leqslant C w(x)\left\|w F_{n}\right\| \sum_{i=0}^{r-2} n_{i}^{r} \sum_{k=1}^{n_{i}-r-1} \sum_{j=0}^{r} \frac{1}{w\left(\frac{k+r-j}{n_{i}}\right)} p_{n_{i}-r, k}(x) \\
\leqslant C w(x)\left\|w F_{n}\right\| \sum_{i=0}^{r-2} n_{i}^{r} \sum_{k=1}^{n_{i}-r-1} \frac{1}{w\left(\frac{k}{n_{i}-r}\right)} p_{n_{i}-r, k}(x) \\
\leqslant C n^{r}\left\|w F_{n}\right\| \leqslant C n^{r}\|w f\| .
\end{array}
$$

Similarly, we can get $H_{2} \leqslant C n^{r}\|w f\|$. So

$$
\begin{equation*}
\left|w(x) B_{n, r-1}^{*(r)}(f, x)\right| \leqslant C n^{r}\|w f\|, x \in\left(0, \frac{1}{n}\right) . \tag{4.1}
\end{equation*}
$$

When $x \in\left[\frac{1}{n}, \frac{1}{2}\right]$, according to [5], we have

$$
\begin{array}{r}
\left|w(x) B_{n, r-1}^{*(r)}(f, x)\right| \\
=\left|w(x) B_{n, r-1}^{(r)}\left(F_{n}, x\right)\right| \\
\leqslant w(x)\left(\varphi^{2}(x)\right)^{-r} \sum_{i=0}^{r-2} \sum_{j=0}^{r}\left|Q_{j}\left(x, n_{i}\right)\right| n_{i}^{j} \sum_{k=0}^{n}\left|\left(x-\frac{k}{n_{i}}\right)^{j} F_{n}\left(\frac{k}{n_{i}}\right)\right| p_{n_{i}, k}(x) .
\end{array}
$$

Then
$Q_{j}\left(x, n_{i}\right)=\left(n_{i} x(1-x)\right)^{\left[\frac{r-j}{2}\right]}$, and $\left(\varphi^{2}(x)\right)^{-r} Q_{j}\left(x, n_{i}\right) n_{i}^{j} \leqslant C\left(n_{i} / \varphi^{2}(x)\right)^{\frac{r+j}{2}}$, we have
$\left|w(x) B_{n, r-1}^{*(r)}(f, x)\right| \leqslant C w(x) \sum_{i=0}^{r-2} \sum_{j=0}^{r}\left(\frac{n_{i}}{\varphi^{2}(x)}\right)^{\frac{r+j}{2}} \sum_{k=0}^{n_{i}}\left|\left(x-\frac{k}{n_{i}}\right)^{j} F_{n}\left(\frac{k}{n_{i}}\right)\right| p_{n_{i}, k}(x)$

$$
\begin{equation*}
\leqslant C\left\|w F_{n}\right\| w(x) \sum_{i=0}^{r-2} \sum_{j=0}^{r}\left(\frac{n_{i}}{\varphi^{2}(x)}\right)^{\frac{r+j}{2}} \sum_{k=0}^{n_{i}} \frac{\left|x-\frac{k}{n_{i}}\right|^{j}}{w\left(\frac{k^{*}}{n_{i}}\right)} p_{n_{i}, k}(x), \tag{4.2}
\end{equation*}
$$

where $k^{*}=1$ for $k=0, k^{*}=n_{i}-1$ for $k=n_{i}$ and $k^{*}=k$ for $1<k<n_{i}$. Note that

$$
w^{2}(x) \frac{p_{n_{i}, 0}(x)}{w^{2}\left(\frac{1}{n_{i}}\right)} \leqslant C\left(n_{i} x\right)^{2 \alpha}(1-x)^{n_{i}} \leqslant C,
$$

and

$$
w^{2}(x) \frac{p_{n_{i}, n_{i}}(x)}{w^{2}\left(1-\frac{1}{n_{i}}\right)} \leqslant C n_{i}^{\beta} x^{n_{i}} \leqslant C \frac{n_{i}^{\beta}}{2^{n_{i}}} \leqslant C .
$$

By (3.1), we have

$$
\begin{equation*}
\sum_{k=0}^{n_{i}} \frac{1}{w^{2}\left(\frac{k^{*}}{n_{i}}\right)} p_{n_{i}, k}(x) \leqslant C w^{-2}(x) \tag{4.3}
\end{equation*}
$$

Now, applying Cauchy's inequality, by (3.2) and (4.3), we have

$$
\begin{aligned}
& \sum_{k=0}^{n_{i}} \frac{\left|x-\frac{k}{n_{i}}\right|^{j}}{w\left(\frac{k^{*}}{n_{i}}\right)} p_{n_{i}, k}(x) \leqslant\left(\sum_{k=0}^{n_{i}}\left|x-\frac{k}{n_{i}}\right|^{2 j} p_{n_{i}, k}(x)\right)^{1 / 2}\left(\sum_{k=0}^{n_{i}} \frac{1}{w^{2}\left(\frac{k^{*}}{n_{i}}\right)} p_{n_{i}, k}(x)\right)^{1 / 2} \\
& \leqslant C n_{i}^{-j / 2} \varphi^{j}(x) w^{-1}(x)
\end{aligned}
$$

Substituting this to (4.2), we have

$$
\begin{equation*}
\left|w(x) B_{n, r-1}^{*(r)}(f, x)\right| \leqslant C n^{r}\|w f\|, x \in\left[\frac{1}{n}, \frac{1}{2}\right] . \tag{4.4}
\end{equation*}
$$

We get Theorem 2.1 by (4.1) and (4.4).
4.2. Proof of Theorem 2.2. (1) When $f \in C_{w}$, we proceed it as follows:

Case 1. If $0 \leqslant \varphi(x) \leqslant \frac{1}{\sqrt{n}}$, by (2.2), we have

$$
\begin{equation*}
\left|w(x) \varphi^{r \lambda}(x) B_{n, r-1}^{*(r)}(f, x)\right| \leqslant C n^{-r \lambda / 2}\left|w(x) B_{n, r-1}^{*(r)}(f, x)\right| \leqslant C n^{r(1-\lambda / 2)}\|w f\| . \tag{4.5}
\end{equation*}
$$

Case 2. If $\varphi(x)>\frac{1}{\sqrt{n}}$, we have

$$
\begin{gathered}
\left|B_{n, r-1}^{*(r)}(f, x)\right|=\left|B_{n, r-1}^{(r)}\left(F_{n}, x\right)\right| \\
\leqslant\left(\varphi^{2}(x)\right)^{-r} \sum_{i=0}^{r-2} \sum_{j=0}^{r}\left|Q_{j}\left(x, n_{i}\right) C_{i}(n)\right| n_{i}^{j} \sum_{k=0}^{n_{i}}\left|\left(x-\frac{k}{n_{i}}\right)^{j} F_{n}\left(\frac{k}{n_{i}}\right)\right| p_{n_{i}, k}(x), \\
Q_{j}\left(x, n_{i}\right)=\left(n_{i} x(1-x)\right)^{\left[\frac{r-j}{2}\right]} \text {, and }\left(\varphi^{2}(x)\right)^{-2 r} Q_{j}\left(x, n_{i}\right) n_{i}^{j} \leqslant C\left(n_{i} / \varphi^{2}(x)\right)^{\frac{r+j}{2}} .
\end{gathered}
$$

So

$$
\begin{array}{r}
\left|w(x) \varphi^{r \lambda}(x) B_{n, r-1}^{*(r)}(f, x)\right| \\
\leqslant C w(x) \varphi^{r \lambda}(x) \sum_{i=0}^{r-2} \sum_{j=0}^{r}\left(\frac{n_{i}}{\varphi^{2}(x)}\right)^{\frac{r+j}{2}} \sum_{k=0}^{n_{i}}\left|\left(x-\frac{k}{n_{i}}\right)^{j} F_{n}\left(\frac{k}{n_{i}}\right)\right| p_{n_{i}, k}(x) \\
\leqslant C n^{\frac{r}{2}} \varphi^{r(\lambda-1)}(x) . \tag{4.6}
\end{array}
$$

It follows from combining with (4.5) and (4.6) that the first inequality is proved.
(2) When $f \in W_{w, \lambda}^{r}$, we have

$$
\begin{equation*}
B_{n, r-1}^{(r)}\left(F_{n}, x\right)=\sum_{i=0}^{r-2} C_{i}(n) n_{i}^{r} \sum_{k=0}^{n_{i}-r} \vec{\Delta}_{\frac{1}{n_{i}}}^{r} F_{n}\left(\frac{k}{n_{i}}\right) p_{n_{i}-r, k}(x) . \tag{4.7}
\end{equation*}
$$

If $0<k<n_{i}-r$, we have

$$
\begin{equation*}
\left|\vec{\Delta}_{\frac{1}{n_{i}}}^{r} F_{n}\left(\frac{k}{n_{i}}\right)\right| \leqslant C n_{i}^{-r+1} \int_{0}^{\frac{r}{n_{i}}}\left|F_{n}^{(r)}\left(\frac{k}{n_{i}}+u\right)\right| d u \tag{4.8}
\end{equation*}
$$

If $k=0$, we have

$$
\begin{equation*}
\left|\vec{\Delta}_{\frac{1}{n_{i}}}^{r} F_{n}(0)\right| \leqslant C \int_{0}^{\frac{r}{n_{i}}} u^{r-1}\left|F_{n}^{(r)}(u)\right| d u, \tag{4.9}
\end{equation*}
$$

Similarly

$$
\begin{equation*}
\left|\vec{\Delta}_{\frac{1}{n_{i}}}^{r} F_{n}\left(\frac{n_{i}-r}{n_{i}}\right)\right| \leqslant C n_{i}^{-r+1} \int_{1-\frac{r}{n_{i}}}^{1}(1-u)^{\frac{r}{2}}\left|F_{n}^{(r)}(u)\right| d u \tag{4.10}
\end{equation*}
$$

By (4.7)-(4.10), we have

$$
\leqslant C w(x) \varphi^{r \lambda}(x)\left\|w \varphi^{r \lambda} F_{n}^{(r)}\right\| \sum_{i=0}^{r-2} \sum_{k=0}^{n_{i}-r}\left(w(x) \varphi^{r \lambda}(x) B_{n, r-1}^{*(r)}(f, x) \mid\right.
$$

where $k^{*}=1$ for $k=0, k^{*}=n_{i}-r-1$ for $k=n_{i}-r$ and $k^{*}=k$ for $1<k<n_{i}-r$. By (3.1), we have

$$
\begin{equation*}
\sum_{k=0}^{n_{i}-r}\left(w \varphi^{r \lambda}\right)^{-1}\left(\frac{k^{*}}{n_{i}}\right) p_{n_{i}-r, k}(x) \leqslant C\left(w \varphi^{r \lambda}\right)^{-1}(x) \tag{4.12}
\end{equation*}
$$

which combining with (4.12) give

$$
\left|w(x) \varphi^{r \lambda}(x) B_{n, r-1}^{*(r)}(f, x)\right| \leqslant C\left\|w \varphi^{r \lambda} f^{(r)}\right\| . \square
$$

So we get the second inequality of the Theorem 2.2 .

4.3. Proof of Theorem 2.3 .

4.3.1. The direct theorem. We know

$$
\begin{array}{r}
F_{n}(t)=F_{n}(x)+F_{n}^{\prime}(t)(t-x)+\cdots+\frac{1}{(r-1)!} \int_{x}^{t}(t-u)^{r-1} f^{(r)}(u) d u, \tag{4.13}\\
14) \quad B_{n, r-1}\left((\cdot-x)^{k}, x\right)=0, k=1,2, \cdots, r-1 .
\end{array}
$$

According to the definition of $W_{w, \lambda}^{r}$, for any $g \in W_{w, \lambda}^{r}$, we have $B_{n, r-1}^{*}(g, x)=$ $B_{n, r-1}\left(G_{n}(g), x\right)$, and $w(x)\left|G_{n}(x)-B_{n, r-1}\left(G_{n}, x\right)\right|=w(x)\left|B_{n, r-1}\left(R_{r}\left(G_{n}, t, x\right), x\right)\right|$, thereof $R_{r}\left(G_{n}, t, x\right)=\int_{x}^{t}(t-u)^{r-1} G_{n}^{(r)}(u) d u$. It follows from $\frac{|t-u|^{r-1}}{w(u)} \leqslant$ $\frac{|t-x|^{r-1}}{w(x)}, u$ between t and x, we have

$$
\begin{aligned}
& w(x)\left|G_{n}(x)-B_{n, r-1}\left(G_{n}, x\right)\right| \leqslant C\left\|w \varphi^{r \lambda} G_{n}^{(r)}\right\| w(x) B_{n, r-1}\left(\int_{x}^{t} \frac{|t-u|^{r-1}}{w(u) \varphi^{r \lambda}(u)} d u, x\right) \\
& \leqslant C\left\|w \varphi^{r \lambda} G_{n}^{(r)}\right\| w(x)\left(B_{n, r-1}\left(\int_{x}^{t} \frac{|t-u|^{r-1}}{\varphi^{2 r \lambda}(u)} d u, x\right)\right)^{\frac{1}{2}} . \\
& \quad\left(B_{n, r-1}\left(\int_{x}^{t} \frac{|t-u|^{r-1}}{w^{2}(u)} d u, x\right)\right)^{\frac{1}{2}} .
\end{aligned}
$$

also

$$
\begin{equation*}
\int_{x}^{t} \frac{|t-u|^{r-1}}{\varphi^{2 r \lambda}(u)} d u \leqslant C \frac{|t-x|^{r}}{\varphi^{2 r \lambda}(x)}, \int_{x}^{t} \frac{|t-u|^{r-1}}{w^{2}(u)} d u \leqslant \frac{|t-x|^{r}}{w^{2}(x)} . \tag{4.16}
\end{equation*}
$$

By (3.2), (4.15) and (4.16), we have

$$
\begin{align*}
& w(x)\left|G_{n}(x)-B_{n, r-1}\left(G_{n}, x\right)\right| \leqslant C\left\|w \varphi^{r \lambda} G_{n}^{(r)}\right\| \varphi^{-r \lambda}(x) B_{n, r-1}\left(|t-x|^{r}, x\right) \\
& \leqslant C n^{-\frac{r}{2}} \frac{\varphi^{r}(x)}{\varphi^{r \lambda}(x)}\left\|w \varphi^{r \lambda} G_{n}^{(r)}\right\| \\
& \leqslant C n^{-\frac{r}{2}} \frac{\delta_{n}^{r}(x)}{\varphi^{r \lambda}(x)}\left\|w \varphi^{r \lambda} G_{n}^{(r)}\right\| \\
&17) \quad C\left(\frac{\delta_{n}(x)}{\sqrt{n} \varphi^{\lambda}(x)}\right)^{r}\left\|w \varphi^{r \lambda} G_{n}^{(r)}\right\| . \tag{4.17}
\end{align*}
$$

By (3.3), (3.6), (3.7) and (4.17), when $g \in W_{w, \lambda}^{r}$, then

$$
\begin{aligned}
w(x)\left|g(x)-B_{n, r-1}^{*}(g, x)\right| \leqslant w(x)\left|g(x)-G_{n}(g, x)\right|+ & w(x)\left|G_{n}(g, x)-B_{n, r-1}^{*}(g, x)\right| \\
\leqslant\left|w(x)\left(g(x)-L_{r}(g, x)\right)\right|_{\left[0, \frac{2}{n}\right]}+ & \left|w(x)\left(g(x)-R_{r}(g, x)\right)\right|_{\left[1-\frac{2}{n}, 1\right]} \\
& +C\left(\frac{\delta_{n}(x)}{\sqrt{n} \varphi^{\lambda}(x)}\right)^{r}\left\|w \varphi^{r \lambda} G_{n}^{(r)}\right\| \\
\leqslant(4.18) \leqslant & \left(\frac{\delta_{n}(x)}{\sqrt{n} \varphi^{\lambda}(x)}\right)^{r}\left\|w \varphi^{r \lambda} g^{(r)}\right\| .
\end{aligned}
$$

For $f \in C_{w}$, we choose proper $g \in W_{w, \lambda}^{r}$, by (3.9) and (4.18), then

$$
\begin{aligned}
& w(x)\left|f(x)-B_{n, r-1}^{*}(f, x)\right| \leqslant w(x)|f(x)-g(x)|+w(x)\left|B_{n, r-1}^{*}(f-g, x)\right| \\
&+w(x)\left|g(x)-B_{n, r-1}^{*}(g, x)\right| \\
& \leqslant C(\|w(f-g)\|\left.+\left(\frac{\delta_{n}(x)}{\sqrt{n} \varphi^{\lambda}(x)}\right)^{r}\left\|w \varphi^{r \lambda} g^{(r)}\right\|\right) \\
& \leqslant C \omega_{\varphi^{\lambda}}^{r}\left(f, \frac{\delta_{n}(x)}{\sqrt{n} \varphi^{\lambda}(x)}\right)_{w} . \square
\end{aligned}
$$

4.3.2. The inverse theorem. We define the weighted main-part modulus for $D=R_{+}$by

$$
\begin{array}{r}
\Omega_{\varphi^{\lambda}}^{r}(C, f, t)_{w}=\sup _{0<h \leqslant t}\left\|w \Delta_{h \varphi^{\lambda}}^{r} f\right\|_{\left[C h^{*}, \infty\right]}, \\
\Omega_{\varphi^{\lambda}}^{r}(1, f, t)_{w}=\Omega_{\varphi^{\lambda}}^{r}(f, t)_{w}
\end{array}
$$

where $C>2^{1 / \beta(0)-1}, \beta(0)>0$ and h^{*} is given by

$$
h^{*}=\left\{\begin{array}{l}
(A r)^{1 / 1-\beta(0)} h^{1 / 1-\beta(0)}, 0 \leqslant \beta(0)<1 \\
0, \beta(0) \geqslant 1 .
\end{array}\right.
$$

The main-part K-functional is given by

$$
K_{r, \varphi^{\lambda}}\left(f, t^{r}\right)_{w}=\sup _{0<h \leqslant t} \inf _{g}\left\{\|w(f-g)\|_{\left[C h^{*}, \infty\right]}+t^{r}\left\|w \varphi^{r \lambda} g^{(r)}\right\|_{\left[C h^{*}, \infty\right]}\right.
$$

where $\left.g^{(r-1)} \in A . C .\left(\left(C h^{*}, \infty\right)\right)\right\}$. By ([5]), we have

$$
\begin{gather*}
C^{-1} \Omega_{\varphi^{\lambda}}^{r}(f, t)_{w} \leqslant \omega_{\varphi^{\lambda}}^{r}(f, t)_{w} \leqslant C \int_{0}^{t} \frac{\Omega_{\varphi^{\lambda}}^{r}(f, \tau)_{w}}{\tau} d \tau, \tag{4.19}\\
C^{-1} K_{r, \varphi^{\lambda}}\left(f, t^{r}\right)_{w} \leqslant \Omega_{\varphi^{\lambda}}^{r}(f, t)_{w} \leqslant C K_{r, \varphi^{\lambda}}\left(f, t^{r}\right)_{w} . \tag{4.20}
\end{gather*}
$$

Proof. Let $\delta>0$, by (4.20), we choose proper g so that

$$
\begin{equation*}
\|w(f-g)\| \leqslant C \Omega_{\varphi^{\lambda}}^{r}(f, \delta)_{w},\left\|w \varphi^{r \lambda} g^{(r)}\right\| \leqslant C \delta^{-r} \Omega_{\varphi^{\lambda}}^{r}(f, \delta)_{w} \tag{4.21}
\end{equation*}
$$

then

$$
\begin{array}{r}
\left|w(x) \Delta_{h \varphi^{\lambda}}^{r} f(x)\right| \leqslant\left|w(x) \Delta_{h \varphi^{\lambda}}^{r}\left(f(x)-B_{n, r-1}^{*}(f, x)\right)\right|+\left|w(x) \Delta_{h \varphi{ }^{\lambda}}^{r} B_{n, r-1}^{*}(f-g, x)\right| \\
+\left|w(x) \Delta_{h \varphi^{\lambda}}^{r} B_{n, r-1}^{*}(g, x)\right| \\
\leqslant \sum_{j=0}^{r} C_{r}^{j}\left(n^{-\frac{1}{2}} \delta_{n}\left(x+\left(\frac{r}{2}-j\right) h \varphi^{\lambda}(x)\right)\right)^{\alpha_{0}}
\end{array}
$$

Obviously

$$
\begin{equation*}
J_{1} \leqslant C\left(n^{-\frac{1}{2}} \delta_{n}(x)\right)^{\alpha_{0}} \tag{4.23}
\end{equation*}
$$

By (2.2) and (4.21), we have

$$
\begin{align*}
& J_{2} \leqslant C n^{r}\|w(f-g)\| \int_{-\frac{h \varphi^{\lambda}(x)}{2}}^{\frac{h \varphi^{\lambda}(x)}{2}} \cdots \int_{-\frac{h \varphi^{\lambda}(x)}{2}}^{\frac{h \varphi^{\lambda}(x)}{2}} d u_{1} \cdots d u_{r} \\
& \leqslant C n^{r} h^{r} \varphi^{r \lambda}(x)\|w(f-g)\| \\
& \leqslant C n^{r} h^{r} \varphi^{r \lambda}(x) \Omega_{\varphi^{\lambda}}^{r}(f, \delta)_{w} . \tag{4.24}
\end{align*}
$$

By the first inequality of (2.3), we let $\lambda=1$, and (3.10) as well as (4.21), we have

$$
\begin{align*}
& J_{2} \leqslant C n^{\frac{r}{2}}\|w(f-g)\| \int_{-\frac{h \varphi^{\lambda}(x)}{2}}^{\frac{h \varphi^{\lambda}(x)}{2}} \cdots \int_{-\frac{h \varphi \lambda(x)}{2}}^{\frac{h \varphi^{\lambda}(x)}{2}} \varphi^{-r}\left(x+\sum_{k=1}^{r} u_{k}\right) d u_{1} \cdots d u_{r} \\
& \leqslant C n^{\frac{r}{2}} h^{r} \varphi^{r(\lambda-1)}(x)\|w(f-g)\| \\
& \leqslant C n^{\frac{r}{2}} h^{r} \varphi^{r(\lambda-1)}(x) \Omega_{\varphi^{\lambda}}^{r}(f, \delta)_{w} . \tag{4.25}
\end{align*}
$$

By the second inequality of (2.3) and (4.21), we have
$J_{3} \leqslant C\left\|w \varphi^{r \lambda} g^{(r)}\right\| w(x) \int_{-\frac{h \varphi^{\lambda}(x)}{2}}^{\frac{h \varphi^{\lambda}(x)}{2}} \cdots \int_{-\frac{h \varphi^{\lambda}(x)}{2}}^{\frac{h \varphi^{\lambda}(x)}{2}} w^{-1}\left(x+\sum_{k=1}^{r} u_{k}\right) \varphi^{-r \lambda}\left(x+\sum_{k=1}^{r} u_{k}\right) d u_{1} \cdots d u_{r}$

$$
\leqslant C h^{r}\left\|w \varphi^{r \lambda} g^{(r)}\right\|
$$

$$
\begin{equation*}
\leqslant C h^{r} \delta^{-r} \Omega_{\varphi^{\lambda}}^{r}(f, \delta)_{w} \tag{4.26}
\end{equation*}
$$

Now, by (4.22)-(4.26), we get
$\left|w(x) \Delta_{h \varphi^{\lambda}}^{r} f(x)\right| \leqslant C\left\{\left(n^{-\frac{1}{2}} \delta_{n}(x)\right)^{\alpha_{0}}+h^{r}\left(n^{-\frac{1}{2}} \delta_{n}(x)\right)^{-r} \Omega_{\varphi^{\lambda}}^{r}(f, \delta)_{w}+h^{r} \delta^{-r} \Omega_{\varphi^{\lambda}}^{r}(f, \delta)_{w}\right\}$.
When $n \geqslant 2$, we have

$$
n^{-\frac{1}{2}} \delta_{n}(x)<(n-1)^{-\frac{1}{2}} \delta_{n-1}(x) \leqslant \sqrt{2} n^{-\frac{1}{2}} \delta_{n}(x)
$$

Choosing proper $x, n \in N$, so that

$$
n^{-\frac{1}{2}} \delta_{n}(x) \leqslant \delta<(n-1)^{-\frac{1}{2}} \delta_{n-1}(x)
$$

Therefore

$$
\left|w(x) \Delta_{h \varphi^{\lambda}}^{r} f(x)\right| \leqslant C\left\{\delta^{\alpha_{0}}+h^{r} \delta^{-r} \Omega_{\varphi^{\lambda}}^{r}(f, \delta)_{w}\right\} .
$$

By Borens-Lorentz lemma, we get

$$
\begin{equation*}
\Omega_{\varphi^{\lambda}}^{r}(f, t)_{w} \leqslant C t^{\alpha_{0}} \tag{4.27}
\end{equation*}
$$

So, by (4.27), we get

$$
\omega_{\varphi^{\lambda}}^{r}(f, t)_{w} \leqslant C \int_{0}^{t} \frac{\Omega_{\varphi^{\lambda}}^{r}(f, \tau)_{w}}{\tau} d \tau=C \int_{0}^{t} \tau^{\alpha_{0}-1} d \tau=C t^{\alpha_{0}}
$$

References

[1] P.L. Butzer, Linear combinations of Bernstein polynomials, Canad. J. Math. 5 (1953), pp. 559-567.
[2] H. Berens and G. Lorentz, Inverse theorems for Bernstein polynomials, Indiana Univ. Math. J. 21 (1972), pp. 693-708.
[3] D. Della Vechhia, G. Mastroianni and J. Szabados, Weighted approximation of functions with endpoint and inner singularities by Bernstein operators, Acta Math. Hungar. 103 (2004), pp. 19-41.
[4] Z. Ditzian, A global inverse theorem for combinations of Bernstein polynomials, J. Approx. Theory 26 (1979), pp. 277-292.
[5] Z. Ditzian and V. Totik, Moduli of Smoothness, Springer-Verlag, Berlin, New York (1987).
[6] S.S. Guo, C.X. Li and X.W. Liu, Pointwise approximation for linear combinations o Bernstein operators, J. Approx. Theory 107 (2000), pp. 109-120.
[7] S.S. Guo, H. Tong and G. Zhang, Pointwise weighted approximation by Bernstein operators, Acta Math. Hungar. 101 (2003), pp. 293-311.
[8] G.G. Lorentz, Bernstein Polynomial, University of Toronto Press, Toronto (1953).
[9] L.S. Xie, Pointwise simultaneous approximation by combinations of Bernstein operators, J. Approx. Theory 137 (2005), pp. 1-21.
[10] L.S. Xie, The saturation class for linear combinations of Bernstein operators, Arch. Math. 91 (2008), pp. 86-96.
[11] D.S. Yu,weighted approximation of functions with singularities by combinations of Bernstein operators, J.Applied Mathematics and Computation. 206(2008),pp.906-918.
[12] D.S. Yu and D.J. Zhao, Approximation of functions with singularities by truncated Bernstein operators, Southeast Bull. Math. 30 (2006), pp. 1178-1189.
[13] D.X. Zhou, Rate of convergence for Bernstein operators with Jacobi weights, Acta Math. Sinica 35 (1992), pp. 331-338.
[14] D.X. Zhou, On smoothness characterized by Bernstein type operators, J. Approx. Theory 81 (1994), pp. 303-315.
[15] J.J. Zhang, Z.B. Xu, Direct and inverse approximation theorems with Jacobi weight for combinations and higher derivatives of Baskakov operators(in Chinese), Journal of systems science and mathematical sciences. 200828 (1), pp. 30-39.

