Some results for the generalized Beta function using N - fractional calculus

Abdul Malik H. AL - Hashemi ${ }^{1}$, Mohammed Fadel Mohammed ${ }^{2}$
${ }^{1}$ Department of Mathematics, Faculty of Education Saber, Aden University, Yemen
${ }^{2}$ Department of Mathematics, Faculty of Education Saber, Aden University, Yemen

Abstract

. In this paper, some results for the generalized Beta function are derived by using N-fractional calculus of the logarithm function. Also, some results associated with the usual Beta function are obtained as special cases of the main results.

Keywords: N - Fractional Calculus Operator; Generalized Beta function; Logarithm function.

1. Introduction

We adopt the following definition of fractional calculus :
Definition 1.1. (by K. Nishimoto [2])
Let $D=\left\{D_{.}, D_{+}\right\}, C=\left\{C_{.}, C_{+}\right\}, C$. be a curve along the cut joining two points z and $-\infty, C_{+}$be a curve along the cut joining two points z and $-\infty+i \operatorname{Im}(\mathrm{z}), D$. be a domain surrounded by $C ., D_{+}$is a domain surrounded by C_{+}(Here D contains the points over the curve $\left.C\right)$.

Moreover, let $f=f(z)$ be a regular function in $D(z \in D)$

$$
\begin{equation*}
f_{v}(z)=(f)_{v}={ }_{o}(f)_{v}=\frac{\Gamma(v+1)}{2 \pi i} \int_{c} \frac{f(\zeta) \mathrm{d} \zeta}{(\zeta-z)^{v+1}} \quad\left(v \notin Z^{-}\right), \tag{1.1}
\end{equation*}
$$

and

$$
\begin{equation*}
(f)_{-m}=\lim _{v \rightarrow-m}(f)_{v} \quad\left(m \in Z^{+}\right), \tag{1.2}
\end{equation*}
$$

where

$$
\begin{aligned}
& -\pi \leq \arg (\zeta-z) \leq \pi \text { for } C . \text { and } 0 \leq \arg (\zeta-z) \leq 2 \pi \text { for } C_{+}, \\
& (\zeta \neq z), z \in C, v \in R ; \Gamma: \text { Gamma function, }
\end{aligned}
$$

then $(f)_{v}$ is the fractional differintegration of arbitrary order v (derivatives of order v for $v>0$ and integrals of order $-v$ for $v<0$) with respect to z of the function f, if $\left|(f)_{v}\right|<\infty$.

On the fractional calculus operator N^{v}, we recall the following theorems [3] :
Theorem 1.1. Let fractional calculus operator (Nishimoto's Operator) N^{v} be

$$
\begin{equation*}
N^{v}=\left(\frac{\Gamma(v+1)}{2 \pi i} \int_{c} \frac{\mathrm{~d} \zeta}{(\zeta-z)^{v+1}}\right)\left(v \notin Z^{-}\right) \tag{2}
\end{equation*}
$$

With $N^{-m}=\lim _{v \rightarrow-m} N^{v} \quad\left(m \in Z^{+}\right)$,
and define the binary operation ${ }^{\circ}$ as

$$
\begin{align*}
& N^{\beta} \circ N^{\alpha} f=N^{\beta} N^{\alpha} f=N^{\beta}\left(N^{\alpha} f\right) \quad(\alpha, \beta \in R) \tag{1.5}\\
& \text { then the set } \quad\left\{N^{v}\right\}=\left\{N^{v} ; v \in R\right\} \tag{1.6}
\end{align*}
$$

is an A belian product group (having continuous index v) which has the inverse transform operator $\left(N^{v}\right)^{-1}=N^{-v}$ to the fractional calculus operator N^{v}, for the function f such that $f \in \mathrm{~F}=\left\{f ; 0 \neq\left|f_{v}\right|<\infty, v \in R\right\}$, where $f=f(z)$ and $z \in C$. (vis. $-\infty<v<\infty$).
(For our convenience, we call $N^{\beta} \circ N^{\alpha}$ as product of N^{β} and N^{α}.
Theorem 1.2. The set "F.O.G. $\left\{N^{v}: v \in R\right\} "$ is an action product group which has continuous index v " for the set of F. (F.O.G. Fractional calculus operator group).

Theorem 1.3.

$$
\begin{equation*}
\text { Let } S:=\left\{ \pm N^{v}\right\} \cup\{0\}=\left\{N^{v}\right\} \cup\left\{N^{v}\right\} \cup\{0\} \quad(v \in R) \tag{1.7}
\end{equation*}
$$

then the set S is a commutative ring for the function $f \in \mathrm{~F}$ when the identity

$$
\begin{equation*}
N^{\alpha}+N^{\beta}=N^{\gamma} \quad\left(N^{\alpha}, N^{\beta}, N^{\gamma} \in S\right) \tag{1.8}
\end{equation*}
$$

holds[4].
Further, we recall that the generalized Beta function of $n\left(n \in Z^{+} \geq 2\right)$ elements (n-dimensional or n-variables) is defined by [1]

$$
\begin{gather*}
{ }_{n} \boldsymbol{B}\left(\alpha_{k}\right)=\boldsymbol{B}\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}\right):=\frac{\prod_{k=1}^{n} \Gamma\left(\alpha_{k}\right)}{\Gamma\left(\sum_{k=1}^{n} \alpha_{k}\right)}, \tag{1.9}\\
\left(\left|\Gamma\left(\alpha_{k}\right)\right|,\left|\Gamma\left(\sum_{k=1}^{n} \alpha_{k}\right)\right|<\infty\right) .
\end{gather*}
$$

where $\alpha_{k}\left(k=1,2, \ldots, n\left(n \in Z^{+} \geq 2\right)\right)$ are variables with order number k.
We note the following special case :

$$
\begin{equation*}
{ }_{2} B\left(\alpha_{k}\right)=\boldsymbol{B}\left(\alpha_{1}, \alpha_{2}\right)=B\left(\alpha_{1}, \alpha_{2}\right) \tag{1.10}
\end{equation*}
$$

where $B\left(\alpha_{1}, \alpha_{2}\right)$ is the usual Beta functions [5].
Recently , Miyakoda and Nishimoto [1] derived some identities of the generalized Beta function by using N - fractional calculus of the power function $(z-c)^{-1}$. This paper is a further attempt in introducing certain results of the generalized Beta function by employing the technique of the fractional differintegration to the logarithm function $\log (z-c)$.

2. Main results

In the following

$$
\begin{equation*}
\varphi=\log (z-c) \quad(z-c \neq 0) \tag{2.1}
\end{equation*}
$$

we prove the following results by using N - fractional calculus:

Theorem 2.1.

We have the identity

$$
\begin{gather*}
\frac{\Pi_{k=1}^{n}\left(\varphi{ }_{1} \alpha_{k}{ }_{k} \cdot{ }_{2}{ }_{2} \alpha_{k}{ }^{m} \varphi_{r} \alpha_{k}{ }^{\prime}\right.}{\varphi_{\sum_{k=1}^{n}\left({ }_{1} \alpha_{k}+{ }_{2} \alpha_{k}+\ldots+r^{\left.\alpha_{k}\right)}\right.}}=(-1)^{r n-1}{ }_{n} B\left({ }_{1} \alpha_{k}\right)_{n} B\left({ }_{2} \alpha_{k}\right) \ldots{ }_{n} B\left({ }_{r} \alpha_{k}\right) \\
\times B\left(\sum_{k=1}^{n}{ }_{1} \alpha_{k}, \sum_{k=1}^{n}{ }_{2} \alpha_{k}, \ldots, \sum_{k=1}^{n} \alpha_{k}\right), \tag{2.2}
\end{gather*}
$$

where

$$
\left|\Gamma\left({ }_{1} \alpha_{k}\right)\right|,\left|\Gamma\left({ }_{2} \alpha_{k}\right)\right|, \ldots,\left|\Gamma\left({ }_{r} \alpha_{k}\right)\right|<\infty,\left|\Gamma\left(\sum_{k=1}^{n}\left(_{1} \alpha_{\mathrm{k}}+{ }_{2} \alpha_{\mathrm{k}}+\cdots+{ }_{\mathrm{r}} \alpha_{\mathrm{k}}\right)\right)\right|<\infty,
$$

$\left|\Gamma\left(\sum_{k=1}^{n}{ }_{1} \alpha_{k}\right)\right|,\left|\Gamma\left(\sum_{k=1{ }_{2}}^{n} \alpha_{k}\right)\right|, \ldots,\left|\Gamma\left(\sum_{k=1{ }_{r}}^{n} \alpha_{k}\right)\right|<\infty$ and ${ }_{1} \alpha_{k},{ }_{2} \alpha_{k}, \ldots,{ }_{r} \alpha_{k}$ ($r, k=1,2, \ldots, n \in Z^{+}, n \geq 2$) are variables (constants for special case) with order number k.

Proof

Operating $N 1^{\alpha_{k}}$ to the both sides of (2.1), we have

$$
N 1^{\alpha_{k}} \varphi=N{ }^{1} \alpha_{k} \log (z-c),
$$

that is

$$
\begin{equation*}
\varphi_{1 \alpha_{k}}=(\log (z-c))_{1} \alpha_{k} \tag{2.3}
\end{equation*}
$$

which on using the following identity [2]:

$$
\begin{equation*}
(\log (z-c))_{\alpha}=-e^{-i \pi \alpha} \Gamma(\alpha)(z-c)^{-\alpha}(|\Gamma(\alpha)|<\infty) \tag{2.4}
\end{equation*}
$$

in the r.h. s. of (2.3), gives

$$
\begin{equation*}
\varphi_{1} \alpha_{k}=-e^{-i \pi_{1} \alpha_{k}} \Gamma\left({ }_{1} \alpha_{k}\right)(z-c)^{-{ }_{1} \alpha_{k}}\left(\left|\Gamma\left({ }_{1} \alpha_{k}\right)\right|<\infty\right), \tag{2.5}
\end{equation*}
$$

Hence

$$
\begin{align*}
& \prod_{k=1}^{n} \varphi_{1} \alpha_{k} \\
&=\prod_{k=1}^{n}(-1)^{k} \cdot \prod_{k=1}^{n} e^{-i \pi_{1} \alpha_{k}} \prod_{k=1}^{n}(z-c)^{-1} \alpha_{k} \tag{2.6}\\
& \prod_{k=1}^{n} \Gamma\left({ }_{1} \alpha_{k}\right) \\
&=(-1)^{n} e^{-i \pi \sum_{k=1}^{n} \alpha_{k}} \cdot(z-c)^{-\sum_{k=1}^{n} \alpha_{k}} \prod_{k=1}^{n} \Gamma\left({ }_{1} \alpha_{k}\right)\left(n \in Z^{+}{ }_{,} n \geq 2\right) .
\end{align*}
$$

In the same way, we obtain

$$
\begin{align*}
& \Pi_{k=1}^{n} \varphi_{z \alpha_{k}}=\prod_{k=1}^{n}(-1)^{k} \quad \cdot \prod_{k=1}^{n} e^{-i \pi_{2} \alpha_{k}} \prod_{k=1}^{n}(z-c)^{-} z^{\alpha_{k}} \prod_{k=1}^{n} \Gamma\left({ }_{2} \alpha_{k}\right) \\
& =(-1)^{n} e^{-i \pi \sum_{k=1}^{n} z_{k} \alpha_{k}} \cdot(z-c)^{-\sum_{k=1}^{n} \alpha_{k}} \prod_{k=1}^{n} \Gamma\left({ }_{2} \alpha_{k}\right)\left(n \in Z^{+}{ }_{,} n \geq 2\right) . \tag{2.7}
\end{align*}
$$

Continuing this process r times, we get

$$
\begin{align*}
& \Pi_{k=1}^{n} \varphi_{r^{\alpha_{k}}}=\prod_{k=1}^{n}(-1)^{k} \quad \cdot \prod_{k=1}^{n} e^{-i \pi r_{r} \alpha_{k}} \prod_{k=1}^{n}(z-c)^{-r^{\alpha_{k}}} \prod_{k=1}^{n} \Gamma\left({ }_{r} \alpha_{k}\right) \\
& =(-1)^{n} e^{-i \pi \sum_{k=1}^{n} r^{\alpha_{k}}} \cdot(z-c)^{-\sum_{k=1}^{n} r^{\alpha_{k}}} \prod_{k=1}^{n} \Gamma\left({ }_{r} \alpha_{k}\right)\left(n \in Z^{+}{ }_{,} n \geq 2\right) . \tag{2.8}
\end{align*}
$$

Again, operating $N^{\left.\sum_{k=1}^{n} C_{1} \alpha_{k}+{ }_{z} \alpha_{k}+\ldots+{ }_{r} \alpha_{k}\right)}$ to the both sides of (2.1) and using (2.4), we have $\varphi_{\sum_{k=1}^{n}\left({ }_{1} \alpha_{k}+{ }_{2} \alpha_{k}+\cdots+{ }_{r} \alpha_{k}\right)}=-e^{-i \pi \sum_{k=1}^{n}\left({ }_{1} \alpha_{k}+{ }_{2} \alpha_{k}+\cdots+{ }_{r} \alpha_{k}\right)}$

$$
\times \Gamma\left(\sum_{k=1}^{n}\left({ }_{1} \alpha_{k}+{ }_{2} \alpha_{k}+\cdots+{ }_{r} \alpha_{k}\right)\right)(z-c)^{\left.1-\sum_{k=1}^{n} C_{1} \alpha_{k}+{ }_{2} \alpha_{k}+\cdots+{ }_{r} \alpha_{k}\right)}
$$

$\left(\left|\Gamma\left(\sum_{k=1}^{n}\left({ }_{1} \alpha_{k}+{ }_{2} \alpha_{k}+\cdots+{ }_{r} \alpha_{k}\right)\right)\right|<\infty\right)$.
Therefore, we obtain

which on using (2.6),(2.7) , (2.8) and (2.9) in the r. h. s., becomes

$$
\begin{aligned}
& \times \frac{(-1)^{n} e^{-i \pi \sum_{k=1}^{n} \alpha_{k}} \cdot(z-c)^{-\sum_{k=1}^{n} z_{2} \alpha_{k}} \prod_{k=1}^{n} \Gamma\left({ }_{2} \alpha_{k}\right)}{\Gamma\left(\sum_{k=1}^{n}\left({ }_{1} \alpha_{k}+{ }_{2} \alpha_{k}+\cdots+{ }_{r} \alpha_{k}\right)\right)} \\
& \times \frac{\cdots(-1)^{n} e^{-i \pi \sum_{k=1}^{n} r^{\alpha_{k}}} \cdot(z-c)^{-\sum_{k=1}^{n} r^{\alpha_{k}}} \prod_{k=1}^{n} \Gamma\left({ }_{r} \alpha_{k}\right)}{(z-c)^{\left.1-\sum_{k=1}^{n}{ }_{1} \alpha_{k}+{ }_{2} \alpha_{k}+\cdots+{ }_{r} \alpha_{k}\right)}}
\end{aligned}
$$

$$
\begin{equation*}
=(-1)^{r n-1} \frac{\prod_{k=1}^{n} \Gamma\left({ }_{1} \alpha_{k}\right) \times \prod_{k=1}^{n} \Gamma\left({ }_{2} \alpha_{k}\right) \times \ldots \times \prod_{k=1}^{n} \Gamma\left({ }_{r} \alpha_{k}\right)}{\Gamma\left(\sum_{k=1}^{n}\left({ }_{1} \alpha_{k}+{ }_{2} \alpha_{k}+\cdots+{ }_{r} \alpha_{k}\right)\right)} \tag{2.11}
\end{equation*}
$$

Multiplying the r.h.s. of (2.11) by

$$
\frac{\Gamma\left(\sum_{k=1}^{n} \alpha_{k}\right) \Gamma\left(\sum_{k=12}^{n} \alpha_{k}\right)=\Gamma\left(\sum_{k=1}^{n} r_{k}\right)}{\Gamma\left(\sum_{k=11}^{n} \alpha_{k}\right) \Gamma\left(\sum_{k=12}^{n} \alpha_{k}\right) \ldots \Gamma\left(\sum_{k=1}^{n} r^{\alpha} \alpha_{k}\right)}
$$

we obtain

$$
\begin{gather*}
\frac{\prod_{k=1}^{n}\left(\varphi_{1} \alpha_{k} \cdot\right.}{\left.\varphi_{\sum_{k=1}^{n}\left({ }_{1} \alpha_{k}+{ }_{2} \alpha_{k}+\ldots+{ }_{r} \alpha_{k}\right)}{ }_{r} \ldots \varphi_{r} \alpha_{k}\right)}=(-1)^{r n-1} \frac{\prod_{k=1}^{n} \Gamma\left({ }_{1} \alpha_{k}\right)}{\Gamma\left(\sum_{k=1}^{n} \alpha_{1} \alpha_{k}\right)} \frac{\prod_{k=1}^{n} \Gamma\left({ }_{2} \alpha_{k}\right)}{\Gamma\left(\sum_{k=1}^{n}{ }_{2} \alpha_{k}\right)} \cdots \frac{\prod_{k=1}^{n} \Gamma\left({ }_{r} \alpha_{k}\right)}{\Gamma\left(\sum_{k=1}^{n} \alpha_{r} \alpha_{k}\right)} \\
\times \frac{\Gamma\left(\sum_{k=11}^{n} \alpha_{k}\right) \Gamma\left(\sum_{k=1}^{n} \alpha_{k}\right) \ldots \Gamma\left(\sum_{k=1}^{n} \alpha_{k}\right)}{\Gamma\left(\sum_{k=1}^{n}\left({ }_{1} \alpha_{k}+{ }_{2} \alpha_{k}+\cdots+{ }_{r} \alpha_{k}\right)\right)}, \tag{2.12}
\end{gather*}
$$

which on using definition (1.9) in the r. h. s., yields assertion (2.2) of Theorem 2.1, under the conditions.

Remark 2.1.

Operating $N^{\alpha_{k}-1}$ to the both sides of (2.1) and using identity (2.4) and then proceeding on the same lines of proof of Theorem (2.1), we get the following result :

Theorem 2.2.

$$
\begin{align*}
& \left.\frac{\prod_{k=1}^{n}\left(\varphi_{11} \alpha_{k}-1\right.}{} \cdot \varphi_{z_{2} \alpha_{k}-1} \ldots \varphi_{r} \alpha_{k}-1\right) \\
& \left.\varphi_{\sum_{k=1}^{n}}\left(C_{1} \alpha_{k}+{ }_{2} \alpha_{k}+\ldots+{ }_{r} \alpha_{k}\right)-1\right) \\
& \quad=(z-c)^{r n-1}{ }_{n} B\left({ }_{1} \alpha_{k}-1\right)_{n} B\left({ }_{2} \alpha_{k}-1\right) \ldots{ }_{n} B\left({ }_{r} \alpha_{k}-1\right) \tag{2.13}\\
& \quad \times B\left(\sum_{k=1}^{n}{ }_{1} \alpha_{k}-1, \sum_{k=1}^{n}{ }_{2} \alpha_{k}-1, \ldots, \sum_{{ }_{k}=1}^{n}{ }_{r} \alpha_{k}-1\right),
\end{align*}
$$

where

$$
\begin{aligned}
& \left|\Gamma\left({ }_{1} \alpha_{k}-1\right)\right|,\left|\Gamma\left({ }_{2} \alpha_{k}-1\right)\right|, \ldots,\left|\Gamma\left({ }_{r} \alpha_{k}-1\right)\right|<\infty, \mid \Gamma\left(\sum _ { k = 1 } ^ { n } \left({ }_{1} \alpha_{k}-1+{ }_{2} \alpha_{k}-1+\cdots+\right.\right. \\
& \left.\left.{ }_{r} \alpha_{k}-1\right)\right) \mid<\infty, \\
& \left|\Gamma\left(\sum_{k=1}^{n}{ }_{1} \alpha_{k}-1\right)\right|,\left|\Gamma\left(\sum_{k=1}^{n}{ }_{2} \alpha_{k}-1\right)\right|, \ldots,\left|\Gamma\left(\sum_{k=1}^{n}{ }_{r} \alpha_{k}-1\right)\right|<\infty \text { and } \\
& { }_{1} \alpha_{k}-1,{ }_{2} \alpha_{k}-1, \ldots,{ }_{r} \alpha_{k}-1 \\
& \quad\left(r, k=1,2, \ldots, n \in Z^{+}{ }_{,} n \geq 2\right) \text { are variables (constants for special case) with order number } k .
\end{aligned}
$$

In the next section, we drive some results for the usual Beta functions as special case of main results (2.2) and (2.13).

3. Special cases

Taking $r=2$ in results (2.2) and (2.13), we get the following results for the usual Beta function:

$$
\begin{align*}
& \frac{\prod_{k=1}^{n}\left(\varphi_{1} \alpha_{k} \cdot \varphi_{z} \alpha_{k}\right)}{\left.\varphi_{\Sigma_{k=1}^{n}\left(\varphi_{1} \alpha_{k}+\varphi\right.}{ }_{2} \alpha_{k}\right)}=(-1)^{2 n-1}{ }_{n} B\left({ }_{1} \alpha_{k}\right) \times{ }_{n} B\left({ }_{2} \alpha_{k}\right) \\
& \quad \times B\left(\sum_{k=1}^{n}{ }_{1} \alpha_{k}, \sum_{k=1}^{n}{ }_{2} \alpha_{k}\right) \tag{3.1}
\end{align*}
$$

and

$$
\begin{align*}
& \left.\frac{\prod_{k=1}^{n}\left(\varphi_{1} \alpha_{k}-1\right.}{} \cdot \varphi_{z^{2} \alpha_{k}-1}\right) \\
& \varphi_{\left.\sum_{k=1}^{n}\left(C_{1} \alpha_{k}+{ }_{z} \alpha_{k}\right)-1\right)}=(z-c)^{2 n-1}{ }_{n} B\left({ }_{1} \alpha_{k}-1\right)_{n} B\left({ }_{2} \alpha_{k}-1\right) \tag{3.2}\\
& \quad \times B\left(\sum_{k=1}^{n}{ }_{1} \alpha_{k}-1, \sum_{k=1}^{n}{ }_{2} \alpha_{k}-1\right)
\end{align*}
$$

respectively.

Acknowledgment

The authors would like to thank Dr. Ahmed Al-Gonah of Aden University for his valuable comments and suggestions which improved the presentation of the paper.

References

[1] Miyakoda, T. and Nishimoto, K., Some applications of the multiply elements Beta functions obtained from the N - fractional calculus of a power function, Proceeding of the $2^{\text {nd }}$ IFAC , Workshop on fractional differentiation and its applications , Porto , Portugal , July, 19-21, 2006.
[2] Nishimoto , K., Fractional calculus vol.1 . Descartes press, Koriyama , Japan, 1984.
[3] Nishimoto, K., On Nishimoto's fractional calculus operator (on an acting group), J. Frac. Calc. 4 (1993), 1-11.
[4] Nishimoto, K., Ring and field produced from the set of N - Fractional calculus operator, J. Frac. Calc. 24 (2003), 29-36 .
[5] Rainville, E. D., Special functions, Chelsea Pub. Com. Bronx, New York, 1960.

