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1. Introduction. 

       Let  H U be the class of analytic functions in the open unit disk U  z  : 1z   , and let

  ;H a p be the subclass of  H U consisting of functions of the form : 

 

             

           

1

1( ) ... ( ),p p

p pf z a a z a z a

      

 

For simplicity,    ;1H a H a . Also, let ( )A p  denote the class of functions ( )f z of the form 

 

(1.1)                 
1

( ) . ( {1,2,...}),p n p

n

n

f z z a z p






     

Which are analytic and  p-valent in U . 

If , ( )f g H U ,we say that the function f is subordinate to g ,or the function g  is superordinate to f , if 

there exists a Schwarz function  , i.e., ( )H U  with (0) 0   and ( ) 1, ,z z U    such that 

( ) g( ( ))f z z  for all z U . This subordination is usually denoted by ( ) g( ).f z z  It is well known 

that, if the function g  is univalent in U, then ( ) g( )f z z is equivalent to (0) g(0)f   and ( ) g( )f U U

(cf., e.g., [9], see also [5]). 
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Supposing that ,p h are two analytic functions in U , let 
     

                       
3( , , ; ) : .r s t z C U C                                                    

If
 ( )p z and  ' 2 ''( ), ( ), ( );p z zp z z p z z are univalent functions in U and ( )p z  satisfies the second-order 

differential subordination  

 

(1.2)                ' ''( ) ( ), ( ), ( ); ,ph z p z zp z z p z z                       

then ( )p z  is called to be a solution of the differential superordination (1.2). An analytic function ( )q z  is 

called a subordinant of the solution of the differential superordination (1.2) , if ( ) ( )q z p z  for all the 

functions p(z) satisfying (1.2). A univalent subordinant q  that satisfies ( ) ( )q z q z for all of the subordinants 

q of (1.2), is called the best subordinant (cf., e.g., [9], see also [5]).  

     Recently, Miller and Mocanu [10] obtained sufficient conditions on the functions h, q and  for which 

the following implication holds: 

  

                       
 ' ''( ) ( ), ( ), ( ); ( ) ( ).ph z p z zp z z p z z q z p z     

For functions ( ) ( ),jf z A p  given by  

                        ,

1

( ) 1,2 ,p n p

j n j

n

f z z a z j






     

we define the Hadamard product (or convolution) of 1( )f z  and 2 ( )f z by  

                      

     1 2 ,1 ,2 2 1

1

* ( ) * ( ) .p n p

n n

n

f f z z a a z f f z z U






     

In terms of the Pochhammer symbol  
n

  given by     

                     

 
      

1, ( 0)

1 .... 1 , 1,2,... ,n

n

n n N


  


 

    

   

we now define a function  , ;p a c z by  

(1.3)               
 

 1

, ; p n pn
p

n n

a
a c z z z

c







    

                       0 0; \ ; 0, 1, 2,... ; .a R c R Z Z z U         

    With the aid of the function  , ;p a c z  defined by (1.3), we consider a function  * , ;p a c z given by 

the following convolution  

                         
 

 *, ; , ; ;
1

p

p p p

z
a c z a c z p z U

z
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which yields the following family of linear operators  ,cpI a
: 

(1.4)
            

     *

0,c ( ) , ; f(z) , \ ; ; .p pI a f z a c z a c R Z p z U                        

 

For a function ( ) ( ),f z A p  given by (1.1), it is easily seen from (1.4) that 

(1.5)
              

 
   

   
 

1

,c ( ) ,
1

p p nn n
p p n

n n n

c p
I a f z z a z z U

a











     

which readily yields the following properties of the operator  ,cpI a
: 

(1.6)
              

   
'

1( , ) f(z) ( , ) ( ) ( , ) ( )p p pz I a c p I a c f z I a c f z        

and  

(1.7)
              

   
'

( 1, ) ( ) ,c ( ) ( ) ( 1, ) ( ).p p pz I a c f z aI a f z a p I a c f z         

The operator  ,cpI a
 was introduced and studied by Cho et al. [6].  

We observe that:  

 

'
0 1 1 ( )
( ,1) ( ) ( 1,1) ( ) ( ), ( ,1) ( ) ,p p p

zf z
I p f z I p f z f z I p f z

p
     

' 2 ''
2 2 ( ) ( )
( ,1) ( ) ;

( 1)
p

zf z z f z
I p f z

p p





 

0

0

( )
( 1,1) ( ) ,

z

p

f t
I a f z p dt

p
    

 1( , ) ( ) ( ) , ,n n p

pI a a f z D f z n n p    
 

Where 
1 ( )n pD f z 

is the Ruscheweyh derivative of  1n p th  order, see[8].Many interesting result of 

multivalent analytic functions associated with the linear operator  ,cpI a
have been studied in [6]. 

Also we observe that:  

                          

0 1 1 '

2 ' 2 ''

( ) (1,1) ( ) (2,1) ( ) ( ), (1,1) ( ) ( ),

1
(1,1) ( ) (2 ( ) ( ));

2

i I f z I f z f z I f z zf z

I f z zf z z f z

  

 
     

 
1

0

( ) ( 2,1) ( ) ( )( ) ( 1),  where

1
( )( ) ( ) ( [3]);

z

ii I f z F f z

F f z t f t dt see
z







 

 

 

   


 

  

 0

0( ) (n 1,1)f(z) I ( )( {0}) integraloperator,see[13]);niii I f z n N N Noor      

(iv)     ,( 2,1) ( ) ( )( 1; 2) ( , [7]).I f z I f z Choi Saigo Srivastavaoperator see
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Recently many authors ([1], [11], [12] and [14]) have used the results of Bulboac˘a [4] and shown some 

sufficient conditions applying first order differential subordinations and superordinations.  

The main object of the present paper is to find sufficient condition for certain normalized analytic functions 

f(z),g(z )in U such that ( , ) ( ) 0pI a c g z  0 1for z    and satisfy  

 

                 

 

1

1 2

( , ) ( )
( ) ( ),

( , ) ( )

p

p

I a c f z
q z q z

I a c g z







   

where 
1q , 

2q  are given univalent functions in U. Also, we obtain the number of known results as their special 

cases.  

 

2. Definitions and preliminaries. 

       In order to prove our results, we shall make use of the following known results.  

Definition 1 ([9]). Denote by Q, the set of all functions f that are analytic and injective on \ E(f),U where  

    

 ( ) :lim ( )
z

E f U f z





     

and are such that  

 '( ) 0 \ .f for U E f    

 

Lemma 1 ([10]). Let q be univalent in the unit disk U and let θ and ϕ be analytic in a domain D containing 

q(U) with ( ) 0 when q(U).     Set 

                      
'( ) ( ) ( ( )) ( ) ( ( )) ( ).z zq z q z and h z q z z       

Suppose that 

         

'

( ) ( ) ,

( )
( ) Re 0, .

( )

i z is starlikeunivalent in

zh z
ii z U

z





 
  

 

U

 

 If p is analytic in U with (0) (0), ( )p q p U D  and 

 

(2.1)   
             

' '( ( )) ( ) ( ( )) ( ( )) ( ) ( ( )),p z zp z p z q z zq z q z        

then  

 ( ) ( )p z q z   

 and q is the best dominant. 

 Lemma 2 ([4]). Let q be convex univalent in the unit disk U and let θ and  be analytic in a domain D 

containing q(U). Suppose that  
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'( ( ))
( ) Re 0, ,

( ( ))

q z
i z U

q z





 
  

 
  

        
'( ) ( ) z ( ) ( ( )) .ii z q z q z is univalent inU    

       
'[ (0),1] ( ) ( ( )) ( ) ( ( ))If p H q Qwith p U D and P z zp z p z     is univalent in U and   

(2.2)               
' '( ( )) z ( ) ( ( )) ( ( )) ( ) ( ( )),q z q z q z p z zp z p z       

then  

  ( ),q z p z  

and q is the best subordinant of (2.2).  

 3. Subordination results. 

 Using Lemma 1, we first prove the following theorem.  

Theorem 1. Let 0, 0    and q(z) be convex univalent in U with 

 q(0) = 1. Further assume that  

 

(3.1)

               

''

'

( )
Re 2 ( ) 1 0 ( ).

( )

p zq z
q z z U

q z

 



   
      

   
  

If   ,f g A p  satisfy  

(3.2)             
2 '( , , , ) ( ) ( ) ( ) ( ),f g p q z q z z z                            

 

Where 

(3.3)          

2
1 1

2

1 1

( , ) ( ) ( , ) ( )
( , , , ) ( ( 1) )

( , ) ( ) ( , ) ( )

( , ) ( )
( 1)

( , ) ( )

( , ) ( ) ( , ) ( )
( ) ,

( , ) ( ) ( , ) ( )

p p

p p

p

p

p p

p p

I a c f z I a c f z
f g p

I a c g z I a c g z

I a c f z
p

I a c g z

I a c g z I a c f z
p

I a c g z I a c g z

 

 





 

 

     

 

 

 



 

 
      

 

  

 
    

 

  

       

 

then 

                      

1( , ) f(z)
( )

( , ) ( )

p

p

I a c
q z

I a c g z







  

 

And q is the best dominant. 

Proof. Define the function p(z) by 
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(3.4)   

            

1( , ) ( )
( ) ( ).

( , ) ( )

p

p

I a c f z
p z z U

I a c g z







    

Then the function p(z) is analytic in U and p(0) = 1. Therefore, differentiating (3.4) logarithmically with 

respect to z and using the identity (1.6) in the resulting equation, we have  

  

(3.5)              

1 1

2 1

1

2 '

( , ) ( ) ( , ) ( )
( 1)

( , ) ( ) ( , ) ( )

( , ) ( ) ( , ) ( )
( 1) ( )

( ,c) f(z) ( , ) ( )

( ) ( ) ( ) ( ).

p p

p p

p p

p p

I a c f z I a c f z
p

I a c g z I a c g z

I a c f z I a c g z
p p

I a I a c g z

p p z p z zp z

 

 

 

 

  

   

   

 

 




  



    

   

 

 

 By using (3.5) in (3.2), we have  

(3.6) 
  
  2 ' 2 '( ) ( ) ( ) ( ) ( ) ( ) ( ).p p z p z zp z p q z q z z z                    

By setting  

                       
2( ) ( ) ( )p and              

  

we can easily observe that θ(w) and ( )   are analytic in C\{0} and that ( ) 0    . Hence the result now 

follows by using Lemma 1. 

Remark 1. Putting λ =0, a = c =1 and taking ( ) ( )(z )f z g z U  in Theorem 1, we obtain the result obtained 

by Murugusundaramoorthy and Magesh [9, Corollary 2.9]. 

    Putting ( ) ( )(z )f z g z U  in Theorem 1, we obtain the following corollary.  

Corollary 1. Let 0, 0    and q be convex univalent in U with q(0) = 1 and (3.1) holds true. If 

( )f A p  satisfies  

2
1 2 1

2 '

( , ) ( ) ( , ) ( ) ( , ) ( )
( ( 1) ) ( 1) ( 1)

( , ) ( ) ( , ) ( ) ( , ) ( )

( )( ( ) ( ) z ( ),

p p p

p p p

I a c f z I a c f z I a c f z
p p p

I a c f z I a c f z I a c f z

p q z q z z

  

  
     

   

   
          

 

  

 then  

1( ,c) f(z)
( )

( , ) ( )

p

p

I a
q z

I a c f z








 

 and q is the best dominant. 

       Putting 1( ( 1)) 1a p p and c          in Theorem 1, we obtain the following corollary.  

Corollary 2. Let 0, 0    and q be convex univalent in U with q(0) = 1 and (3.1) holds true. If  

, ( )f g A p  satisfy  

                      
2 '

1( , , , ) ( ( 1) ) ( ) ( ) ( )f g p q z q z zq z            
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where  

 

(3.7)       

2
1, 1,

1 , ,

2, 1, 1,

, , ,

( ) ( )
( , , , ) ( ( 1) )

( ) ( )

( ) ( ) ( )
( 1) ( ) ,

( ) ( ) ( )

p p

p p

p p p

p p p

I f z I f z
f g p

I g z I g z

I f z I f z I f z
p p

I g z I g z I g z

   

   

     

     

     

   

 

  

 
      

 

 
       

 

  

then  

1,

,

( )
( ),

( )

p

p

I f z
q z

I g z

 

 





 
and q is the best dominant. 

     Putting a = µ + p+1 (µ>-p ), c =1 and λ = µ in Theorem 1, we obtain the following corollary.  

Corollary 3. Let 0, 0    and q be convex univalent in U with q(0) = 1 and (3.1) holds true. If  

, ( )f g A p  satisfy  

                           2

2 , , , ( ) ( ) '( ),f g q z q z z z             

where  

(3.8)             

   

 

2

2

, ,

, , ,

( ) ( )
, , ,

( )( ) ( )( )

'( ) g( ) ( )
.

( )( ) ( )( ) ( )( )

p p

p p p

f z f z
f g

F g z F g z

zf z z f z
p

F g z F g z F g z

 

  

      

  

 
      

 

  

  

then 

,

( )
( ),

( )p

f z
q z

F g z

  

 and q is the best dominant.                            

Corollary 4. Let 0, 0   and q be convex univalent in U with q(0) = 1 and (3.1) holds true. If  

( )f A p  satisfies  

 

                       
    2

3 , , ( ) ( ) '( ),f p q z q z zq z          

 

where  
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(3.9)               

   3

, ,

2

,

( ) '( )
, ,

(f)( ) (f)( )

( )
( 1)

(f)( )

p p

p

f z zf z
f

F z F z

f z
p

F z

 



      

 

   

 
     

 

 

 

then  

 
,

( )
( ), ,

( )( )p

f z
q z p

F f z

    

 

and q is the best dominant.  

      4. Superordination and sandwich results. 

Theorem 2. Let 0, 0   . Let q be convex univalent in U with q(0) = 1. Assume that  

(4.1)                               Re ( ) Re .
(1 )

p
q z

p

 



 
  

 
 

Let 
 

 
 

1 , ( )
, ( ), (0),1

, g( )

p

p

I a c f z
f g A p H q Q

I a c z







   ,Let  , , ,f g    be univalent in U and  

 

(4.2) 
              

   2( ) ( ) '( ) , , , ,p q z q z zq z f g         
 

 where γ(f, g, α, β) is given by (3.3), then 

 

(4.3)                             

 

 

 

1 , ( )
( ) .

, g( )

p

p

I a c f z
q z

I a c z







  

and q is the best subordinant.  

Proof. Let p(z) be defined by (3.4). Therefore, differentiating (3.4) with respect to z and using the identity 

(1.6) in the resulting equation, we have  

                      
 
    2, , , p( ) ( ) '( ),f g p z p z zp z            

then  

           
   2 2q( ) ( ) '( ) p(z) p (z) p'(z).p z q z zq z p z              

By setting  2( ) ( ) ,p and             it is easily observed that     is analytic in C. Also, 

   is analytic in C\{0} and that   0.   . Since q(z) is convex univalent, it follows that  
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' ( )
Re Re 2 ( ) 0 .

( )

q z p
q z z U

q z

  

 

     
      

   

  

Now Theorem 2 follows by applying Lemma 2. D  

Putting f(z) ≡ g(z) (z ∈ U) in Theorem 2, we obtain the following corollary.  

Corollary 5. Let 0, 1   and q be convex univalent in U with q(0) = 1 and (4.1) holds true.  

Let  
1( , ) ( )

( ), (0),1 .
( , ) ( )

p

p

I a c f z
f A p H q Q

I a c f z







      

Let  

        

     
1 2

2
1

( , ) ( ) ( , ) ( )
, , ( 1) 1

( , ) ( ) ( , ) ( )

( , ) ( )
( 1) ,

( , ) ( )

p p

p p

p

p

I a c f z I a c f z
f p p

I a c f z I a c f z

I a c f z
p

I a c f z

 

 





      

 

 



     

 
     

 

 

be univalent in U and  

 

    2( ) ( ) '( ) , , ,p q z aq z zq z f           

then  

1( , ) ( )
( ) ,

( , ) ( )

p

p

I a c f z
q z

I a c f z







  

and q is the best subordinant.  

Putting a = µ +p+1 (µ > −(p+1)) and c =1 in Theorem 2, we obtain the following corollary.  

Corollary 6. Let 0, 0   and q be convex univalent in U with q(0) = 1 and (4.1) holds true.  

Let , ( )f g A p ,  
1,

,

( )
(0),1 .

( )

p

p

I f z
H q Q

I g z

 

 



  Let 1( , , , )f g   be univalent in U and 

     
2 '( ) ( ) ( ) ( ) ( , , , ),p q z q z zq z f g          

Where 1( , , , )f g   is given by (3.7) , then 

                                             

1,

,

( )
( ) ,

( )

p

p

I f z
q z

I g z

 

 



  

 and q is the best subordinant . 

Putting 1( ( 1)), 1a p p c         and    in Theorem 2, we obtain the following corollary.  

Corollary 7. Let 0, 1   and q be convex univalent in U with (0) 1q  and (4.1) holds true.  

Let , ( )f g A p  ,

 

 
,

(z)
(0),1 .

( )( )p

f
H q Q

F g z

   Let  2 , , ,f g    be univalent in U and 
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2 '

2( ) ( ) ( ) ( ) ( , , , ),p q z q z zq z f g           

Where 2( , , , ) (3.8),f g is givenby   then 

,

( )
q( ) ,

( )( )p

f z
z

F g z


 

and q is the best subordinant . 

Putting f(z) ≡ g(z) (z ∈ U)in Corollary 7,we obtain the following corollary . 

 

Corollary 8. Let 0, 1   and q be convex univalent in U with q(0) = 1 

and(4.1) holds true. Let   3

,

( )
( ), (0),1 . ( , , )

( )(z)p

f z
f A p H q Q Let f

F f

      

be univalent in U and 

 

                       
2 '

3( )q(z) q ( ) ( ) ( , , ),p z z z f           

 

3where ( , , ) (3.9),f is givenby    

,

( )
q(z) ( ).

( )( )p

f z
p

F f z

    

and q is the best subordinant .  

We conclude this section by stating the following sandwich result.  

Theorem 3. Let q1 and q2 be convex univalent in U, 0  and β ≥ 1. Suppose q2 satisfies (3.1) and q1 

satisfies (4.1). Moreover, suppose  

 

 
1( , ) ( )

1,1
( , ) ( )

p

p

I a c f z
H Q

I a c g z







   

and ( , , , )f g    is univalent in U. If  , ( )f g A p  satisfy  

2 ' 2 '

1 1 1 2 2( ) ( ) ( ) ( ) ( , , , ) ( ) ( ) ( ) ( ),p q z q z zq z f g p q z q z zq z                   

where γ(f, g, α, β) is given by (3.3),then 

1

1 2

( , ) ( )
( ) ( )

( , ) ( )

p

p

I a c f z
q z q z

I a c g z







   

and q1, q2 are, respectively, the best subordinant and the best dominant. 

By making use of Corollaries 2 and 6, we obtain the following corollary.  

Corollary 9. Let q1 and q2 be convex univalent in U 0 1.and     Suppose q2 satisfies (3.1) and q1 

satisfies (4.1). Moreover, suppose  
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1,

,

( , ) f(z)
1,1

( ,c)g(z)

p

p

I a c
H Q

I a

 

 



   

and γ1(f, g, α, β) is univalent in U. If  , ( )f g A p satisfy  

 

2 ' 2 '

1 1 1 1 2 2 2( ) ( ) (z) zq ( ) ( , , , ) ( ) ( ) (z) zq ( ),p q z q z f g p q z q z                
 

1where ( , , , ) (3.7),f g is given by then     

1,

1 2,

( )
( ) ( ) ( ( 1))

( )

p

p

I f z
q z q z p

I g z

 

 




     

and 1 2,q q are, respectively, the best subordinant and the best dominant.  

By making use of Corollaries 3 and 7, we obtain the following corollary.  

Corollary 10. Let 1 2q and q  be convex univalent in U, 0, 1.and    . Suppose 2q  satisfies (3.1) and 1q  

satisfies (4.1). Moreover, suppose  

 
( )

1,1
( )( )

f z
H Q

F g z

 
 

2( , , , )f g    is univalent in U. If  , ( )f g A p  satisfy 

2 ' 2 '

1 1 1 2 2 2 2( ) ( ) ( ) ( ) ( , , , ) ( ) ( ) ( ) ( ),p q z q z zq z f g p q z q z zq z                 

 where 2(f,g, , )     is given by (3.8), then  

                             

1 2

,

( )
( ) ( ) ( )

( )( )p

f z
q z q z p

F g z

     

and 1 2,q q   are, respectively, the best subordinant and the best dominant. 

By making use of Corollaries 4 and 8, we obtain the following corollary.  

Corollary 11. Let 1 2q and q   be convex univalent in U, 0 1.and    Suppose 2q  satisfies (3.1) and 1q  

satisfies (4.1). Moreover, suppose  

 
,

( )
1,1

( )(z)p

f z
H Q

F f

   

And 3( , , )f   is univalent in  U   , ( )f A p  satisfies 

2 ' 2 '

1 1 1 3 2 2 2( ) ( ) ( ) ( ) ( , , ) ( ) ( ) ( ) ( )q z q z z z f q z q z z z                   

Where  3( , , )f     is given by (3.9), then  

1 2

,

( )
( ) ( ) ( )

( )( )p

f z
q z q z p

F f z
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and 1 2,q q  ,are respectively, the best subordinant and the best dominant.  

Remark 2. Putting p=1, we obtain the results obtained by ] Aouf and El-ashwah [2]. 
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