Journal of Progressive Research in Mathematics

www.scitecresearch.com/journals

Another weighted approximation of functions with singularities by combinations of Bernstein operators

Wen-ming Lu ${ }^{1}$, Jin-ping Jia ${ }^{2}$
${ }^{1}$ School of Science, Hangzhou Dianzi Unviersity, Hangzhou, 310018 P.R. China.
${ }^{2}$ School of Mathematics and Statistics, Tianshui Normal University.

Abstract

We give direct and converse results for the weighted approximation of functions with inner singularities by a new type of Bernstein operators.

Keywords: Combinations of modified Bernstein polynomials; Functions with singularities; Weighted approximation; Direct and inverse results.

1. Introduction

The present work continues to study modified Bernstein operators following [11]. Here, the notation is referred to [11], for convenience, these notations will be listed. The set of all continuous functions, defined on the interval I, is denoted by $C(I)$. For any $f \in C([0,1])$, the corresponding Bernstein operators are defined as follows:

$$
B_{n}(f, x):=\sum_{k=0}^{n} f\left(\frac{k}{n}\right) p_{n k}(x)
$$

where

$$
p_{n k}(x):=\binom{n}{k} x^{k}(1-x)^{n-k}, k=0,1,2, \ldots, n, x \in[0,1] .
$$

Let

$$
\bar{w}(x)=|x-\xi|^{\alpha}, 0<\xi<1, \alpha>0
$$

and

$$
C_{\bar{w}}:=\left\{f \in C([0,1] \backslash \xi): \lim _{x \longrightarrow \xi}(\bar{w} f)(x)=0\right\} .
$$

The norm $C_{\bar{w}}$ is defined as $\|f\|_{C_{\bar{w}}}:=\|\bar{w} f\|=\sup _{0 \leqslant x \leqslant 1}|(\bar{w} f)(x)|$, and

$$
W_{\bar{w}}^{r}:=\left\{f \in C_{\bar{w}}: f^{(r-1)} \in A \cdot C \cdot((0,1)),\left\|\bar{w} \varphi^{r} f^{(r)}\right\|<\infty\right\} .
$$

For $f \in C_{\bar{w}}$, we define the weighted modulus of smoothness by

$$
\omega_{\varphi}^{r}(f, t)_{\bar{w}}:=\sup _{0<h \leqslant t}\left\{\left\|\bar{w} \triangle_{h \varphi}^{r} f\right\|_{\left[16 h^{2}, 1-16 h^{2}\right]}+\left\|\bar{w} \vec{\triangle}_{h}^{r} f\right\|_{\left[0,16 h^{2}\right]}+\left\|\bar{w}_{h}^{r} f\right\|_{\left[1-16 h^{2}, 1\right]}\right\}
$$

where

$$
\begin{gathered}
\Delta_{h \varphi}^{r} f(x)=\sum_{k=0}^{r}(-1)^{k}\binom{r}{k} f\left(x+\left(\frac{r}{2}-k\right) h \varphi(x)\right) \\
\vec{\Delta}_{h}^{r} f(x)=\sum_{k=0}^{r}(-1)^{k}\binom{r}{k} f(x+(r-k) h) \\
\overleftarrow{\Delta}_{h}^{r} f(x)=\sum_{k=0}^{r}(-1)^{k}\binom{r}{k} f(x-k h)
\end{gathered}
$$

and $\varphi(x)=\sqrt{x(1-x)}$. The weighted K-function is given by

$$
K_{r, \varphi}\left(f, t^{r}\right)_{\bar{w}}:=\inf _{g}\left\{\|\bar{w}(f-g)\|+t^{r}\left\|\bar{w} \varphi^{r} g^{(r)}\right\|: g \in W_{\bar{w}}^{r}\right\} .
$$

It was shown in [5] that $K_{\varphi}\left(f, t^{r}\right)_{\bar{w}} \sim \omega_{\varphi}^{r}(f, t)_{\bar{w}}$. Della Vecchia et al. firstly introduced $B_{n}^{*}(f, x)$ and $\bar{B}_{n}(f, x)$ in [3], where the properties of $B_{n}^{*}(f, x)$ and $\bar{B}_{n}(f, x)$ are studied. Among others, they prove that

$$
\begin{gathered}
\left\|w\left(f-B_{n}^{*}(f)\right)\right\| \leqslant C \omega_{\varphi}^{2}\left(f, n^{-1 / 2}\right), f \in C_{w}, \\
\left\|\bar{w}\left(f-\bar{B}_{n}(f)\right)\right\| \leqslant \frac{C}{n^{3 / 2}} \sum_{k=1}^{[\sqrt{n}]} k^{2} \omega_{\varphi}^{2}\left(f, \frac{1}{k}\right)_{\bar{w}}^{*}, f \in C_{\bar{w}},
\end{gathered}
$$

Where $w(x)=x^{\alpha}(1-x)^{\beta}, \alpha, \beta \geqslant 0, \alpha+\beta>0,0 \leqslant x \leqslant 1$.
In [11], for any $\alpha, \beta>0, n \geqslant 2 r+\alpha+\beta$, there hold

$$
\left\|w B_{n, r}^{*}(f)\right\| \leqslant C\|w f\|, \quad f \in C_{w},
$$

$$
\begin{gathered}
\left\|w\left(B_{n, r}^{*}(f)-f\right)\right\| \leqslant\left\{\begin{array}{lr}
\frac{C}{n^{r}}\left(\|w f\|+\left\|w \varphi^{2 r} f^{(2 r)}\right\|\right), & f \in W_{w}^{2 r}, \\
C\left(\omega_{\varphi}^{2 r}\left(f, n^{-1 / 2}\right)_{w}+n^{-r}\|w f\|\right), & f \in C_{w},
\end{array}\right. \\
\left\|w \varphi^{2 r} B_{n, r}^{*(2 r)}(f)\right\| \leqslant\left\{\begin{array}{l}
C n^{r}\|w f\|, \\
C\left(\|w f\|+\left\|w \varphi^{2 r} f^{(2 r)}\right\|\right), \quad f \in W_{w}^{2 r} .
\end{array}\right.
\end{gathered}
$$

and for any $0<\gamma<2 r$,

$$
\left\|w\left(B_{n, r}^{*}(f)-f\right)\right\|=O\left(n^{-\gamma / 2}\right) \Longleftrightarrow \omega_{\varphi}^{2 r}(f, t)_{w}=O\left(t^{r}\right)
$$

The main purpose of the present paper is to give another new type of combinations of Bernstein operators so as to obtain higher approximation order. Throughout the paper, C denotes a positive constant independent of n and x, which may be different in different cases.

2. Main Results

For any positive integer r, we consider the determinant

$$
A_{r}:=\left|\begin{array}{ccccc}
1 & 1 & 1 & \cdots & 1 \\
2 r+1 & 2 r+2 & 2 r+3 & \cdots & 4 r+1 \\
(2 r)(2 r+1) & (2 r+1)(2 r+2) & (2 r+2)(2 r+3) & \cdots & (4 r)(4 r+1) \\
\cdots & \cdots & \cdots & \ddots & \cdots \\
2 \cdots(2 r+1) & 3 \cdots(2 r+2) & 4 \cdots(2 r+3) & \cdots & (2 r+2) \cdots(4 r+1)
\end{array}\right|
$$

We obtain $A_{r}=\prod_{j=2}^{2 r} j$!. Thus, there is a unique solution for the system of nonhomogeneous linear equations:

$$
\left\{\begin{array}{ccccccc}
a_{1} & + & a_{2} & + & \cdots & + & a_{2 r+1} \tag{2.1}\\
(2 r+1) a_{1} & + & (2 r+2) a_{2} & + & \cdots & + & (4 r+1) a_{2 r+1} \\
(2 r+1)(2 r) a_{1} & + & (2 r+1)(2 r+2) a_{2} & + & \cdots & + & (4 r)(4 r+1) a_{2 r+1} \\
& & & & = & 0 \\
& & & & & \\
(2 r+1)!a_{1} & + & 3 \cdots(2 r+2) a_{2} & + & \cdots & + & (2 r+2) \cdots(4 r+1) a_{2 r+1}
\end{array}\right)=0 .
$$

Let

$$
\psi(x)=\left\{\begin{array}{lr}
a_{1} x^{2 r+1}+a_{2} x^{2 r+2}+\cdots+a_{2 r+1} x^{4 r+1}, & 0<x<1 \\
0, & x \leqslant 0 \\
1, & x=1
\end{array}\right.
$$

with the coefficients $a_{1}, a_{2}, \cdots, a_{2 r+1}$ satisfying (2.1). From (2.1), we see that $\psi(x) \in$ $C^{(2 r)}(-\infty,+\infty), 0 \leqslant \psi(x) \leqslant 1$ for $0 \leqslant x \leqslant 1$. Moreover, it holds that $\psi(1)=1, \psi^{(i)}(0)=$ $0, i=0,1, \cdots, 2 r$. and $\psi^{(i)}(1)=0, i=1,2, \cdots, 2 r$.

Let

$$
L_{r}(f, x):=\sum_{i=1}^{r+1} f\left(x_{i}\right) l_{i}(x)
$$

Where

$$
\begin{gathered}
l_{i}(x):=\frac{\prod_{j=1, j \neq i}^{r+1}\left(x-x_{j}\right)}{\prod_{j=1, j \neq i}^{r+1}\left(x_{i}-x_{j}\right)}, \\
x_{i}=\frac{[n \xi-((r-1) / 2+i) \sqrt{n}]}{n}, i=1,2, \cdots r+1 .
\end{gathered}
$$

and

$$
R_{r}(f, x):=\sum_{i=1}^{r+1} f\left(x_{i}^{*}\right) l_{i}^{*}(x)
$$

Where

$$
\begin{gathered}
l_{i}^{*}(x):=\frac{\prod_{j=1, j \neq i}^{r+1}\left(x-x_{j}^{*}\right)}{\prod_{j=1, j \neq i}^{r+1}\left(x_{i}^{*}-x_{j}^{*}\right)}, \\
x_{i}^{*}=\frac{n-[n \xi-((r-1) / 2+i) \sqrt{n}]}{n}, i=1,2, \cdots r+1
\end{gathered}
$$

Further, let

$$
x_{1}^{\prime}=\frac{[n \xi-2 \sqrt{n}]}{n}, x_{2}^{\prime}=\frac{[n \xi-\sqrt{n}]}{n}, x_{3}^{\prime}=\frac{[n \xi+\sqrt{n}]}{n}, x_{4}^{\prime}=\frac{[n \xi+2 \sqrt{n}]}{n} .
$$

Set

$$
\begin{aligned}
& \bar{F}_{n}(f, x):=\bar{F}_{n}(x)=(1-\psi(n x-1)) L_{r}(f, x)+(1-\psi(n x-n+2)) \psi(n x-1) f(x) \\
& =\left\{\begin{array}{lr}
L_{r}(f, x), & x \in[0,1 / n], \\
(1-\psi(n x-1)) L_{r}(f, x)+\psi(n x-1) f(x), & x \in[1 / n, 2 / n], \\
f(x), & x \in[2 / n, 1-2 / n], \\
(1-\psi(n x-n+2)) f(x)+\psi(n x-n+2) R_{r}(f, x), & x \in[1-2 / n, 1-1 / n], \\
R_{r}(f, x), & x \in[1-1 / n, 1] .
\end{array}\right.
\end{aligned}
$$

$\bar{F}_{n}(f, x)$ is a linear is a linear polynomial of degree r, and $\bar{F}_{n}(f, x) \in C^{(2 r)}([0,1])$, provided that $f \in C^{(2 r)}([0,1])$.
We define our combinations of Bernstein operators as follows:

$$
\bar{B}_{n, r}(f, x):=B_{n, r}\left(\bar{F}_{n}, x\right)=\sum_{i=0}^{r-1} C_{i}(n) B_{n_{i}}\left(\bar{F}_{n}, x\right)
$$

where $C_{i}(n)$ satisfy the conditions (a)-(d).
(a) $n=n_{0}<n_{1}<\cdots<n_{r-1} \leqslant C n$,
(b) $\sum_{i=0}^{r-1}\left|C_{i}(n)\right| \leqslant C$,
(c) $\sum_{i=0}^{r=1} C_{i}(n)=1$,
(d) $\sum_{i=0}^{r-1} C_{i}(n) n_{i}^{-k}=0$, for $k=1, \ldots, r-1$.

We have our main results as follows:
Theorem. For any $\alpha>0,0 \leqslant \lambda \leqslant 1$, we have

$$
\begin{gather*}
\left\|\bar{w} \bar{B}_{n, r}^{(2 r)}(f)\right\| \leqslant C n^{2 r}\|\bar{w} f\|, f \in W_{\bar{w}}^{2 r}, \tag{2.2}\\
\left|\bar{w}(x) \varphi^{2 r \lambda}(x) \bar{B}_{n, r}^{(2 r)}(f, x)\right| \leqslant\left\{\begin{array}{l}
C n^{r}\left\{\max \left\{n^{r(1-\lambda)}, \varphi^{2 r(\lambda-1)}\right\}\right\}\|\bar{w} f\|, \quad f \in C_{\bar{w}}, \\
C\left(\|\bar{w} f\|+\left\|\bar{w} \varphi^{2 r \lambda} f^{(2 r)}\right\|\right),
\end{array}\right. \tag{2.3}\\
\left\|\bar{w} \bar{B}_{n, r}(f)\right\| \leqslant C\|\bar{w} f\|, f \in C_{\bar{w}}, \tag{2.4}\\
\left\|\bar{w}\left(\bar{B}_{n, r}(f)-f\right)\right\| \leqslant\left\{\begin{array}{l}
\frac{C}{n^{r}}\left(\|\bar{w} f\|+\left\|\bar{w} \varphi^{2 r} f^{(2 r)}\right\|\right), \\
C\left(\omega_{\varphi}^{2 r}\left(f, n^{-1 / 2}\right) \bar{w}+n^{-r}\|\bar{w} f\|\right), \quad f \in W_{\bar{w}}^{2 r},
\end{array}\right. \tag{2.5}
\end{gather*}
$$

and for $0<\gamma<2 r$,

$$
\begin{equation*}
\left\|\bar{w}\left(\bar{B}_{n, r}(f)-f\right)\right\|=O\left(n^{-\gamma / 2}\right) \Longleftrightarrow \omega_{\varphi}^{2 r}(f, t)_{\bar{w}}=O\left(t^{r}\right) \tag{2.6}
\end{equation*}
$$

3. Lemmas

Lemma 1. ([13]) For any non-negative real u and v, we have

$$
\begin{equation*}
\sum_{k=1}^{n-1}\left(\frac{k}{n}\right)^{-u}\left(1-\frac{k}{n}\right)^{-v} p_{n k}(x) \leqslant C x^{-u}(1-x)^{-v} \tag{3.1}
\end{equation*}
$$

Lemma 2. For any positive real α, and $f \in W_{\bar{w}}^{2 r}$, we have

$$
\begin{equation*}
\left\|\bar{w} \varphi^{2 r-2 j} f^{(2 r-j)}\right\| \leqslant C\left(\|\bar{w} f\|+\left\|\bar{w} \varphi^{2 r} f^{(2 r)}\right\|\right) \tag{3.2}
\end{equation*}
$$

Proof. It follows from Kolmogolov's inequality that

$$
\left|f^{(2 r-j)}\left(\frac{1}{2}\right)\right| \leqslant C\left(\|f\|_{[1 / 4,3 / 4]}+\left\|f^{(2 r)}\right\|_{[1 / 4,3 / 4]}\right)
$$

Moreover,

$$
\begin{equation*}
\left|f^{(2 r-j)}\left(\frac{1}{2}\right)\right| \leqslant C\left(\|\bar{w} f\|_{[1 / 4,3 / 4]}+\left\|\bar{w} \varphi^{2 r} f^{(2 r)}\right\|_{[1 / 4,3 / 4]}\right) \tag{3.3}
\end{equation*}
$$

When $0 \leqslant x \leqslant \frac{1}{2}$, if $|t-\xi|>\frac{1}{2 \sqrt{n}}$, then $f^{(2 r-j+1)}(t) \neq 0$. Morever we have $\bar{w}(x) \leqslant$ $\bar{w}(t)\left(1+n^{\frac{\alpha}{2}}|t-x|\right)^{\alpha}$. Therefore

$$
\begin{aligned}
\left|\left(f^{(2 r-j)}(x)-f^{(2 r-j)}\left(\frac{1}{2}\right)\right)\right| & \leqslant \int_{x}^{\frac{1}{2}}\left|f^{(2 r-j+1)}(u)\right| d u \\
& \leqslant C \frac{\left\|\bar{w} \varphi^{2 r-2 j+2} f^{(2 r-j+1)}\right\|}{\bar{w}(x)} \int_{x}^{\frac{1}{2}} \frac{\bar{w}(x) d u}{\bar{w}(u) \varphi^{2 r-2 j+2}(u)} \\
& \leqslant C\left\|\bar{w} \varphi^{2 r-2 j+2} f^{(2 r-j+1)}\right\| \frac{x^{-r+j+1}\left(1+n^{\frac{\alpha}{2}} x^{\alpha}\right)}{\bar{w}(x)}
\end{aligned}
$$

Which, together with (3.3), gives that

$$
\left|\bar{w}(x) \varphi^{2 r-2 j}(x) f^{(2 r-j)}(x)\right| \leqslant C\left(\left\|\bar{w} \varphi^{2 r-2 j+2} f^{(2 r-j+1)}\right\|+\|\bar{w} f\|+\left\|\bar{w} \varphi^{2 r} f^{(2 r)}\right\|\right) .
$$

Similarly, we can prove that the above inequality also holds when $1 / 2<x \leqslant 1$. Therefore we obtain that
$\left|\bar{w}(x) \varphi^{2 r-2 j}(x) f^{(2 r-j)}(x)\right| \leqslant C\left(\left\|\bar{w} \varphi^{2 r-2 j+2} f^{(2 r-j+1)}\right\|+\|\bar{w} f\|+\left\|\bar{w} \varphi^{2 r} f^{(2 r)}\right\|\right)$.
Now, the result follows from (3.4) when $j=1$, and thus the result can be deduced from (3.4)
by induction when $1<j \leqslant r$.
Lemma 3. $f \in W_{\bar{w}}^{2 r}, \alpha>0$, we have

$$
\begin{gather*}
\left\|\bar{w}\left(f-L_{r}(f)\right)\right\|_{\left[0, \frac{2}{n}\right]} \leqslant \frac{C}{n^{r}}\left(\|\bar{w} f\|+\left\|\bar{w} \varphi^{2 r} f^{(2 r)}\right\|\right) \tag{3.5}\\
\left\|\bar{w}\left(f-R_{r}(f)\right)\right\|_{\left[1-\frac{2}{n}, 1\right]} \leqslant \frac{C}{n^{r}}\left(\|\bar{w} f\|+\left\|\bar{w} \varphi^{2 r} f^{(2 r)}\right\|\right) \tag{3.6}
\end{gather*}
$$

The proof is similar to the lemma 3 of [?], we don't give a proof here.
Lemma 4. For any $f \in W_{\bar{\omega}}^{2 r}$ and $\alpha>0$, we have

$$
\begin{equation*}
\left\|\bar{w} \varphi^{2 r} \bar{F}_{n}^{(2 r)}\right\| \leqslant C\left(\left\|\bar{w} \varphi^{2 r} f^{(2 r)}\right\|+\|\bar{w} f\|\right) . \tag{3.7}
\end{equation*}
$$

The proof is similar to the lemma 4 of [11], we don't give a proof here.
Lemma 5. ([3]) Let $A_{n}(x):=\bar{w}(x) \sum_{|k-n \xi| \leqslant \sqrt{n}} p_{n, k}(x)$. Then $A_{n}(x) \leqslant C n^{-\alpha / 2}$ for $0<\xi<1$ and $\alpha>0$.

Lemma 6. For $0<\xi<1, \alpha, \beta>0$, we have

$$
\begin{equation*}
\bar{w}(x) \sum_{|k-n \xi| \leqslant \sqrt{n}}|k-n x|^{\beta} p_{n, k}(x) \leqslant C n^{\frac{\beta-\alpha}{2}} \varphi^{\beta}(x) . \tag{3.8}
\end{equation*}
$$

Proof. By (3.1) and the lemma 5, we have

$$
\bar{w}(x)^{\frac{1}{2 n}}\left(\bar{w}(x) \sum_{|k-n \xi| \leqslant \sqrt{n}} p_{n, k}(x)\right)^{\frac{2 n-1}{2 n}}\left(\sum_{|k-n \xi| \leqslant \sqrt{n}}|k-n x|^{2 n \beta} p_{n, k}(x)\right)^{\frac{1}{2 n}} \leqslant C n^{\frac{\beta-\alpha}{2}} \varphi^{\beta}(x) .
$$

4 Proof of Theorem 1

4.1 Proof of (2.2)

We first prove $x \in\left[0, \frac{1}{n}\right]$ (The same as $x \in\left[1-\frac{1}{n}, 1\right]$), now

$$
\begin{align*}
&\left|\bar{w}(x) \bar{B}_{n, r}^{(2 r)}(f, x)\right| \leqslant \bar{w}(x) \sum_{i=0}^{r-1} \frac{n_{i}!}{\left(n_{i}-2 r\right)!} \sum_{k=0}^{n_{i}-2 r}\left|C_{i}(n) \vec{\Delta}_{\frac{1}{n_{i}}}^{2 r} \bar{F}_{n}\left(\frac{k}{n_{i}}\right)\right| p_{n_{i}-2 r, k}(x) \\
& \leqslant C \bar{w}(x) \sum_{i=0}^{r-1} n_{i}^{2 r} \sum_{k=0}^{n_{i}-2 r}\left|C_{i}(n) \vec{\Delta}_{\frac{1}{n_{i}}}^{2 r} \bar{F}_{n}\left(\frac{k}{n_{i}}\right)\right| p_{n_{i}-2 r, k}(x) \\
& \leqslant C \bar{w}(x) \sum_{i=0}^{r-1} n_{i}^{2 r} \sum_{k=0}^{n_{i}-2 r} \sum_{j=0}^{2 r} C_{2 r}^{j}\left|C_{i}(n) \bar{F}_{n}\left(\frac{k+2 r-j}{n_{i}}\right)\right| p_{n_{i}-2 r, k}(x) \\
& \leqslant C \bar{w}(x) \sum_{i=0}^{r-1} n_{i}^{2 r} \sum_{j=0}^{2 r} C_{2 r}^{j}\left|C_{i}(n) \bar{F}_{n}\left(\frac{2 r-j}{n_{i}}\right)\right| p_{n_{i}-2 r, 0}(x) \\
&+C \bar{w}(x) \sum_{i=0}^{r-1} n_{i}^{2 r} \sum_{j=0}^{2 r} C_{2 r}^{j}\left|C_{i}(n) \bar{F}_{n}\left(\frac{n_{i}-j}{n_{i}}\right)\right| p_{n_{i}-2 r, n_{i}-2 r(x)} \\
&+C \bar{w}(x) \sum_{i=0}^{r-1} n_{i}^{2 r} \sum_{k=1}^{n_{i}-2 r-1} \sum_{j=0}^{2 r} C_{2 r}^{j}\left|C_{i}(n) \bar{F}_{n}\left(\frac{k+2 r-j}{n_{i}}\right)\right| p_{n_{i}-2 r, k}(x) \\
&:=H_{1}+H_{2}+H_{3} . \tag{4.1}
\end{align*}
$$

We have

$$
\begin{aligned}
H_{1} & \leqslant C \bar{w}(x) \sum_{i=0}^{r-1} n_{i}^{2 r}\left(\sum_{j=0}^{2 r-1}\left|C_{i}(n) \bar{F}_{n}\left(\frac{2 r-j}{n_{i}}\right)\right|+\left|\bar{F}_{n}(0)\right|\right) p_{n_{i}-2 r, 0}(x) \\
& \leqslant C n^{2 r}\|\bar{w} f\| \sum_{i=0}^{r-1} \sum_{j=0}^{2 r-1}\left(\frac{n_{i}|x-\xi|}{2 r-j-n_{i} \xi}\right)^{\alpha}(1-x)^{n_{i}-2 r} \\
& \leqslant C n^{2 r}\|\bar{w} f\| \sum_{i=0}^{r-1}\left(n_{i}|x-\xi|\right)^{\alpha}(1-x)^{n_{i}-2 r} \\
& \leqslant C n^{2 r}\|\bar{w} f\| .
\end{aligned}
$$

Similarly, we can get $H_{2} \leqslant C n^{2 r}\|\bar{w} f\|$ and $H_{3} \leqslant C n^{2 r}\|\bar{w} f\|$.
When $x \in\left[\frac{1}{n}, 1-\frac{1}{n}\right]$, according to [5], we have

$$
\begin{align*}
& \left|\bar{w}(x) \bar{B}_{n, r}^{(2 r)}(f, x)\right| \\
= & \left|\bar{w}(x) B_{n, r}^{(2 r)}\left(\bar{F}_{n}, x\right)\right| \\
= & \bar{w}(x)\left(\varphi^{2}(x)\right)^{-2 r} \sum_{i=0}^{r-1} \sum_{j=0}^{2 r}\left|Q_{j}\left(x, n_{i}\right) C_{i}(n)\right| n_{i}^{j} \sum_{k / n_{i} \in A}\left|\left(x-\frac{k}{n_{i}}\right)^{j} \bar{F}_{n}\left(\frac{k}{n_{i}}\right)\right| p_{n_{i}, k}(x) \\
& +\bar{w}(x)\left(\varphi^{2}(x)\right)^{-2 r} \sum_{i=0}^{r-1} \sum_{j=0}^{2 r}\left|Q_{j}\left(x, n_{i}\right) C_{i}(n)\right| n_{i}^{j} \sum_{x_{2}^{\prime} \leqslant k / n_{i} \leqslant x_{3}^{\prime}}\left|\left(x-\frac{k}{n_{i}}\right)^{j} H\left(\frac{k}{n_{i}}\right)\right| p_{n_{i}, k}(x) \\
:= & \sigma_{1}+\sigma_{2} . \tag{4.2}
\end{align*}
$$

Where $A:=\left[0, x_{2}^{\prime}\right] \cup\left[x_{3}^{\prime}, 1\right], H$ is a linear function. If $\frac{k}{n}{ }_{i} \in A$, when $\frac{\bar{w}(x)}{\bar{w}\left(\frac{k}{n_{i}}\right)} \leqslant C\left(\left.1+n_{i}^{-\frac{\alpha}{2}} \right\rvert\, k-\right.$ $\left.n_{i} x\right|^{\alpha}$), we have $\left|k-n_{i} \xi\right| \geqslant \frac{\sqrt{n_{i}}}{2}$, then
$Q_{j}\left(x, n_{i}\right)=\left(n_{i} x(1-x)\right)^{[(2 r-j) / 2]}$, and $\left(\varphi^{2}(x)\right)^{-2 r} Q_{j}\left(x, n_{i}\right) n_{i}^{j} \leqslant C\left(n_{i} / \varphi^{2}(x)\right)^{r+j / 2}$.
By (3.8), then

$$
\begin{aligned}
\sigma_{1} & \leqslant C \bar{w}(x) \sum_{i=0}^{r-1} \sum_{j=0}^{2 r}\left|C_{i}(n)\right|\left(\frac{n_{i}}{\varphi^{2}(x)}\right)^{r+j / 2} \sum_{k=0}^{n_{i}}\left|\left(x-\frac{k}{n_{i}}\right)^{j} \bar{F}_{n}\left(\frac{k}{n_{i}}\right)\right| p_{n_{i}, k}(x) \\
& \leqslant C\|\bar{w} f\| \sum_{i=0}^{r-1} \sum_{j=0}^{2 r}\left|C_{i}(n)\right|\left(\frac{n_{i}}{\varphi^{2}(x)}\right)^{r+j / 2} \sum_{k=0}^{n_{i}}\left[1+n_{i}^{-\frac{\alpha}{2}}\left|k-n_{i} x\right|^{\alpha}\right]\left|x-\frac{k}{n_{i}}\right|^{j} p_{n_{i}, k}(x) \\
& :=I_{1}+I_{2} .
\end{aligned}
$$

By a simple calculation, we have $I_{1} \leqslant C n^{2 r}\|\bar{w} f\|$. By (3.1), then

$$
I_{2} \leqslant C\|\bar{w} f\| \sum_{i=0}^{r-1} \sum_{j=0}^{2 r}\left|C_{i}(n)\right| n_{i}^{-\left(\frac{\alpha}{2}+j\right)}\left(\frac{n_{i}}{\varphi^{2}(x)}\right)^{j / 2} \sum_{k=0}^{n_{i}}\left|k-n_{i} x\right|^{\alpha+j} p_{n_{i}, k}(x) \leqslant C n^{2 r}\|\bar{w} f\| .
$$

We note $\left|H\left(\frac{k}{n_{i}}\right)\right| \leqslant \max \left(\left|H\left(x_{1}^{\prime}\right)\right|,\left|H\left(x_{4}^{\prime}\right)\right|\right):=H(a)$.
If $x \in\left[x_{1}^{\prime}, x_{4}^{\prime}\right]$, we have $\bar{w}(x) \leqslant \bar{w}(a)$.

$$
\sigma_{2} \leqslant C \bar{w}(a) H(a) n^{r} \varphi^{-2 r}(x) \leqslant C n^{2 r}\|\bar{w} f\| .
$$

If $x \notin\left[x_{1}^{\prime}, x_{4}^{\prime}\right]$, then $\bar{w}(a)>n_{i}^{-\frac{\alpha}{2}}$ we have

$$
\sigma_{2} \leqslant C \bar{w}(a) H(a) \varphi^{-2 r}(x) \bar{w}(x) \sum_{i=0}^{r-1} C_{i}(n) n_{i}^{r+\frac{\alpha}{2}} \sum_{x_{2}^{\prime} \leqslant k / n_{i} \leqslant x_{3}^{\prime}} p_{n_{i}, k}(x) \leqslant C n^{2 r}\|\bar{w} f\| .
$$

It follows from combining the above inequalities (4.1) and (4.2) that the theorem is proved.

4.2 Proof of (2.3)

(1) When $f \in C_{\bar{w}}$, we discuss it as follows:

Case 1. If $0 \leqslant \varphi(x) \leqslant \frac{1}{\sqrt{n}}$, by (2.2), we have

$$
\begin{equation*}
\left|\bar{w}(x) \varphi^{2 r \lambda}(x) \bar{B}_{n, r}^{(2 r)}(f, x)\right| \leqslant C n^{-r \lambda}\left|\bar{w}(x) \bar{B}_{n, r}^{(2 r)}(f, x)\right| \leqslant C n^{r(2-\lambda)}\|\bar{w} f\| . \tag{4.3}
\end{equation*}
$$

Case2. If $\varphi(x)>\frac{1}{\sqrt{n}}$, we have

$$
\begin{aligned}
& \left|\bar{B}_{n, r}^{(2 r)}(f, x)\right|=\left|B_{n, r}^{(2 r)}\left(\bar{F}_{n}, x\right)\right| \\
\leqslant & \left(\varphi^{2}(x)\right)^{-2 r} \sum_{i=0}^{r-1} \sum_{j=0}^{2 r}\left|Q_{j}\left(x, n_{i}\right) C_{i}(n)\right| n_{i}^{j} \sum_{k=0}^{n_{i}}\left|\left(x-\frac{k}{n_{i}}\right)^{j} \bar{F}_{n}\left(\frac{k}{n_{i}}\right)\right| p_{n_{i}, k}(x),
\end{aligned}
$$

$$
\begin{align*}
Q_{j}\left(x, n_{i}\right)= & \left(n_{i} x(1-x)\right)^{[(2 r-j) / 2]} \text {, and }\left(\varphi^{2}(x)\right)^{-2 r} Q_{j}\left(x, n_{i}\right) n_{i}^{j} \leqslant C\left(n_{i} / \varphi^{2}(x)\right)^{r+j / 2} \text {. So } \\
& \left|\bar{w}(x) \varphi^{2 r \lambda}(x) \bar{B}_{n, r}^{(2 r)}(f, x)\right| \\
\leqslant & C \bar{w}(x) \varphi^{2 r \lambda}(x) \sum_{i=0}^{r-1} \sum_{j=0}^{2 r}\left|C_{i}(n)\right|\left(\frac{n_{i}}{\varphi^{2}(x)}\right)^{r+j / 2} \sum_{k=0}^{n_{i}}\left|\left(x-\frac{k}{n_{i}}\right)^{j} \bar{F}_{n}\left(\frac{k}{n_{i}}\right)\right| p_{n_{i}, k}(x) \\
= & C \bar{w}(x) \varphi^{2 r \lambda}(x) \sum_{i=0}^{r-1} \sum_{j=0}^{2 r}\left|C_{i}(n)\right|\left(\frac{n_{i}}{\varphi^{2}(x)}\right)^{r+j / 2} \sum_{k / n_{i} \in A}\left|\left(x-\frac{k}{n_{i}}\right)^{j} \bar{F}_{n}\left(\frac{k}{n_{i}}\right)\right| p_{n_{i}, k}(x) \\
& +C \bar{w}(x) \varphi^{2 r \lambda}(x) \sum_{i=0}^{r-1} \sum_{j=0}^{2 r}\left|C_{i}(n)\right|\left(\frac{n_{i}}{\varphi^{2}(x)}\right)^{r+j / 2} \sum_{x_{2}^{\prime} \leqslant k / n_{i} \leqslant x_{3}^{\prime}}\left|\left(x-\frac{k}{n_{i}}\right)^{j} \bar{F}_{n}\left(\frac{k}{n_{i}}\right)\right| p_{n_{i}, k}(x) \\
:= & \sigma_{1}+\sigma_{2} . \tag{4.4}
\end{align*}
$$

Where $A:=\left[0, x_{2}^{\prime}\right] \cup\left[x_{3}^{\prime}, 1\right]$. We can easily get $\sigma_{1} \leqslant n^{r} \varphi^{2 r(\lambda-1)}(x)\|\bar{w} f\|, \sigma_{2} \leqslant n^{r} \varphi^{2 r(\lambda-1)}(x)\|\bar{w} f\|$. By bringing these facts (4.3) and (4.4) together, the theorem is proved.
2) When $f \in W_{\bar{w}}^{2 r}$, we have

$$
\begin{equation*}
B_{n, r}^{(2 r)}\left(\bar{F}_{n}, x\right)=\sum_{i=0}^{r-1} C_{i}(n) n_{i}^{2 r} \sum_{k=0}^{n_{i}-2 r} \vec{\Delta}_{\frac{1}{n_{i}}}^{2 r} \bar{F}_{n}\left(\frac{k}{n_{i}}\right) p_{n_{i}-2 r, k}(x) \tag{4.5}
\end{equation*}
$$

If $0<k<n_{i}-2 r$, we have

$$
\begin{equation*}
\left|\vec{\Delta}_{\frac{1}{n_{i}}}^{2 r} \bar{F}_{n}\left(\frac{k}{n_{i}}\right)\right| \leqslant C n_{i}^{-2 r+1} \int_{0}^{\frac{2 r}{n_{i}}}\left|\bar{F}_{n}^{(2 r)}\left(\frac{k}{n_{i}}+u\right)\right| d u \tag{4.6}
\end{equation*}
$$

If $k=0$, we have

$$
\begin{equation*}
\left|\vec{\Delta}_{\frac{1}{n_{i}}}^{2 r} \bar{F}_{n}(0)\right| \leqslant C n_{i}^{-r+1} \int_{0}^{\frac{2 r}{n_{i}}} u^{2 r-1}\left|\bar{F}_{n}^{(2 r)}(u)\right| d u \tag{4.7}
\end{equation*}
$$

Similarly

$$
\left|\vec{\Delta}_{\frac{1}{n_{i}}}^{2 r} \bar{F}_{n}\left(\frac{n_{i}-2 r}{n_{i}}\right)\right| \leqslant C n_{i}^{-2 r+1} \int_{1-\frac{2 r}{n_{i}}}^{1}(1-u)^{2 r-1}\left|\bar{F}_{n}^{(2 r)}(u)\right| d u
$$

By (4.5) and (4.6), we have

$$
\begin{aligned}
\left|\bar{w}(x) \varphi^{2 r \lambda}(x) \bar{B}_{n, r}^{(2 r)}(f, x)\right| \leqslant & C \bar{w}(x) \varphi^{2 r \lambda}(x) \sum_{i=0}^{r-1}\left|C_{i}(n)\right| n_{i}^{2 r} \sum_{k=0}^{n_{i}-2 r}\left|\vec{\Delta}_{\frac{1}{n_{i}}}^{2 r} \bar{F}_{n}\left(\frac{k}{n_{i}}\right)\right| p_{n_{i}-2 r, k}(x) \\
= & C \bar{w}(x) \varphi^{2 r \lambda}(x) \sum_{i=0}^{r-1}\left|C_{i}(n)\right| n_{i}^{2 r} \sum_{k=1}^{n_{i}-2 r-1}\left|\vec{\Delta}_{\frac{1}{n_{i}}}^{2 r} \bar{F}_{n}\left(\frac{k}{n_{i}}\right)\right| p_{n_{i}-2 r, k}(x) \\
& +C \bar{w}(x) \varphi^{2 r \lambda}(x) \sum_{i=0}^{r-1}\left|C_{i}(n)\right| n_{i}^{2 r}\left|\vec{\Delta}_{\frac{1}{n_{i}}}^{2 r} \bar{F}_{n}(0)\right| p_{n_{i}-2 r, 0}(x) \\
& +C \bar{w}(x) \varphi^{2 r \lambda}(x) \sum_{i=0}^{r-1}\left|C_{i}(n)\right| n_{i}^{2 r}\left|\vec{\Delta}_{\frac{1}{n_{i}}}^{2 r} \bar{F}_{n}\left(\frac{n_{i}-2 r}{n_{i}}\right)\right| p_{n_{i}-2 r, n_{i}-2 r}(x) \\
:= & I_{1}+I_{2}+I_{3} .
\end{aligned}
$$

By (4.6), we have

$$
\begin{aligned}
I_{1} \leqslant & C \bar{w}(x) \varphi^{2 r \lambda}(x) \sum_{i=0}^{r-1}\left|C_{i}(n)\right| n_{i} \sum_{k=1}^{n_{i}-2 r-1} \int_{0}^{\frac{2 r}{n_{i}}}\left|\bar{F}_{n}^{(2 r)}\left(\frac{k}{n_{i}}+u\right)\right| d u p_{n_{i}-2 r, k}(x) \\
= & C \bar{w}(x) \varphi^{2 r \lambda}(x) \sum_{i=0}^{r-1}\left|C_{i}(n)\right| n_{i} \sum_{k / n_{i} \in A} \int_{0}^{\frac{2 r}{n_{i}}}\left|\bar{F}_{n}^{(2 r)}\left(\frac{k}{n}{ }_{i}+u\right)\right| d u p_{n_{i}-2 r, k}(x) \\
& +C \bar{w}(x) \varphi^{2 r \lambda}(x) \sum_{i=0}^{r-1}\left|C_{i}(n)\right| n_{i} \sum_{x_{2}^{\prime} \leqslant k / n_{i} \leqslant x_{3}^{\prime}} \int_{0}^{\frac{2 r}{n_{i}}}\left|H_{n}^{(2 r)}\left(\frac{k}{n_{i}}+u\right)\right| d u p_{n_{i}-2 r, k}(x) \\
:= & T_{1}+T_{2} .
\end{aligned}
$$

Where $A:=\left[0, x_{2}^{\prime}\right] \cup\left[x_{3}^{\prime}, 1\right], H$ is a linear function. If $\frac{k}{n_{i}} \in A$, when $\frac{\bar{w}(x)}{\bar{w}\left(\frac{k}{n_{i}}\right)} \leqslant C\left(\left.1+n_{i}^{-\frac{\alpha}{2}} \right\rvert\, k-\right.$ $\left.n_{i} x\right|^{\alpha}$), we have $\left|k-n_{i} \xi\right| \geqslant \frac{\sqrt{n_{i}}}{2}$, by (3.1) and (3.7), then

$$
\begin{aligned}
T_{1} & \leqslant C\left\|\bar{w} \varphi^{2 r \lambda} F^{(2 r)}\right\| \bar{w}(x) \varphi^{2 r \lambda}(x) \sum_{i=0}^{r-1}\left|C_{i}(n)\right| n_{i} \sum_{k / n_{i} \in A} \int_{0}^{\frac{2 r}{n_{i}}} \bar{w}^{-1}\left(\frac{k}{n_{i}}+u\right) \varphi^{-2 r \lambda}\left(\frac{k}{n_{i}}+u\right) d u p_{n_{i}-2 r, k}(x) \\
& \leqslant C\left\|\bar{w} \varphi^{2 r \lambda} F^{(2 r)}\right\| \varphi^{2 r \lambda}(x) \sum_{i=0}^{r-1}\left|C_{i}(n)\right| n_{i} \sum_{k=0}^{n_{i}} \int_{0}^{\frac{2 r}{n_{i}}}\left[1+n_{i}^{-\frac{\alpha}{2}}\left|k-n_{i} x\right|^{\alpha}\right] \varphi^{-2 r \lambda}\left(\frac{k}{n_{i}}\right) d u p_{n_{i}-2 r, k}(x) \\
& \leqslant C\left\|\bar{w} \varphi^{2 r \lambda} \bar{F}_{n}^{(2 r)}\right\| \leqslant C\left(\|\bar{w} f\|+\left\|\bar{w} \varphi^{2 r \lambda} f^{(2 r)}\right\|\right) .
\end{aligned}
$$

Similarly, we can get $T_{2} \leqslant C\left(\|\bar{w} f\|+\left\|\bar{w} \varphi^{2 r \lambda} f^{(2 r)}\right\|\right)$. So $I_{1} \leqslant C\left(\|\bar{w} f\|+\left\|\bar{w} \varphi^{2 r \lambda} f^{(2 r)}\right\|\right)$ and by (4.7), we have

$$
\begin{aligned}
I_{2} & \leqslant C \bar{w}(x) \varphi^{2 r \lambda}(x) \sum_{i=0}^{r-1}\left|C_{i}(n)\right| n_{i}^{2 r}\left|\vec{\Delta}_{\frac{1}{n_{i}}}^{2 r} \bar{F}_{n}(0)\right| p_{n_{i}-2 r, 0}(x) \\
& \leqslant C \bar{w}(x) \varphi^{2 r \lambda}(x) \sum_{i=0}^{r-1}\left|C_{i}(n)\right| n_{i}^{r+1} \int_{0}^{\frac{2 r}{n_{i}}} u^{2 r-1}\left|\bar{F}_{n}^{(2 r)}(u)\right| d u p_{n_{i}-2 r, 0}(x) \\
& \leqslant C\left\|\bar{w} \varphi^{2 r \lambda} \bar{F}_{n}^{(2 r)}\right\| \sum_{i=0}^{r-1}\left(n_{i} x\right)^{r(1+\lambda)}(1-x)^{r \lambda} \leqslant C\left\|\bar{w} \varphi^{2 r \lambda} \bar{F}_{n}^{(2 r)}\right\| \\
& \leqslant C\left(\|\bar{w} f\|+\left\|\bar{w} \varphi^{2 r \lambda} f^{(2 r)}\right\|\right) .
\end{aligned}
$$

Analogously, $I_{3} \leqslant C\left(\|\bar{w} f\|+\left\|\bar{w} \varphi^{2 r \lambda} f^{(2 r)}\right\|\right)$, then the theorem is proved.
Corollary 1. If $\alpha>0$ and $\lambda=0$, we have

$$
\left|\bar{w}(x) \bar{B}_{n, r}^{(2 r)}(f, x)\right| \leqslant\left\{\begin{array}{lr}
C n^{2 r}\|\bar{w} f\|, & f \in C_{\bar{w}}, \\
C\left(\|\bar{w} f\|+\left\|\bar{w} f^{(2 r)}\right\|\right), & f \in W_{\bar{w}}^{2 r}
\end{array}\right.
$$

Corollary 2. If $\alpha>0$ and $\lambda=1$, we have

$$
\left|\bar{w}(x) \varphi^{2 r}(x) \bar{B}_{n, r}^{(2 r)}(f, x)\right| \leqslant\left\{\begin{array}{l}
C n^{r}\|\bar{w} f\|, \\
C\left(\|\bar{w} f\|+\left\|\bar{w} \varphi^{2 r} f^{(2 r)}\right\|\right), \quad f \in C_{\bar{w}} \\
C \in W_{\bar{w}}^{2 r}
\end{array}\right.
$$

4.3 Proof of (2.4)

$$
\begin{aligned}
\left|\bar{w}(x) \bar{B}_{n, r}(f, x)\right|= & \left|\bar{w}(x) B_{n, r}\left(\bar{F}_{n}, x\right)\right| \leqslant \bar{w}(x) \sum_{i=0}^{r-1} \sum_{k=1}^{n_{i}-1}\left|C_{i}(n) \bar{F}_{n}\left(\frac{k}{n_{i}}\right)\right| p_{n_{i}, k}(x) \\
& +\bar{w}(x) \sum_{i=0}^{r-1}\left|C_{i}(n) \bar{F}_{n}(0)\right| p_{n_{i}, 0}(x)+\bar{w}(x) \sum_{i=0}^{r-1}\left|C_{i}(n) \bar{F}_{n}(1)\right| p_{n_{i}, n_{i}}(x) \\
:= & I_{1}+I_{2}+I_{3} .
\end{aligned}
$$

Analogously, the theorem can be proved easily.

4.4. Proof of (2.5)

We assume $f \in W_{\bar{w}}^{2 r}$, then $\left\|\bar{w}\left(\bar{B}_{n, r}(f)-\bar{F}_{n}\right)\right\| \leqslant \frac{C}{n^{r}}\left(\|\bar{w} f\|+\left\|\bar{w} \varphi^{2 r} f^{(2 r)}\right\|\right)$.
Recall that [?], then

$$
\begin{gather*}
B_{n, r}\left((t-x)^{j}, x\right)=0, j=1,2, \cdots, r \tag{4.8}\\
B_{n, r}\left((t-x)^{2 r-j}, x\right)=O\left(n^{-r} \varphi^{2 r-2 j}(x)\right), x \in\left[\frac{1}{n}, 1-\frac{1}{n}\right], j=0,1,2, \cdots, r . \tag{4.9}
\end{gather*}
$$

Case 1. $x \in\left[\frac{1}{n}, 1-\frac{1}{n}\right]$. By using Taylor expansion, we have

$$
\begin{aligned}
& \bar{w}(x)\left(\bar{F}_{n}(x)-B_{n, r}\left(\bar{F}_{n}, x\right)\right) \\
= & \bar{w}(x) \sum_{j=1}^{2 r-1} \frac{1}{(2 r-j)!} B_{n, r}\left((t-x)^{2 r-j}, x\right) \bar{F}_{n}^{(2 r-j)}(x) \\
& +\bar{w}(x) B_{n, r}\left(\frac{1}{(2 r-j)!} \int_{x}^{t}(t-u)^{2 r-1} \bar{F}_{n}^{(2 r)}(u) d u, x\right) \\
:= & I_{1}+I_{2} .
\end{aligned}
$$

By (3.2), (3.7) and (4.9), we have $\mathrm{fl} \leqslant j \leqslant r$, then

$$
\begin{equation*}
\frac{\bar{w}(x) \varphi^{2 r-2 j}(x)}{n^{r}} \bar{F}_{n}^{(2 r-j)}(x) \leqslant \frac{C}{n^{r}}\left(\left\|\bar{w} \bar{F}_{n}\right\|+\left\|\bar{w} \varphi^{2 r} \bar{F}_{n}^{(2 r)}\right\|\right) \leqslant \frac{C}{n^{r}}\left(\|\bar{w} f\|+\left\|\bar{w} \varphi^{2 r} f^{(2 r)}\right\|\right) \tag{4.10}
\end{equation*}
$$

By (4.8) and (4.10), we have

$$
I_{1} \leqslant \bar{w}(x) \sum_{j=1}^{r-1} \frac{1}{(2 r-j)!}\left|B_{n, r}\left((t-x)^{2 r-j}, x\right) \bar{F}_{n}^{(2 r-j)}(x)\right| \leqslant \frac{C}{n^{r}}\left(\|\bar{w} f\|+\left\|\bar{w} \varphi^{2 r} f^{(2 r)}\right\|\right)
$$

If u is between t and x we have $\frac{|u-x|^{2 r-1}}{\varphi^{2 r}(u)} \leqslant \frac{|t-x|^{2 r-1}}{\varphi^{2 r}(t)}$. Then

$$
\begin{aligned}
& \quad\left|\bar{w}(x) B_{n, r}\left(\frac{1}{(2 r-j)!} \int_{x}^{t}(t-u)^{2 r-1} \bar{F}_{n}^{(2 r)}(u) d u, x\right)\right| \\
& \leqslant \quad C \bar{w}(x) \sum_{i=0}^{r-1} \sum_{k=0}^{n_{i}}\left|C_{i}(n)\right| \int_{x}^{\frac{k}{n_{i}}}\left|\left(\frac{k}{n_{i}}-u\right)^{2 r-1} \bar{F}_{n}^{(2 r)}(u)\right| d u p_{n_{i}, k}(x) \\
& =C \bar{w}(x) \sum_{i=0}^{r-1} \sum_{k=1}^{n_{i}-1}\left|C_{i}(n)\right| \int_{x}^{\frac{k}{n_{i}}}\left|\left(\frac{k}{n_{i}}-u\right)^{2 r-1} \bar{F}_{n}^{(2 r)}(u)\right| d u p_{n_{i}, k}(x) \\
& \quad+C \bar{w}(x) \sum_{i=0}^{r-1}\left|C_{i}(n)\right|(1-x)^{n_{i}} \int_{0}^{x} u^{2 r-1}\left|\bar{F}_{n}^{(2 r)}(u)\right| d u \\
& \quad+C \bar{w}(x) \sum_{i=0}^{r-1}\left|C_{i}(n)\right| x^{n_{i}} \int_{x}^{1}(1-u)^{2 r-1}\left|\bar{F}_{n}^{(2 r)}(u)\right| d u \\
& \quad=\quad J_{1}+J_{2}+J_{3} .
\end{aligned}
$$

We have

$$
\begin{aligned}
J_{1} \leqslant & C \bar{w}(x) \varphi^{-2 r}(x) \sum_{i=0}^{r-1} \sum_{k / n_{i} \in A}\left|C_{i}(n)\left(\frac{k}{n_{i}}-x\right)^{2 r-1}\right| \int_{x}^{\frac{k}{n_{i}}} \varphi^{2 r}(v)\left|\bar{F}_{n}^{(2 r)}(v)\right| d v p_{n_{i}, k}(x) \\
& +C \bar{w}(x) \varphi^{-2 r}(x) \sum_{i=0}^{r-1} \sum_{x_{2}^{\prime} \leqslant k / n_{i} \leqslant x_{3}^{\prime}}\left|C_{i}(n)\left(\frac{k}{n_{i}}-x\right)^{2 r-1}\right| \int_{x}^{\frac{k}{n_{i}}} \varphi^{2 r}(v)\left|H^{(2 r)}(v)\right| d v p_{n_{i}, k}(x) \\
:= & \sigma_{1}+\sigma_{2} .
\end{aligned}
$$

Analogously, we can get $\sigma_{1} \leqslant \frac{C}{n^{r}}\left(\|\bar{w} f\|+\left\|\bar{w} \varphi^{2 r} f^{(2 r)}\right\|\right)$. We note that $\left|\varphi^{2 r}(v) H^{(2 r)}(v)\right| \leqslant$ $\max \left(\left|\varphi^{2 r}\left(x_{1}^{\prime}\right) H^{(2 r)}\left(x_{1}^{\prime}\right)\right|,\left|\varphi^{2 r}\left(x_{4}^{\prime}\right) H^{(2 r)}\left(x_{4}^{\prime}\right)\right|\right):=\left|\varphi^{2 r}(a) H^{(2 r)}(a)\right|, H^{(2 r)}(x)$ is a linear function.

If $x \in\left[x_{1}^{\prime}, x_{4}^{\prime}\right]$, then $\bar{w}(x) \leqslant \bar{w}(a)$. So we have

$$
\begin{aligned}
\sigma_{2} & \leqslant C \bar{w}(a) \varphi^{2 r}(a)\left|H^{(2 r)}(a)\right| \varphi^{-2 r}(x) \sum_{i=0}^{r-1} \sum_{k=1}^{n_{i}-1}\left|C_{i}(n)\right|\left(\frac{k}{n_{i}}-x\right)^{2 r} p_{n_{i}, k}(x) \\
& \leqslant \frac{C}{n^{r}}\left(\|\bar{w} f\|+\left\|\bar{w} \varphi^{2 r} f^{(2 r)}\right\|\right),
\end{aligned}
$$

If $x \notin\left[x_{1}^{\prime}, x_{4}^{\prime}\right]$, by $\bar{w}(a)>n_{i}^{-\frac{\alpha}{2}}$, we have

$$
\begin{aligned}
\sigma_{2} & \leqslant C \bar{w}(a) \varphi^{-2 r}(a)\left|H^{(2 r)}(a)\right| \sum_{i=0}^{r-1} \sum_{x_{2}^{\prime} \leqslant k / n_{i} \leqslant x_{3}^{\prime}} n_{i}^{\frac{\alpha}{2}}\left|C_{i}(n)\right|\left(\frac{k}{n_{i}}-x\right)^{2 r} p_{n_{i}, k}(x) \\
& \leqslant \frac{C}{n^{r}}\left(\|\bar{w} f\|+\left\|\bar{w} \varphi^{2 r} f^{(2 r)}\right\|\right)
\end{aligned}
$$

For J_{2}, we have

$$
\begin{aligned}
J_{2} & \leqslant C\left\|\bar{w} \varphi^{2 r} \bar{F}_{n}^{(2 r)}\right\| \bar{w}(x) \sum_{i=0}^{r-1}\left|C_{i}(n)\right|(1-x)^{n_{i}} \int_{0}^{x} u^{2 r-1} \bar{w}^{-1}(u) \varphi^{-2 r}(u) d u \\
& \leqslant \frac{C}{n^{r}}\left(\|\bar{w} f\|+\left\|\bar{w} \varphi^{2 r} f^{(2 r)}\right\|\right)
\end{aligned}
$$

Similarly, we have

$$
J_{3} \leqslant \frac{C}{n^{r}}\left(\|\bar{w} f\|+\left\|\bar{w} \varphi^{2 r} f^{(2 r)}\right\|\right)
$$

By bringing these facts together, we have

$$
\left\|\bar{w}\left(\bar{B}_{n, r}(f)-\bar{F}_{n}\right)\right\| \leqslant \frac{C}{n^{r}}\left(\|\bar{w} f\|+\left\|\bar{w} \varphi^{2 r} f^{(2 r)}\right\|\right)
$$

Case 2. $x \in\left[0, \frac{1}{n}\right]$ (Similarly as $x \in\left[1-\frac{1}{n}, 1\right]$). By using Taylor expansion, we have

$$
\begin{aligned}
\bar{w}(x)\left|B_{n, r}\left(\bar{F}_{n}, x\right)-\bar{F}_{n}(x)\right| \leqslant & \frac{\bar{w}(x)}{r!} \sum_{i=0}^{r-1}\left|C_{i}(n)\right| B_{n_{i}}\left(\int_{x}^{t}\left|(t-u)^{r} \bar{F}_{n}^{(r+1)}(u)\right| d u, x\right) \\
& +\frac{\bar{w}(x)}{r!} \sum_{i=0}^{r-1}\left|C_{i}(n)\right|(1-x)^{n_{i}} \int_{0}^{x} u^{2 r-1}\left|\bar{F}_{n}^{(r+1)}(u)\right| d u \\
:= & J_{1}+J_{2} \\
J_{1} \leqslant & C \bar{w}(x) \sum_{i=0}^{r-1} \sum_{k=0}^{n_{i}} \int_{x}^{\frac{k}{n_{i}}}\left|C_{i}(n)\left(\frac{k}{n_{i}}-u\right)^{r} \bar{F}_{n}^{(r+1)}(u)\right| d u p_{n_{i}, k}(x) \\
:= & C \bar{w}(x) \sum_{i=0}^{r-1} \sum_{k=1}^{n_{i}-1} \int_{x}^{\frac{k}{n_{i}}}\left|C_{i}(n)\left(\frac{k}{n_{i}}-u\right)^{r} \bar{F}_{n}^{(r+1)}(u)\right| d u p_{n_{i}, k}(x) \\
& +C \bar{w}(x) \sum_{i=0}^{r-1}\left|C_{i}(n)\right| x^{n_{i}} \int_{x}^{1}(1-u)^{r}\left|\bar{F}_{n}^{(r+1)}(u)\right| d u \\
& +C \bar{w}(x) \sum_{i=0}^{r-1}\left|C_{i}(n)\right|(1-x)^{n_{i}} \int_{0}^{x} u^{r}\left|\bar{F}_{n}^{(r+1)}(u)\right| d u \\
:= & I_{1}+I_{2}+I_{3} .
\end{aligned}
$$

Analogously, we can get

$$
\begin{align*}
& I_{1} \leqslant \frac{C}{n^{r}}\left(\|\bar{w} f\|+\left\|\bar{w} \varphi^{2 r} f^{(2 r)}\right\|\right) \\
& I_{2} \leqslant \frac{C}{n^{r}}\left(\|\bar{w} f\|+\left\|\bar{w} \varphi^{2 r} f^{(2 r)}\right\|\right) \\
& I_{3} \leqslant \frac{C}{n^{r}}\left(\|\bar{w} f\|+\left\|\bar{w} \varphi^{2 r} f^{(2 r)}\right\|\right) \\
& J_{1} \leqslant \frac{C}{n^{r}}\left(\|\bar{w} f\|+\left\|\bar{w} \varphi^{2 r} f^{(2 r)}\right\|\right) \\
& J_{2} \leqslant \frac{C}{n^{r}}\left(\|\bar{w} f\|+\left\|\bar{w} \varphi^{2 r} f^{(2 r)}\right\|\right) \tag{4.11}
\end{align*}
$$

So, we have

$$
\left\|\bar{w}\left(\bar{B}_{n, r}(f)-\bar{F}_{n}\right)\right\| \leqslant \frac{C}{n^{r}}\left(\|\bar{w} f\|+\left\|\bar{w} \varphi^{2 r} f^{(2 r)}\right\|\right)
$$

Then

$$
\begin{aligned}
\left\|\bar{w}\left(\bar{B}_{n, r}(f)-f\right)\right\| & \leqslant\left\|\bar{w}\left(f-\bar{F}_{n}(f)\right)\right\|+\left\|\bar{w}\left(\bar{F}_{n}(f)-\bar{B}_{n, r}(f)\right)\right\| \\
& \leqslant \frac{C}{n^{r}}\left(\|\bar{w} f\|+\left\|\bar{w} \varphi^{2 r} f^{(2 r)}\right\|\right)
\end{aligned}
$$

If $f \in C_{\bar{w}}$, there exists $g \in W_{\bar{w}}^{2 r}$, by (2.4) and the first inequality of (2.5), then

$$
\begin{aligned}
\left\|\bar{w}\left(\bar{B}_{n, r}(f)-f\right)\right\| & \leqslant\|\bar{w}(f-g)\|+\left\|\bar{w} \bar{B}_{n, r}(f-g)\right\|+\left\|\bar{w}\left(g-\bar{B}_{n, r}(g)\right)\right\| \\
& \leqslant C\left(\|\bar{w}(f-g)\|+\frac{1}{n^{r}}\left(\|\bar{w} g\|+\left\|\bar{w} \varphi^{2 r} g^{(2 r)}\right\|\right)\right) \\
& \leqslant C\left(\omega_{\varphi}^{2 r}\left(f, n^{-1 / 2}\right)_{\bar{w}}+n^{-r}\|\bar{w} f\|\right)
\end{aligned}
$$

4.5. Proof of (2.6)

From the proof of (2.5), we actually have

$$
\left\|\bar{w}\left(\bar{B}_{n, r}(f)-f\right)\right\| \leqslant C K_{2 r, \varphi}\left(f, t^{r}\right)_{\bar{w}}
$$

Therefore, $K_{2 r, \varphi}\left(f, n^{-r}\right)_{\bar{w}}=O\left(t^{\alpha}\right)$ implies

$$
\left\|\bar{w}\left(\bar{B}_{n, r}(f)-f\right)\right\| \leqslant\left(n^{-\alpha / 2}\right)
$$

By (2.3) and (2.4), we may choose g properly such th $\left\|\bar{w} \varphi^{2 r} g^{(2 r)}\right\|<\infty \quad$ and

$$
\begin{aligned}
\omega_{\varphi}^{2 r}\left(f, n^{-1 / 2}\right)_{\bar{w}}+\frac{\|\bar{w} f\|}{n^{r}} \leqslant & \left\|\bar{w}\left(\bar{B}_{n, r}(f)-f\right)\right\|+\frac{1}{n^{r}}\left(\left\|\bar{w} \varphi^{2 r} \bar{B}_{n, r}^{(2 r)}(f-g)\right\|\right. \\
& \left.+\left\|\bar{w} \varphi^{2 r} \bar{B}_{n, r}^{(2 r)}(g)\right\|\right)+\frac{\|\bar{w} f\|}{n^{r}} \\
\leqslant & \left\|\bar{w}\left(f-\bar{B}_{n, r}(f)\right)\right\|+\frac{\|\bar{w} f\|}{n^{r}}+C\left(\frac{k}{n}\right)^{r}(\|\bar{w}(f-g)\| \\
& \left.+k^{-r}\left\|\bar{w} \varphi^{2 r} g^{(2 r)}\right\|+k^{-r}\|\bar{w} f\|\right) \\
\leqslant & \left\|\bar{w}\left(f-\bar{B}_{n, r}(f)\right)\right\|+C\left(\frac{k}{n}\right)^{r}\left(\omega_{\varphi}^{2 r}\left(f, k^{-1 / 2}\right)_{\bar{w}}\right. \\
& \left.+k^{-r}\|\bar{w} f\|\right) .
\end{aligned}
$$

Hence, by [5], we obtain the converse inequality.

References

[1] P.L. Butzer, Linear combinations of Bernstein polynomials, Canad. J. Math. 5 (1953), pp. 559567.
[2] H. Berens and G. Lorentz, Inverse theorems for Bernstein polynomials, Indiana Univ. Math. J. 21 (1972), pp. 693-708.
[3] D. Della Vechhia, G. Mastroianni and J. Szabados, Weighted approximation of functions with endpoint and inner singularities by Bernstein operators, Acta Math. Hungar. 103 (2004), pp. 1941.
[4] Z. Ditzian, A global inverse theorem for combinations of Bernstein polynomials, J. Approx. Theory 26 (1979), pp. 277-292.
[5] Z. Ditzian and V. Totik, Moduli of Smoothness, Springer-Verlag, Berlin, New York (1987).
[6] S.S. Guo, C.X. Li and X.W. Liu, Pointwise approximation for linear combinations of Bernstein operators, J. Approx. Theory 107 (2000), pp. 109-120.
[7] S.S. Guo, H. Tong and G. Zhang, Pointwise weighted approximation by Bernstein operators, Acta Math. Hungar. 101 (2003), pp. 293-311.
[8] G.G. Lorentz, Bernstein Polynomial, University of Toronto Press, Toronto (1953).
[9] L.S. Xie, Pointwise simultaneous approximation by combinations of Bernstein operators, J. Approx. Theory 137 (2005), pp. 1-21.
[10] L.S. Xie, The saturation class for linear combinations of Bernstein operators, Arch. Math. 91 (2008), pp. 86-96.
[11] D.S. Yu, Weighted approximation of functions with singularities by combinations of Bernstein operators, J.Applied Mathematics and Computation. 206(2008),pp.906-918.
[12] D.S. Yu and D.J. Zhao, Approximation of functions with singularities by truncated Bernstein operators, Southeast Bull. Math. 30 (2006), pp. 1178-1189.
[13] D.X. Zhou, Rate of convergence for Bernstein operators with Jacobi weights, Acta Math. Sinica 35 (1992), pp. 331-338.
[14] D.X. Zhou, On smoothness characterized by Bernstein type operators, J. Approx. Theory 81 (1994), pp. 303-315.

