

Volume 4, Issue 4

Published online: August 08, 2015|

Journal of Progressive Research in Mathematics www.scitecresearch.com/journals

Cubic H-ideals in BCK-Algebras

¹B. Satyanarayana and ²U. Bindu Madhavi

 ¹Department of Mathematics, Acharya Nagarjuna University Nagarjuna Nagar-522 510, A.P. India.
 E-mail: <u>drbsn63@yahoo.co.in</u>
 ²Department of Mathematics, Krishna University P.G Centre Nuzvid-521 201, A.P., India.
 E-mail: <u>bindumadhaviu@gmail.com</u>

Abstract: The notions of cubic H-ideals of BCK-algebras are introduced and several related properties are investigated.

Keywords: BCK-algebras; cubic sets; cubic H-ideals.

1. INTRODUCTION AND PRELIMINAREIS

The study of BCK–algebras was initiated by Iseki in 1966 as a generalization of the concept of set-theoretic difference and propositional calculus, after, a large volume of literature has been produced on the theory of BCK-algebras. The concept of fuzzy sets were introduced by Zadeh in 1965, several researchers explored the generalization of the notion of fuzzy sets. The notion of interval-valued fuzzy sets were first introduced by Zadeh as an extension of fuzzy sets. Based on the interval valued fuzzy sets, Jun et al. [6] introduced the notion of cubic sets. Zhan and Tan [3] introduced the fuzzy H-ideals in BCK-algebras.

In this paper we introduce the concept of cubic H-ideals and investigate some of its properties.

A BCK-algebra is a non-empty set X with a binary operation * and a constant 0 satisfying the following axioms:

- $(1).(x * y) * (x * z) \le (z * y)$
- $(2). x * (x * y) \le y,$
- (3). $x \le x$,
- (4). $x \le y$ and $y \le x$ imply x = y,
- (5).0 $\leq x$ for all x in X.

A BCK-algebra can be partially ordered by $x \le y \Leftrightarrow x * y = 0$ this ordering is called BCK-ordering. The following statements are true in a BCK-algebra:

(a) x * 0 = x, (b) $(x * y) * z \le (x * z) * y$, (c) $x * y \le x$

 $(d)(x*y)*z \le (x*z)*(y*z), \quad (e) x \le y \Rightarrow x*z \le y*z \text{ and } z*y \le z*x.$

Definition 1.1:[7] A Subset I of a BCK-algebra (X, *, 0) is called an ideal of X, for any $x, y \in X$. I₁. 0 $\in I$,

I₂. x * y and $y \in I \Rightarrow x \in I$.

Definition 1.2:[7] An ideal I of a BCK-algebra (*X*, *, 0) is called closed if

I₃. $0 * x \in I$, for all $x \in I$.

Definition 1.3:[7] A non empty subset I of a BCK-algebra X is called a H-ideal of X, if it satisfies I_1 and I_4 .

 $x * (y * z) \in I \text{ and } y \in I \Rightarrow x * z \in I.$

Definition 1.4:[7] A fuzzy subset H in a BCK-algebra X is called fuzzy H-ideal of X, if

 $(FH-1). \ \mu(0) \ge \mu(x)$

 $(FH-2). \ \mu(x*z) \geq \min\{\mu(x*(y*z)), \mu(y)\} \ \forall x, y, z \in X.$

The fuzzy set μ in X is called fuzzy sub algebra of X, if $\mu(x * y) \ge \min\{\mu(x), \mu(y)\}$, for $x, y \in X$.

Definition 1.5:[7] For fuzzy sets μ and λ of X and $s, t \in [0,1]$. The sets $U(\mu; t) = \{x \in X : \mu(x) \ge t\}$ is called upper tlevel cut of μ and $L(\lambda; s) = \{x \in X : \lambda(x) \le s\}$ is called lower s-level cut of λ . Let X be the collection of objects denoted generally by x. Then the fuzzy set A in X is defined as $A = \{(x, \mu_A(x)) : x \in X\}$ where $\mu_A(x)$ is called the membership value of x in A and $0 \le \mu_A(x) \le 1$.

Now we recall the concept of interval-valued fuzzy sets:

By the interval number D we mean an interval $[a^-, a^+]$ where $0 \le a^- \le a^+ \le 1$. For interval numbers $D_1 =$

 $[a_1^-, b_1^+], D_2 = [a_2^-, b_2^+].$ We define

- Min $(D_1, D_2) = D_1 \cap D_2 = \min\{[a_1^-, b_1^+], [a_2^-, b_2^+]\}$ = $[\min\{a_1^-, a_2^-\}, \min\{b_1^+, b_2^+\}]$
- Max $(D_1, D_2) = D_1 \cup D_2 = \max[[a_1^-, b_1^+], [a_2^-, b_2^+])$ = $[\max\{a_1^-, a_2^-\}, \max\{b_1^+, b_2^+\}]$

•
$$D_1 + D_2 = [a_1^- + a_2^- - a_1^- \cdot a_2^-, b_1^+ + b_2^+ - b_1^+ \cdot b_2^+]$$

And put

- $D_1 \leq D_2 \Leftrightarrow a_1^- \leq a_2^- \text{ and } b_1^+ \leq b_2^+$
- $D_1 = D_2 \Leftrightarrow a_1^- = a_2^- and b_1^+ = b_2^+$
- $D_1 < D_2 \Leftrightarrow D_1 \le D_2 \text{ and } D_1 \neq D_2$
- $mD = m[a_1^-, b_1^+] = [ma_1^-, mb_1^+]$, where $0 \le m \le 1$.

An interval valued fuzzy set A over X is an object having the form $A = \{(x, \tilde{\mu}_A) : x \in X\}$ where $\tilde{\mu}_A(x) : X \to D[0, 1]$ is the set of all sub-intervals of [0, 1]. The interval $\tilde{\mu}_A(x)$ denotes the intervals of the degree of membership of element x to the set A where $\tilde{\mu}_A(x) = [\mu_A^-(x), \mu_A^+(x)]$ for all $x \in X$. The determination of maximum and minimum between two real numbers is very simple but it is not simple for two intervals. Biswas [5] described a method to find max/sup and min/inf between two intervals or set of intervals.

Definition 1.6:[5] Consider two elements $D_1, D_2 \in D[0,1]$. If $D_1 = [a_1^-, a_1^+]$ and $D_2 = [a_2^-, a_2^+]$ then $rmin(D_1, D_2) = [min(a_1^-, a_1^+), min(a_2^-, a_2^+)]$ which is denoted by $D_1 \wedge^r D_2$. Thus if $D_i = [a_i^-, a_i^+] \in D[0,1]$ for i = 1,2,3 ... then we define $r sup_i(D_i) = [sup_i(a_i^-), sup_i(a_i^+)]$ i.e., $\nabla_i^r D_i = [\nabla_i a_i^-, \nabla_i a_i^+]$. Now we call $D_1 \ge D_2$ iff $a_1^- \ge a_2^-$ and $a_1^+ \ge a_2^+$. similarly, the relations $D_1 \le D_2$ and $D_1 = D_2$ are defined.

Based on (interval valued) fuzzy sets, Jun et al.[9] introduced the notion of (internal, external) cubic sets and investigated several properties.

Definition 1.7:[6] Let X be a non-empty set. A cubic set A in X is a Structure $A = \{(x, \tilde{\mu}_A(x), \lambda_A(x)); x \in X\}$ which is briefly denoted by $A = (\tilde{\mu}_A, \lambda_A)$ where $\tilde{\mu}_A = [\mu_A^-, \mu_A^+]$ is an interval valued fuzzy set in X and λ_A is fuzzy set in X.

2. Cubic H-ideals of BCK-algebras

Let X denotes a BCK-algebra unless otherwise specified. Combined the definitions of fuzzy H-ideal over a crisp set and the idea of cubic set we define cubic fuzzy H-ideal. After that, we give some important consequences of this representation

Definition 2.1: Let $A = (\tilde{\mu}_A, \lambda_A)$ be a cubic set in X, where X is a BCK-algebra, then the set A is cubic H-ideal of X if, (*CH-1*). $\tilde{\mu}_A(0) \ge \tilde{\mu}_A(x)$ and $\lambda_A(0) \le \lambda_A(x)$

(CH-2). $\tilde{\mu}_A(x * z) \ge rmin\{\tilde{\mu}_A(x * (y * z)), \tilde{\mu}_A(y)\}$

(CH-3). $\lambda_A(x * z) \leq max\{\lambda_A(x * (y * z)), \lambda_A(y)\}$ for all $x, y, z \in X$.

Example 2.2 Let $X = \{0, x, y, z\}$ be a BCK-algebra with the following Cayley table

*	0	Х	У	Z
0	0	0	0	0
Х	Х	0	0	0
у	у	Х	0	0
Z	Z	у	X	0

We define a cubic set $A = (X, \tilde{\mu}_A, \lambda_A)$ by $\tilde{\mu}_A(0) = \tilde{\mu}_A(x) = [0.6, 0.7]$,

 $\tilde{\mu}_A(y) = \tilde{\mu}_A(z) = [0.2, 0.3], \ \lambda_A(0) = 0.1, \ \lambda_A(x) = 0.3, \ \lambda_A(y) = \lambda_A(z) = 0.4$

By routine calculations we know that $A = (\tilde{\mu}_A, \lambda_A)$ is a cubic H-ideal of X.

Definition 2.3: A cubic set $A = (X, \tilde{\mu}_A, \lambda_A)$ in a BCK-algebra X is called a cubic closed H-ideal if it satisfies the following

(CCH-1).
$$\tilde{\mu}_A(0 * x) \ge \tilde{\mu}_A(x)$$
 and $\lambda_A(0 * x) \le \lambda_A(x)$

(CCH-2).
$$\tilde{\mu}_A(x * z) \ge rmin\{\tilde{\mu}_A(x * (y * z)), \tilde{\mu}_A(y)\}$$

(CCH-3). $\lambda_A(x * z) \leq max\{\lambda_A(x * (y * z)), \lambda_A(y)\}$ for all $x, y, z \in X$.

Theorem 2.4: Let $A = (X, \tilde{\mu}_A, \lambda_A)$ be a cubic H-ideal of X, if there is a sequence $\{x_n\}$ in X such that

(i)
$$\lim_{n\to\infty} \tilde{\mu}_A(x_n) = [1,1]$$
 then $\tilde{\mu}_A(0) = [1,1]$ and
(ii) $\lim_{n\to\infty} \lambda_A(x_n) = 0$ then $\lambda_A(0) = 0$.

Proof: Since $\tilde{\mu}_A(0) \ge \tilde{\mu}_A(x)$ for all $x \in X$. Therefore $\tilde{\mu}_A(0) \ge \tilde{\mu}_A(x_n)$ for every positive integer n. Consider $[1,1] \ge \tilde{\mu}_A(0) \ge \lim_{n \to \infty} \tilde{\mu}_A(x_n) = [1,1]$. Hence $\tilde{\mu}_A(0) = [1,1]$.

Since $\lambda_A(0) \leq \lambda_A(x)$ for all $x \in X$. Thus $\lambda_A(0) \leq \lambda_A(x_n)$ for every positive integer n, Now $0 \leq \lambda_A(0) \leq 1$ $\lim_{n \to \infty} \lambda_A(x_n) = 0$. Hence $\lambda_A(0) = 0$.

Theorem 2.5: A cubic set $A = (\tilde{\mu}_A, \lambda_A)$ in X is a cubic H-ideal of X if and only if μ_A^- , μ_A^+ and λ_A are fuzzy H-ideals of X.

Proof: Let μ_A^- , μ_A^+ and λ_A are fuzzy H-ideals of X and $x, y, z \in X$. Then $\mu_A^-(0) \ge \mu_A^-(x), \mu_A^+(0) \ge \mu_A^+(x), \ \mu_A^-(x * z) \ge \min\{\mu_A^-(x * (y * z)), \mu_A^-(y)\}, \ \mu_A^+(x * z) \ge \min\{\mu_A^+(x * (y * z)), \mu_A^+(y)\} \text{ and } \lambda_A(x * z) \le \max\{\lambda_A(x * (y * z)), \lambda_A(y)\}.$ Now $\tilde{\mu}_A(x * z) = [\mu_A^-(x * z), \mu_A^+(x * z)] \ge [\min\{\mu_A^-(x * (y * z)), \mu_A^-(y)\}, \min\{\mu_A^+(x * (y * z)), \mu_A^+(y)\}] = rmin\{[\mu_A^-(x * (y * z)), \mu_A^+(x * (y * z))], [\mu_A^-(y), \mu_A^+(y)]\} = rmin\{\tilde{\mu}_A(x * (y * z)), \tilde{\mu}_A(y)\}.$

Therefore A is cubic H-ideal of X.

Conversely assume that A is a cubic H-ideal of X. For any $x, y, z \in X$,

$$\begin{aligned} [\mu_A^-(x*z), \mu_A^+(x*z)] &= \tilde{\mu}_A(x*z) \ge rmin\{\tilde{\mu}_A(x*(y*z)), \tilde{\mu}_A(y)\} \\ &= rmin\{[\mu_A^-(x*(y*z)), \mu_A^+(x*(y*z))], [\mu_A^-(y), \mu_A^+(y)]\} \\ &= [min\{\mu_A^-(x*(y*z)), \mu_A^-(y)\}, min\{\mu_A^+(x*(y*z)), \mu_A^+(y)\}] \end{aligned}$$

Thus

 $\mu_{A}^{-}(x * z) \ge \min\{\mu_{A}^{-}(x * (y * z)), \mu_{A}^{-}(y)\}, \mu_{A}^{+}(x * z) \ge \min\{\mu_{A}^{+}(x * (y * z)), \mu_{A}^{+}(y)\} \text{ and } \lambda_{A}(x * z) \le \max\{\lambda_{A}(x * (y * z)), \lambda_{A}(y)\}.$

Hence μ_A^- , μ_A^+ and λ_A are fuzzy H-ideals of X.

Theorem2.6: If A = (X, $\tilde{\mu}_A$, λ_A) is cubic H-ideal of a BCK algebra x, then we have the following:

 $x \le a \implies \tilde{\mu}_A(x) \ge \tilde{\mu}_A(a) \text{ and } \lambda_A(x) \le \lambda_A(a) \text{ for all } x, a \in X.$

Proof : Let $x, a \in X$ such that $x \le a \Longrightarrow x * a=0$

Consider
$$\tilde{\mu}_{A}(x) = \tilde{\mu}_{A}(x * 0) \geq rmin \{ \tilde{\mu}_{A}(x * (a * 0)), \tilde{\mu}_{A}(a) \}$$

$$= rmin \{ \tilde{\mu}_{A}(x * a), \tilde{\mu}_{A}(a) \}$$

$$= rmin \{ \tilde{\mu}_{A}(0), \tilde{\mu}_{A}(a) \} = \tilde{\mu}_{A}(a)$$
and $\lambda_{A}(x) = \lambda_{A}(x * 0) \leq max \{ \lambda_{A}(x * (a * 0)), \lambda_{A}(a) \}$

$$= max \{ \lambda_{A}(x * a), \lambda_{A}(a) \}$$

$$= max \{ \lambda_{A}(0), \lambda_{A}(a) \}$$

$$= \lambda_{A}(a).$$

Therefore $\lambda_A(x) \leq \lambda_A(a)$.

Definition 2.7: Let $A = (\tilde{\mu}_A, \lambda_A)$ be a cubic set in X. For $[s_1, s_2] \in D(0,1)$ and $t \in [0,1]$ The set $U(\tilde{\mu}_A; [s_1, s_2]) = \{x \in X / \tilde{\mu}_A(x) \ge [s_1, s_2]\}$ is called upper $[s_1, s_2]$ level of A and $L(\lambda_A, t) = \{x \in X / \lambda_A(x) \le t\}$ is called lower t-level cut of A.

Theorem 2.8: If A = $(\tilde{\mu}_A, \lambda_A)$ is a cubic H-ideal of X, then the upper [s_1, s_2] level and lower t-level of A are H-ideals of X.

Proof: Let
$$x \in U(\tilde{\mu}_A, [s_1, s_2])$$

 $\Rightarrow \tilde{\mu}_A(x) \ge [s_1, s_2]$
 $\Rightarrow [s_1, s_2] \le \tilde{\mu}_A(x) \le \tilde{\mu}_A(0)$
 $\Rightarrow \tilde{\mu}_A(0) \ge [s_1, s_2]$
 $\Rightarrow 0 \in U(\tilde{\mu}_A; [s_1, s_2]), y \in U(\tilde{\mu}_A; [s_1, s_2])$
 $x * (y*z) \in U(\tilde{\mu}_A; [s_1, s_2]), y \in U(\tilde{\mu}_A; [s_1, s_2])$
 $\tilde{\mu}_A(x * (y * z)) \ge [s_1, s_2] \text{ and } \tilde{\mu}_A(y) \ge [s_1, s_2]$
Consider $\tilde{\mu}_A(x * z) \ge rmin\{\tilde{\mu}_A(x * (y * z)), \tilde{\mu}_A(y)\}$
 $\ge rmin\{[s_1, s_2], [s_1, s_2]\}$
 $=\{\min[s_1, s_1], min[s_1, s_2]\}$
 $=[s_1, s_2]$
Therefore $x * z \in U(\tilde{\mu}_A; [s_1, s_2])$
Hence $U(\tilde{\mu}_A; [s_1, s_2])$ is an H-ideal of X
For $x \in L(\lambda_A; t) \Rightarrow \lambda_A(x) \le t$
 $\Rightarrow 0 \in L(\lambda_A; t)$
Let $x * (y * z) \in L(\lambda_A; t)$ and $y \in L(\lambda_A; t)$
 $\Rightarrow \lambda_A(x * (y * z)) \le t$ and $\lambda_A(y) \le t$
Since for all $x, y, z \in X$,
 $\lambda_A(x * z) \le max \{\lambda_A(x * (y * z)), \lambda_A(y)\}$
 $\le max \{t, t\} = t$
 $\Rightarrow \lambda_A(x * z) \le t$.
Therefore $x * z \in L(\lambda_A; t)$ for all $x, y, z \in X$

Hence L (λ_A ; t) is an H-ideal of x.

3. Homomorphism of cubic H-ideal

Let F be a mapping from a set X into a set Y. Let $B = (\tilde{\mu}_{B_{\lambda}} \lambda_{B})$ be cubic set in y. Then the inverse image of B is defined as $f^{-1}(B) = \{ (x, (f^{-1}(\tilde{\mu}_{B_{\lambda}}), f^{-1}(\lambda_{B})) | x \in X \}$ with the membership function and non-membership function

respectively are given by $f^{-1}(\tilde{\mu}_B)(x) = \tilde{\mu}_B(f(x))$ and $f^{-1}(\lambda_B)(x) = \lambda_B(f(x))$. It can be shown that $f^{-1}(B)$ is a cubic set.

Theorem 3.1: Let $f: X \to Y$ be a homomorphism of BCK-algebras. If $B = (\tilde{\mu}_{B_{,}} \lambda_{B})$ is a cubic H-ideal of Y, then the pre image $f^{-1}(B) = \{(x, f^{-1}(\tilde{\mu}_{B}), f^{-1}(\lambda_{B})) \mid x \in X\}$ of B under f is a cubic H-ideal of X.

Proof: Let $B = (\tilde{\mu}_{B_{j}}, \lambda_{B})$ is a cubic H-ideal of Y. Let $x, y, z \in X \Longrightarrow f(x), f(y), f(z) \in Y$.

Consider
$$f^{-1}(\tilde{\mu}_B)(0) = \tilde{\mu}_B(f(0)) \ge \tilde{\mu}_B(f(x)) = f^{-1}(\tilde{\mu}_B)(x)$$
 and
 $f^{-1}(\lambda_B)(0) = \lambda_B(f(0)) \le \lambda_B(f(x)) = f^{-1}(\lambda_B)(x)$

Thus $f^{-1}(\tilde{\mu}_B)(x*z) = \tilde{\mu}_B(f(x*z)) \ge rmin\left\{\tilde{\mu}_B(f(x*(y*z))), \tilde{\mu}_B(f(y))\right\}$ $= rmin\left\{f^{-1}(\tilde{\mu}_B)(x*(y*z)), f^{-1}(\tilde{\mu}_B)(y)\right\}$ And $f^{-1}(\lambda_B)(x*z) = \lambda_B(f(x*z)) \le max\left\{\lambda_B(f(x*(y*z))), \lambda_B(f(y))\right\}$ $= max\left\{f^{-1}(\lambda_B)(x*(y*z)), f^{-1}(\lambda_B)(y)\right\}$

Therefore $f^{-1}(\mathbf{B}) = \{ (x, f^{-1}(\tilde{\mu}_{B_i}), f^{-1}(\lambda_B)) / x \in X \}$ is a cubic H-ideal of Y.

References:

- Atanassov, K.T. and Gargov, G. 1989, Interval valued intuitionistic fuzzy sets, Fuzzy sets and systems, 31, 343-349.
- [2] Biswas, R., 1994, Rosenfeld's fuzzy subgroups with interval valued membership function. Fuzzy sets and systems, 63(1), 87-90.
- [3] Jianming Zhan and Zhisong Tan, 2003, Characterisations of doubt fuzzy H-ideals in BCK-algebras, Soochow Journal of Mathematics, 29, 290-293.
- [4] Jun, Y.B., Jung, S.T. and Kim, M.S., "Cubic subgroups," 2011, Annals of Fuzzy Mathematics and Informatics, vol. 2, no.1, pp. 600–615.
- [5] Jun, Y.B., Kim,C.S. and Kang, J.B., 2011, "Cubic q-ideals of BCI algebras, 2011, Annals of Fuzzy Mathematics and Informatics, vol. 1,no. 1, pp. 25–34.
- [6] Jun, Y.B., Kim, C.S. and Yang, K.O., "Cubic sets," 2012, Annals of Fuzzy Mathematics and Informatics, vol. 4, no. 1, pp. 83–98.
- [7] satyanarayana, B., Bindu Madhavi, U. and Durga Prasad, R., 2010, On Intuitionistic Fuzzy H-ideals in BCKalgebras, International Journal of Algebra,4(15),743-749.
- [8] Satyanarayana, B., Ramesh, D. and Pragathi Kumar, Y., 2013, Interval valued intuitionistic fuzzy Homomorphism of BF-algebras, Mathematical Theory and Modelling 3(10), 15-23.
- [9] Zadeh, L.A., 1965, "Fuzzy sets," Information and Computation, vol. 8, pp. 338-353.