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Abstract. The aim of this paper is to generalize a fixed point result given by Popescu[17]. Our results 

complement and extend very recent results proved by Suzuki [T. Suzuki, A generalized Banach contraction 
principle that characterizes metric completeness, Proc. Amer. Math. Soc. 136 (2008) 1861 - 1869]. To 
validate our result an example is given. 
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1.  Introduction 

   Let (X, d) be a metric space, T a self-mapping on X and k a nonnegative real number such that 

the inequality d(T x, Ty) ≤ kd(x, y) holds for any x, y ∈ X. If k < 1 then T is said to be a contractive 

mapping and if k = 1, then T is said to be a nonexpansive mapping. The Banach theorem states 

that if X is complete, then every contractive mapping has a unique fixed point. There exists a 

vast literature about contractive and nonexpansive type mappings, where the contractive and 

nonexpansive conditions are substituted with more general conditions (see, for instance [1 - 10]). 

Bogin[1] proved the following result. 

Theorem 1.1. Let (X, d) be a nonempty complete metric space and T : X → X a mapping 

satisfying 

d(T x, Ty) ≤ ad(x, y) + b[d(x, T x) + d(y, T y)] + c[d(x, Ty) + d(y, T x)],                         (1)  

here a ≥ 0, b > 0, c > 0 and a + 2b + 2c = 1. Then T has a unique fixed point. 

This result was generalized by Li[15] and Gregus[11] considered a class of self-mapping T on X 

which satisfy (1) with c = 0. He proved the following theorem. 

Theorem 1.2 Let (X, d) be a complete metric space and S : X → X. Define a non-increasing 

function θ from [0, 1) onto (1/2, 1] by       

 

Assume that there exists r ∈ [0, 1) such that θ(r)d(x, Sx) ≤ d(x, y) implies  

d(Sx, Sy) ≤ rd(x, y),  for  all  x, y ∈ X. Then  S  has  a  unique  fixed  point.  Also, Kikkawa  and  

Suzuki[14] proved Kannan, Meir and Keeler [13] versions of Theorem 1.2.  Moreover, Suzuki 

studied a class of operators satisfying the following condition. 
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Theorem  1.3 Let T  be a mapping on a subset C  of a Banach space E. Then T is said to 

satisfy  condition (C) if   for  all x, y ∈ C 

(C)  1/2 ║Tx - Ty ║≤ ║x - y ║. 

In 2010, Tiwari et al.  [18] proved a common fixed point theorem for weakly compatible 

mapping in symmetric spaces satisfying an integral type contractive condition. Recently Popescu 

[17] proved the following theorem. 

Theorem 1.4 Let (X, d) be a nonempty complete metric space and T : X → X be a mapping 

satisfying  1/2 d(x, T x) ≤ d(x, y) implies 

d(T x, Ty) ≤ ad(x, y) + b[d(x, T x) + d(y, T y)] + c[d(x, Ty) + d(y, T x)]                                       (2)  

where a ≥ 0, b > 0, c > 0 and a + 2b + 2c = 1. Then T has a unique fixed point. 

Inspired by this theorem, we present a common fixed point result of Suzuki type in complete 

metric space in this paper. 

2. Main results 

The following theorem generalizes result of Popescu[17]. 

Theorem 2.1. Let (X, d) be a nonempty complete metric space and T : X → X be a mapping 

satisfying     implies 

             d(T x, Ty) + p max[d(x, y), d(x, T x) + d(y, T y), d(x, Ty) + d(y, T x)] 

                            ≤ ad(x, y) + b[d(x, T x) + d(y, T y)] + c[d(x, Ty) + d(y, T x)] (3) 

where a ≥ 0, b > 0, c > 0, p ≥ 0 and a + 2b + 2c − 2p = 1. Then T has a unique fixed point. 

Proof. Let x ∈ X be arbitrary. we have 

d(T x, T 2x) + p max {d(x, T x), [d(x, T x) + d(T x, T 2x)], [d(x, T 2x) + d(T x, T x)]} 

≤ a d(x, T x) + b [d(x, T x) + d(T x, T 2x)] + c [d(x, T 2x) + d(T x, T x)]. 

Hence 

d(T x, T 2x) + p max{d(x, T x), d(x, T x) + d(T x, T 2x), d(x, T x) + d(T x, T 2x)} 

≤ (a + b)d(x, T x) + b d(T x, T 2x) + c [d(x, T x) + d(T x, T 2x)]. 

Therefore we obtain, 

    d(T x, T 2x)  ≤ (a+b+c-p)/(1-b-c-p) d(x, Tx) 

 =  d(x, T x). 

This implies that the sequence {dn}∞
n=0 is a decreasing one, where 

 dn := d(T nx, T n+1x)   and  T 0x = x. 

Next, we will show that there exists a nonnegative number m < 2 such that  

d(T x, T 3x) ≤md0. First, we suppose that d(x, T 2x) ≥ d(x, T x). Then 1/2d(x, T x) ≤ d(x, T 2x)  

and we have 

d(T x, T 3x) + p max{d(x, T 2x), d(x, T x) + d(T 2x, T 3x), d(x, T 3x) + d(T x, T x)} 

≤ a d(x, T 2x) + b d(x, T x) + b d(T 2x, T 3x) + c d(x, T 3x) + cd(T x, T 2x). 

Thus, 
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d(T x, T 3x) +  p max{d(x, Tx), d(T x, T 3x) } ≤ a(d0+d1)+ bd0+ bd2 + c[d0+ d(T x, T 3x)] d1. 

 Setting  m = (1 + a)/(1-c-p),  we have m1  < 2 and d(T x, T 3x) ≤ m1d0. Now, we assume that    

d(x, T 2x) < d(x, T x). Since 

d(T x, T 2x) + p max{d(x, T x), d(x, T x) + d(T x, T 2x), d(x, T 2x) + d(T x, T x)} 

≤ a d(x, T x) + b d(x, T x) + b d(T x, T 2x) + c d(x, T 2x) + c d(T x, T x), 

we get d1 < (a + b)d0 + bd1 + cd0 + p(d0 + d1). Hence,   d1 < (a+b+c-p) / (1-b-p) and then 

d(T x, T 3x) ≤ d(T x, T 2x) + d(T 2x, T 3x) ≤ 2d(T x, T 2x) ≤ (2a + 2b+ 2c – 2p)/(1-b +c) . d0 =  (1+a)/ (1-b+p). 

Setting   m2  = (1+a)/ (1-b-p) , we have,   m2 < 2 and d(T x, T 3x) ≤ m2d0. 

Taking m = max {m1, m2}, we get 0 < m < 2 and d(T x, T 3x) ≤ md(x, T x), for all x ∈ X. 

Since 1/2 d(T x, T 2x) ≤ d(T x, T 2x) we have, 

d(T 2x, T 3x) + p max{d(Tx, T 2x), [d(Tx, T 2x) + d(T 2x, T 3x)], d(Tx, T 3x)} 

≤  a d(Tx, T 2x) + b[d(Tx, T 2x) + d(T 2x, T 3x)] + cd(Tx, T 3x)). 

Thus,     

              d2 ≤  (a + 2b − 2p)d0 + mcd0  =  (a + 2b + 2p + mc)d0 

Setting k = a + 2b − 2p + mc, we have k < 1 and d2 ≤ kd0 for all x ∈ X. 

Let x0 ∈ X and un = T nx0. Then dn+2 ≤ kdn for all n ≥ 0, where dn = d(un, un+1). Therefore, 

for any even integer n ≥ 0 we have by induction dn ≤ kn/2d0 ≤ k(n−1)/2d0 and for every odd integer n 

≥ 1 we have also by induction dn ≤ k(n−1)/2d1 ≤ k(n−1)/2d0. Hence, for all n ≥ 0 we get dn ≤ k(n−1)/2d0. 

Since k ∈ (0, 1) we obtain that un is a Cauchy sequence and by completeness of X there exists z ∈ 

X such that the sequence {un} converges to z as n → ∞. 

Next, we will show that z is a fixed point of T. Assuming that there exists n such that 

d(z, un) < 1/2d(un, un+1) and d(z, un+1) < 1/2d(un+1, un+2) we obtain 

dn = d(un, un+1) ≤ d(z, un) + d(z, un+1) < 1/2(dn + dn+1) ≤ dn. 

This is a contradiction, so for all n ≥ 0 we have either d(z, un) ≥ 1/2d(un, un+1) or  

d(z, un+1) ≥ 1/2d(un+1, un+2). Thus, there exists a subsequence {nj } of n such that d(unj , z) ≤ 

1/2d(unj+1 , unj ) for every integer j ≥ 0. Then, we have 

     d(Tz, unj+1) + p max{d(z, unj ), d(z, Tz) + d(unj , unj+1), d(z, unj+1) + d(Tz, unj )}  

≤ ad(z, unj) + bd(z, Tz) + bd(unj , unj+1) + cd(z, unj+1) + cd(Tz, unj ). 

Taking  j → ∞  we get d(Tz, z) ≤  (b + c) d(Tz, z). This implies d(Tz, z) = 0 and so, Tz = z. If 

z’ is another fixed point T then d(z,, z) ≤ 1/2d(z, Tz) = 0 and then 

           d(z,, z) = d(T z,, Tz) + p max{d(z,, z), [d(z,, z,) + d(z, z)], [d(z,, z) + d(z,, z)]} 

≤ a d(z,, z) + b [d(z,, z,) + d(z, z)] + c [d(z,, z) + d(z,, z)]. 

Hence,  

            d(z,, z)  ≤  (a + 2c − 2p)d(z,, z). 

This implies d(z,, z) = 0, which is a contradiction. So, T has a unique fixed point. 

Remark 2.2  2 If we put p = 0 in above, we get Theorem 1.4 of Popescu[17]. 
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Now we present the following example to validate our result. 

Example 2.3. Let X = [−1, 1] with the usual metric and let T : X → X be given as 

 

We will prove that: 

1. T has a unique fixed point. 

2. T satisfies condition (3) with a = 1/3, b = c = 1/4, p = 1/6 

 i.e.  1/2 d(x, Tx) ≤ d(x, y)  ⇒  d(Tx, Ty) ≤ m(x, y) where  

 m(x, y) = 1/3d(x, y) + 1/4 [d(x, Tx) +d(y, Ty) + d(x, Ty) + d(y, Tx)] − p max{d(x, y), d(x, Tx) + d(y, Ty), 

d(x, Ty) + d(y, Tx)}. 

3. T does not satisfy Suzuki condition of Theorem 1.2. 

4. T does not satisfy Popescu condition of Theorem 1.4 with  a = 1/3, b = c = ¼  and  p = 1/6. 

Proof. 1 is obvious. Secondly we consider the following. 

(i) For x, y ∈ U then 

m(x, y) =1/3 |y −x|+(1/4 + 1/4 )|2y +2x|− 1/6 |2y +2x| = 1/3 |y −x|+1/2 |2y +2x|− 1/6 |2y +2x|, or 

m(x, y) = ( 1/3 |y − x| + 2/3 |y + x| ≥ |y − x| = d(Tx, Ty) and (2) holds. 

(ii) If x, y ∈ V , then m(x, y) = ( 1/3 + 3/4 ( 1/4 + 1/4 + 1/6 ))|y − x| = 5/6 |y − x| ≥ 1/4 |y − x| = d(Tx, Ty) so (2) 

holds. 

(iii) If x ∈ U, y єV , then m(x, y) = 1/3 |(x−y)|+( 1/4 + 1/4 + 1/6 |2x− 3y/4 |) = 13x/12 – 5y/24 + 1/4 |y +x| ≥x + 

y/4 = d(Tx, Ty) so (2) holds. 

(iv) If x ∈ V , y є U, then m(x, y) ≥ d(Tx, Ty) like in (iii). 

(v) For x ∈ U, y = 1/2 , then m(x, y) = 1/3 |x− 1/2 |+( 1/4 |4x+1|− 1/6 |2x| = x+ 1/12 ≥ x = d(Tx, Ty) 

and (2) holds. 

(vi) For x ∈ V , y = 1/2 , then m(x, y) = 1/3 |x− 1/2 |+ 1/4 | 3x/2 +1|− 1/6 | 3x/4 + 1/2 | = 7x/12 ≥x/4 = d(Tx, Ty) 

and (2) holds. 

(vii) If x = 1/2 , y ∈ U, then m(x, y) = 1/3 |y – 1/2 | + 1/4 |1 + 4y| − 1/6 |2y + 1/2 | = y + 5/6 ≥ d(Tx, Ty)  and 

(2) holds. 

(viii) If x = 1/2 , y ∈ V , then 

m(x, y) = 1/3 | 1/2 −y|+ 1/4 | 3y/2 +1|− 1/12 – y/8 = 1/3 + y/6 ≥ 1/2  and d(Tx, Ty) = 0−y/4 ,−y/4 ≤ 1/4 ( y/4 ∈  

[−1/4 , 0))  Hence (2) holds. 

(xi) If x = y then (2) is obvious. 

(3) If x = 0, y = 1, then θ (r)d(x, Tx) = 0 < 1 = d(x, y) and d(Tx, Ty) = 1, so condition 

from Theorem 1.2. does not hold. 

(4) If x = 1/2 , y = 1 we have d(Tx, Ty) = 1 and m(x, y) = 1/3 |1|+1/4 | 1/2−0|+1/4 |1| = 1/3+1/8+1/4+1/4  = 

23/24 so d(Tx, Ty) > m(x, y). Therefore Popescu’s condition Theorem 1.4 does not hold. 
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